Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1344
Title: 利用遞歸神經網路和注意力機制來預測不同場景下車輛的速度
Vehicle speed prediction with RNN and attention model under different semantics
Authors: Po-wei Huang
黃柏瑋
Advisor: 施吉昇(Chi-Sheng Shih)
Keyword: 車輛,軌跡,速度,場景,遞歸神經網路,注意力機制,
vehicle,trajectory prediction,velocity prediction,recurent neural network,attention,semantics,
Publication Year : 2018
Degree: 碩士
Abstract: 本論文旨在利用預測周遭車輛的速度來達成防衛性駕駛。要達成防衛性駕駛,首先要知道周遭車的意圖和預測其速度和軌跡。但是,既有的預測機制有幾個問題。第一,使用了很多資訊,像是前前車的速度,來預測前車的速度。這樣的資訊,實際上是沒有的。第二,既有的模型無法從資料中抓出子序列的規律。第三,既有的模型通常只鎖定單一模型,而沒有分析在不同路段或駕駛類型的影響。面對這些問題,本文提出了這些改進。第一、使用單台車的資料,來做預測,並探索其適用範圍。第二、利用注意力機制來抓出子序列的規律來提升預測準度。第三、分出不同的場景,如轉彎、直行、換車道,和道路的型態,並找尋模型最適合的範圍。以結果來說,相比於既有卡爾曼濾波的作法,利用遞歸神經網路和注意力機制,本文達到了11\%的提升。此外,透過和多台車模型的比較,驗證單台車模型能適用於直行的預測。此外,在接近自由駕駛時,預測會更佳。
In this work, we focus on vehicle velocity prediction for defensive driving. In order to achieve defensive driving, we need to understand and predict the motion of surrounding cars. However, the existing velocity prediction mechanism has three drawbacks. Firstly, they need too much information for prediction and some information are not accessible actually. Secondly, they failed to extract sub-patterns from the training data and thus may cause inaccuracy. Thirdly, only very few scenarios are considered. To deal with these problems, we start with single car model for prediction and explore its limitation by comparing it with multi-car model. Then, we use attention model to increase the accuracy. Finally, we examine the prediction under different road types and maneuver to broaden our scenario. Overall, with attention mechanism, we achieve a 11\% improvement over existing solution. Moreover, we found that single car model could be used in go straight behavior, and it has best result in free driving periods.
URI: http://tdr.lib.ntu.edu.tw/handle/123456789/1344
DOI: 10.6342/NTU201803784
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-107-1.pdf1.68 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved