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摘摘摘要要要

本論文旨在利用預測周遭車輛的速度來達成防衛性駕駛。要達成防

衛性駕駛，首先要知道周遭車的意圖和預測其速度和軌跡。但是，既

有的預測機制有幾個問題。第一，使用了很多資訊，像是前前車的速

度，來預測前車的速度。這樣的資訊，實際上是沒有的。第二，既有

的模型無法從資料中抓出子序列的規律。第三，既有的模型通常只鎖

定單一模型，而沒有分析在不同路段或駕駛類型的影響。面對這些問

題，本文提出了這些改進。第一、使用單台車的資料，來做預測，並

探索其適用範圍。第二、利用注意力機制來抓出子序列的規律來提升

預測準度。第三、分出不同的場景，如轉彎、直行、換車道，和道路

的型態，並找尋模型最適合的範圍。以結果來說，相比於既有卡爾曼

濾波的作法，利用遞歸神經網路和注意力機制，本文達到了11%的提

升。此外，透過和多台車模型的比較，驗證單台車模型能適用於直行

的預測。此外，在接近自由駕駛時，預測會更佳。

關關關鍵鍵鍵字字字-車車車輛輛輛、、、軌軌軌跡跡跡、、、速速速度度度、、、場場場景景景、、、遞遞遞歸歸歸神神神經經經網網網路路路、、、注注注意意意力力力機機機制制制 -
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Abstract

In this work, we focus on vehicle velocity prediction for defensive driv-

ing. In order to achieve defensive driving, we need to understand and predict

the motion of surrounding cars. However, the existing velocity prediction

mechanism has three drawbacks. Firstly, they need too much information for

prediction and some information are not accessible actually. Secondly, they

failed to extract sub-patterns from the training data and thus may cause inac-

curacy. Thirdly, only very few scenarios are considered. To deal with these

problems, we start with single car model for prediction and explore its limi-

tation by comparing it with multi-car model. Then, we use attention model to

increase the accuracy. Finally, we examine the prediction under different road

types and maneuver to broaden our scenario. Overall, with attention mecha-

nism, we achieve a 11% improvement over existing solution. Moreover, we

found that single car model could be used in go straight behavior, and it has

best result in free driving periods.

Keywords - vehicle, trajectory prediction, velocity prediction, recurrent

neural network, attention, semantics.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Motion prediction for defensive driving

Motion prediction is an essential element for defensive.Below is an scenario of ag-

gressive cut-in which shows the importance of motion prediction. As the figure shows,

the car on the right want to change lane and cut in. The ego vehicle has to slow down

accordingly.

Figure 1.1: Aggressive cut in

According to [11], the ego vehicle need to do these steps in order to drive defensively.

The step is also shown in the following figure.

• Detect the intention of right car to cut in.

• Predict the cut in trajectory and velocity in longitudinal and latitude direction.

• Generate a trajectory for ego vehicle according to front car.

1
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Figure 1.2: Lane change detection and defense

From this example, we could understand the importance of motion prediction. Figure

1.3 describe high-level theory about how to predict motion. Basically, we have to know

his situation, and use our driving models to infer what would he do. With this in mind,

figure 1.4 lays out the overall scope of motion prediction. To understand the situation,

we need real-time sensing and information collection. Then, we need a driving model

to make prediction. However, previous mechanism has some problems when applied to

defensive driving.

Car A Car B

Information retrieval
 of car B from car A

Driving model
of car B for

motion prediction

Figure 1.3: Element of motion prediction

Figure 1.4: Overall scope of motion prediction

1.1.2 Problems of existing prediction mechanism for defensive driv-

ing

While there exists many motion prediction methods, we found several problems when

it’s applied to defensive driving.

2
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• Some model used many information that’s actually not available. For instance,

[1] use the velocity of front front car to predict the motion of front car. While in

defensive driving, we don’t have that.

• Failed to consider the influence of velocity prediction on safety distance. While the

velocity is important for safety distance calculation, some model only predict the

occupancy map for trajectory and it’s hard to generate velocity as the grid size of

the map is too big.

• Some models couldn’t find patterns within subsequence or rely on additional infor-

mation to classify the pattern in subsequences.

• Model not trained and tested on various scenario. Many works only trained and

tested on the track they design or on dataset with only one or two scenario.

1.2 Our solution and result

We propose a solution for each of the problem. To tackle the challenge of limited

input, we start with a single car model and compare it with the multi-car model to find

out its limitation. As for the subpattern, we use attention model to extract the pattern in

subsequence and thus get a 11% improvement over kalman filter and a 8% improvement

over encoder-decoder. Moreover, we output speed directly to reduce the problem coming

from occupancy map. Lastly, we use a dataset that contain multiple scenario and evaluate

the precision under different scene. As 1.5 shows, our focus in this thesis would mostly

about single car model.

1.3 Contribution

• Use attention model to deal with the patterns in subsequecne

• Consider the problem of multiple scenario in motion prediction. Specifically, this

work use the gyro data , map service , and average speed to get comprehensive

3
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Our focus in this work

Figure 1.5: Our focus in this thesis

scenario.

• Consider the problem of existing motion prediction when applied to defensive driv-

ing and explore the limitation of single car model.

1.4 Thesis Organization

The remainder of this paper is organized as follows. Chapter 2 contains background

readers to understand this paper. Chapter 3 contains the software architecture and problem

definition.

Chapter 4 describes our design and implementation. Lastly, chapter 5 describes our

methodology and our experiment result. chapter 6 serves as a conclusion.

4
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Chapter 2

Background and Related Work

2.1 Background

2.1.1 Data preprocessing

Map service and openstreetmap

Openstreetmap[7] is a community effort for map service. The database contains many

geographical information like address, road name, and road type.

2.1.2 Prediction model

encoder-decoder

Encoder-decoder[6] use LSTM to encode the sequence into a fixed vector. Then, the

vector is fed into a LSTM to generate a sequence. It’s suitable for next step prediction.

The advantage of this model compared to kalman filter is that it could has a lot of memory

and thus could accommodate various pattern.

encoder-decoder with attention

Although encoder-decoder is powerful, it has some shortage[4]. Encoder-decoder

couldn’t deal with the alignment problem. In machine translation , alignment is the prob-

lem in machine translation that identifies which parts of the input are relevant to the out-

5
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Figure 2.1: Architecture of encoder-decoder[6].

put, whereas translation is the process of using the relevant information to select the ap-

propriate output. Instead of encode the entire sequence into a vector, attention mechanism

encode each subsequence into a context vector. With the context vectors, it could generate

better prediction because of the subpattern.

Figure 2.2: Architecture of encoder-decoder with attention model[4].

6
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2.2 Related Work

2.2.1 Previous study on motion prediction

In [1], they used a LSTM network with residual and convolution to produce the pre-

diction. However, the input contains information of all the surrounded car, so it’s different

from our scenario. In addition, in [12] , they used the encoder-decoder architecture to pre-

dict the trajectory in occupancy map. However, this work didn’t use attention model, and

it only used beam search to enhance their recall. Besides, in [2], they used kalman filter

to predict and couldn’t accommodate for multiple trajectories.

2.2.2 Previous study on time series prediction

Trajectory prediction is related to time series prediction. In [13], they used a dual-

stage attention model to improve their prediction on financial data. While it’s attractive to

import this result directly to trajectory prediction, there are some difference in financial

data and trajectory. For trajectory, maneuver and driver’s decision plays a heavy role, but

for financial data, factors are more complicated and thus require more powerful and deep

model to learn the representation directly.

2.2.3 Previous study using road semantics

Using semantics is a native step in many geographical problems. In [14], they also

used openstreetmap to retrieve the road, but the target is different. They wanted to do

destination prediction, while our focus is on short-term trajectory prediction. Moreover,

they use the road name as features directly, while we use speed limit as feature.

7
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Chapter 3

System architecture and problem

definition

In this chapter, we describe our target problem, approach , problem definition, and

system architecture.

3.1 Target problem

In the following section ,we describe the problems of existing prediction mechanism

in detail.

3.1.1 Challenge I : Some model used many information that’s actu-

ally not available

Many methods use information that’s actually not available in defensive driving for

prediction. For instance, [1] used information from surrounding cars to predict the motion

of ego vehicle. In real-world scenario, we couldn’t see the car in front of front car, and

thus couldn’t utilize this kind of model. Actually, all interaction-based models suffer from

this problem and thus not applicable to our application. In other words, we could only

utilize the speed and acceleration of front car to do prediction. This is a very limited input

for prediction and thus incur us to use more semantics or better prediction model.

8
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Figure 3.1: multi car model[1]

3.1.2 Challenge II : Fail to find patterns within subsequence

Sometimes, the driver breaks at the last second. So, only the last part of training

sequence might be helpful. Moreover, subpatterns may exist inside sequence, as shown in

Figure 3.2 . Some model [12] use encoder-decoder, which fails to deal with this. Other

model[2] use kalman filter and also fail to track this due to insuffciency of latent variable.

Figure 3.2: Subpattern inside a trajectory.

3.1.3 Challenge III : Models not trained and tested on various sce-

nario

Driver will display different behavior on different scenario. For example, in highway

and intersection, driver will drive very different due to factors like traffic jam and speed

9
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limit. Moreover, in different maneuver such as go straight, change lane, free driving, car

following, driver will also have different behavior. Previous studies [2][12] only tested it

in one or two scenarios and didn’t explore its difference.

3.2 Our approach for these problems

3.2.1 Our approach for challenge I and II

To deal with the problem, we have to limit the input of our model. So, we formally

define the information that’s available for ego vehicle in defensive driving.(single car

model) Then, we examine the difference between single car model and multi-car model.

The single car model

When a car follows another car, we want to predict the velocity of front car. We

assume that the sensors could accurately know the velocity and trajectory of front car.

Besides, from the camera, it could know the maneuver of front car. In summary, the

following car could know the information of front car and need to make prediction by

this:

• velocity and trajectory of front car and self car.

• maneuver of front car.

• other semantic information like road information and traffic information.

Self car Front car

Ideal sensing

Figure 3.3: Single car model

10
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This model is simple and useful for defensive driving, but it also has its limitation. So,

we need to compare it with multi-car model to validate its applicability.

Moreover, for problem II, we abandon occupancy method and predict the velocity

directly. As for problem III, we need to use a model to extract the subpattern.

3.2.2 Our approach for challenge III

For this problem, we use a dataset that contains many scenario like maneuver class,

road type, and average speed. Then, we cut the data by scenario and explore the accuracy

for each class.

3.3 Problem Definition

3.3.1 Motion prediction

Given the velocity of the target car X1,X2,X3,....,Xn in the history, we want to predict

the future velocity Z1,Z2,Z3,....,Zn. In this problem, accuracy would be main concern.

The mean square error would be our metric for comparison. Moreover, we focus on

short-term prediction, like prediction for next T seconds. We want to find model that

minimize the prediction error. Moreover, due to the application, we focus on model that

only uses the information of ego vehicle. Moreover, we need a model that could find the

pattern in subsequences.

Predict the future velocity

Velocity of past 5 seconds  Predict the velocity in the future 5 seconds

Figure 3.4: Illustration for problem definition.

11
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3.3.2 Requirement of motion prediction

After the problem definition, we need to qualitatively define our requirement of T, as

the prediction horizon will influence the choice of seq2seq model. A complicated model

might be good for long-term prediction, but when we only need a short-term prediction,

it will be an overkill. We set our prediction horizon to 5s due to following reasons:

• Driving is a series of event and our prediction should contain a full event for solid

validation. According to [8], the mean lane change time of PKU and UAH are 6.8s

and 5.9s respectively. So our prediction should at least be 5s.

• The short term prediction would be hard to cover two event, unless we know the

road geometry and the position of all the surrounding cars in future. We couldn’t

know that a car will change lane or turn left or right after a go-straight event, unless

we know there is an intersection. So, the prediction shouldn’t be larger than 7s.

• According to [3], AEBS should issue at least one warning when TTC is equal to or

less than 4.4s. So, it’s important to predict for at least 4.4s.

3.3.3 Explore the limitation of single car model

As the surrounding cars might have a influence when the front car change lane or turn

right, we’re interested to know the limitation of single car model. So, we would like to

compare the prediction made by multi-car model and single car model to know this.

3.3.4 Effectiveness of single car model under different scenario

In addition to model selection, we would like to explore the effectiveness of single car

model under different scenario. For example, for each maneuver, the accuracy might be

different. So, for each semantic Z, we want to explore the accuracy when the semantic

has different values.
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3.4 System architecture

In this section, we first describe the existing system architecture for driving model

prediction. Then, we describe the new system architecture after our work. As shown

in figure 3.5, existing work like [1] divide the trajectory into sliding window and use

seq2seq model for prediction. A natural enhancement would be use better seq2seq model

for prediction. In the first part of our work use a new seq2seq model called attention

model to achieve better result.

Figure 3.5: Existing system architecture

Then, we add a data classifier in front of the sliding window generator. The will enable

us to debug and enhance our prediction model. The classifier will divide the data based

on maneuver, road type, average speed, as shown in figure 3.6. Finally, as shown in 3.7,

we use NGSIM US-101 to evaluate the limitation of single model.

Figure 3.6: System architecture with data classifier
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Figure 3.7: Comparison of single car and multi car model
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Chapter 4

Design and implementation

4.1 Implement existing system architecture for on-board

sensing data

The first step of our design is to implement the existing system architecture from on-

board sensing data. The key difference for OBD lies in the way to get sliding window

from raw data. As shown in 4.1, after we get the sliding window, we could use any kind

of seq2seq model for prediction. As we have many types of sensor including GPS, IMU,

speedometer, we have to use sensor fusion to get the velocity. Moreover, as the amount

of trajectories are so big and versatile, we need to use many data preprocessing skills to

get the sliding window. Now, we would start from dataset and elaborate on how to get the

sliding window.

Figure 4.1: Existing system architecture
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4.2 Dataset

Our dataset comes from the trajectory of 9 bus route. It’s sampled in November and

the route is in a region between Pleasanton and Livermore, CA. The trajectory includes

highway, curve, turn, ramp behaviors as well as some local driving. The sensors on the

bus include GPS, velocity meter, accelerometer and gyroscope.

The features includes:

• value from gyroscope in x,y, z direction in 10Hz

• acceleration in x,y,z direction in 10Hz

• latitude and longitude in 0.5Hz

• Speed from GPS in 0.5Hz

• Speed from velocity meter in 2Hz

• timestamp in unix time

• mac id for each bus

This dataset is rich in its features, and it contains several hundreds of routes for each

bus. The time span of each route ranges from 2min to 20min, so the quantity is pretty

large for validation and analysis. Besides, the road type is diverse, which enable us to use

this for analysis. However, it also has some deficiency. For example, the diversity of bus

is pretty small. Lastly, the data is stored in relational format like CSV or SQL.

4.3 From raw data to sliding window of velocity

After we get the raw data. The first step is to transform the raw data into trajectories

of same length. Below, we describe our steps of transformation.

4.3.1 Group the dataset by bus id

As the raw data is in relational format, we need to get the data for each bus first.
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Figure 4.2: Pipeline from raw data to sliding window.

4.3.2 Group the dataset into trajectories by time disjointness

After the data is extracted, we need to transform it into trajectories. So, we sort it by

time and cut it by time disjointness.

A cut exists between Ti and Tj, if | Ti − Tj |> 5s (4.1)

4.3.3 Sensor fusion for tangential velocity

As the sampling rate of velocity from GPS is too slow, we need to use sensor fusion

for tangential velocity. We have three sources of data to get tangential velocity. Firstly,

velocity from GPS with 0.5Hz. Secondly, velocity from speedometer in 2Hz. Thirdly,

acceleration from IMU in 10Hz. We need to combine these three data to get tangential

velocity in 10Hz. To achieve this, we add the effect of acceleration on two velocity data.

Then, we used weighted average to calculate the tangential velocity from two velocity.

Moreover, if the ratio of two velocity is not clost to 1 or not consistent, we used heuristic

validation to check which one might be wrong and only use one data directly. While we

used a lot of method to ensure its correctness, the dataset doesn’t have a groundtruth for

tangential velocity in 10Hz. So, it’s hard for us to check whether we’re good enough in

sensor fusion, but we have used our best effort on this.

4.3.4 Stop-and-go filtering

When we follow a car, the timing of front car to start and stop is hard to know. How-

ever, we could predict the movement after it’s started. So, we need to filter our trajectories

by a stop-and-go filtering. We utilize a technique called endpoint detection. When we

move forward with sliding window, we calculate the root mean square of sliding window.
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If the value drops below a value, we add a cut at that place. The technique works better

when the signal contains noise.

RMS for window =

√
1

n
Σ

T−5

i=T0
v2predict (4.2)

A cut exists at Ti , if RMSi < 1m/s (4.3)

4.3.5 Sliding window retrieval

For the trajectory, we use sliding window of 5s (50 points) to transform it into same

length. As the sliding window would duplicate data and cause heavy memory overhead,

we use batch processing and generator pattern to get data from database for training.

Sliding windowi = (Ti , Ti+1 , Ti+2, ...., Ti+49) (4.4)

4.4 Seq2seq models

After we get sliding window, we’re ready to use it in our prediction. In this part, we

describe our seq2seq model and the baseline models. Moreover, we will elaborate on how

we use them for prediction.

4.4.1 Baseline : constant velocity

We use the velocity of last point in history for our prediction. This serves as a lower

bound to validate the powerfulness of other method.

4.4.2 Baseline : kalman filter

Kalman filter is the model used in [2]. It serves as the baseline model. The problem

of it is that it didn’t have too many state, so it’s hard to generalize to many cars.
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4.4.3 Baseline: Encoder-decoder

Encoder-decoder is the model used in [12]. While it’s used for occupancy map in [12],

the principle is the same. Encoder-decoder[6] use LSTM to encode the sequence into a

fixed vector. Then, the vector is fed into a LSTM to generate a sequence. It’s suitable

for next step prediction. The advantage of this model compared to kalman filter is that it

could has a lot of memory and thus could accommodate various pattern.

Figure 4.3: Architecture of encoder-decoder[6].

Encoder-decoder with attention

Although encoder-decoder is powerful, it has some shortage[4]. Encoder-decoder

couldn’t deal with the alignment problem. In machine translation , alignment is the prob-

lem in machine translation that identifies which parts of the input are relevant to the out-

put, whereas translation is the process of using the relevant information to select the ap-

propriate output. Instead of encode the entire sequence into a vector, attention mechanism

encode each subsequence into a context vector. Moreover, it used the weighted average

from each subsequence to make the prediction and thus solve the alignment problem. This

is the reason that attention mechanism could deal with the subpattern and generate better

prediction.
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Figure 4.4: Comparison of attention mechanism and original encoder-decoder[10].

Why would it be helpful for our prediction?

To understand why attention model would be helpful, we need to look at the alignment

problem in velocity prediction. The go-straight maneuver still contain many patterns. Car

following, free driving, action before change lane and after change lane are all classified

as go-straight maneuver. Thus, when we look at a trajectory, the pattern might start at the

middle of it and cause the problem of alignment. This is the reason why attention model

would be helpful.

Figure 4.5: Subpattern inside a trajectory.

How we use the model

After high-level description, we would describe the model how we use it in detail in

this section.
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Figure 4.6: Overview of the model and how we use it for prediction.

Quantization and one hot encoding The model takes a sequence of velocity. Each

velocity, V,is fed into a uniform quantization with 256 classes. So, the length of each

class, Q, would be:

Vmax = max
all trajectory

V (4.5)

Vmin = min
all trajectory

V (4.6)

Q =
Vmax − Vmin

256
(4.7)

Then, the conversion from velocity would be:

Q(V ) = bV − Vmin

Q
cQ +

Q

2
+ Vmin (4.8)

After the quantization, we do one hot encoding. So, now, our model takes a sequence

of velocity and generate a prediction of 5s. As the sampling rate is 10Hz, we have 50points

in each sequence.

Vinput = (Vx1, Vx2, ..., Vx50), Vi ∈ R256 (4.9)

Voutput = (Vy1, Vy2, ..., Vy50), Vi ∈ R256 (4.10)

At the end of the model, we need to do inverse quantization for calculation of MSE.
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Figure 4.7: Architecture of encoder-decoder with attention model[4].

Encoder Encoder reading source sentence while updating hidden state. In the following

formula, f could be LSTM or GRU. In our work, we use LSTM.

henc
t = f(henc

t−1, vt) (4.11)

Decoder Decoder producing target sentence while updating hidden state. In attention

model, the context vector c is also used to produce the next step.

hdec
t = f(hdec

t−1, vt, ct) (4.12)

Context Context vector is calculated by a combination of encoder hidden states weighted

by attention weights:

ct =
50∑
i=1

at,i ∗ henc
i (4.13)

at,1....T = softmax(align(hdec
t−1, yt−1, h

enc
1...50)) (4.14)

In our model, align is a feed forward network.
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4.5 Design of data classifier

Our data classifier aims to seperate the data for different driving scenarios. From our

dataset, the following characterisctice are used for classification. The implementation of

each characteristic will be described in the following sections.

• Maneuver

• Speed limit

• Average speed

Figure 4.8: Overview of data classifier

4.5.1 Classifier for speed limit

In order to get geographical information, we utilize openstreetmap to get the road

map and road type. From its database, we query the road name and its speed limit from

longitude and latitude.The query API that we used, Overpass, doesn’t support k nearest

neighbor query, so we have to find the nearest road based on results of bounding box

query.
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Figure 4.9: Query and select the speed limit

4.5.2 Classifier for maneuver

From trajectories, now we have to define our maneuver class and describe how we

get it. The maneuver class has three types: go straight, change lane, and turn. We use

the gyro data for classification. According to [5], gyro on the z axis will have one or two

bumps when the vehicle change lane and turn. So, by detecting the number of bump, we

could classify the maneuvers.

Figure 4.10: Maneuver classification[5].

4.5.3 Classifier for average speed

For each road in the trajectory, we calculate the average speed for self-car. We divide

all the data into 5 classes. The average speed could serve as a inference for driver’s

behavior and traffic condition.

Average speed for window =
1

50
ΣT50

i=T0
vpredict (4.15)
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4.5.4 Explore the prediction under different scenarios

After the classification above, we turn our raw data into better structure. The se-

quences of sensor data now turn into a sequence of steps and action on road. For example,

go straight at road A, turn to road B, go straight at road B, and turn to road C. This makes

the raw data more meaningful. After this step, we train a model for each driving scenario

and compare prediction, as shown in figure 4.11.

Figure 4.11: Better interpretation of raw data

4.6 Comparison of single car model and multi-car model

To explore the limitation of single car model, we use different dataset and model. Our

new dataset should represent the interaction between multiple cars. As shown in figure

4.13, we will extract the data of ego vehicle and surrounding vehicle respectively. Then,

we use the single car model and multi-car model on our data for prediction. When we

compare the result of prediction, we could realize the limitation of single car model.

Figure 4.12: Prediction under different scenario
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Figure 4.13: comparison of multiple car model and single car model

4.6.1 NGSIM US-101

NGSIM US-101 [9] is a public dataset that’s widely used in traffic research. It con-

tains 45 minutes of trajectories for vehicles on the US101 highway between rush hour of

7:50am and 8:35am.

The original data includes many columns, but we select local coordinate X and Y as a

start. Moreover, we adopted the data preprocessing techniques used in this LSTM paper

to get velocity and acceleration. Besides, the data has a record about lane. So, our features

include:

• X,Y in local coordinate, with sampling rate 10Hz.

• Timestamp

• Vx, Vy by processing.

• Ax, Ay by processing.

• Lane ID

Maneuver classification for NGSIM

As the data contains lane id, a lane change happens when the lane ID changes.

4.6.2 The multi-car model

[1] used a recurrent model with residual connection for ego vehicle. This model, as

shown in figure , it will use the information of ego vehicle and surrounding car to predict

26



doi:10.6342/NTU201803784

the trajectory of ego vehicle. We used this model for comparison.

Figure 4.14: multiple car model[1]
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Chapter 5

Performance Evaluation

5.1 Experiment Environment

In our work, we use Keras and Tensorflow to implement our model. Moreover, the

following parameters, model, and dataset are used:

• input and output sequences: 5s, 50 points in 10Hz.

• stack layer for RNN=2

• model: encoder-decoder with attention.

5.2 Performance metric

In our work, the root mean square error(RMSE) is used for evaluation. It’s used in

[1][12][2], so it’s a legitimate target for comparison with related work.

RMSE =

√
1

n
Σn

i=1(vpredict − vtruth)2 (5.1)
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5.3 Experiment on new model

5.3.1 Experiment on private dataset

Experiment design

In the experiment, 4 models are compared. The training and the prediction will run

for y direction. (tangential direction)

The parameters and model are the same as the previous one. Moreover, the go-straight

maneuver class is used. Besides, the speed limit is set as 65mph and the average speed is

set as V5(the largest). This combination would has the smallest influence from surround-

ing cars, and will best reflect the power of model.

Model Input Output Metric
Constant Velocity 5s 5s RMSE
Kalman 5s 5s RMSE
Encoder-decoder 5s 5s RMSE
Attention 5s 5s RMSE

Table 5.1: Experiment for model comparison

Experiment result

In the experiment, 4 models are compared. The unit for MSE is meter per second.

Experiment result

Model 1s 2s 3s 4s 5s
Constant Velocity 1.345 1.456 1.782 1.94 2.35
Kalman 0.932 1.15 1.323 1.576 1.728
Encoder-decoder 0.881 1.1 1.293 1.544 1.674
Attention 0.807 1.03 1.243 1.502 1.642

Table 5.2: Result for model selection on private data set
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Figure 5.1: Result for model comparison on private dataset

Discussion

From the result, we found encoder-decoder with attention could achieve 11% im-

provement over kalman filter. Besides, encoder-decoder is also better than kalman filter.

on the other hand, constant velocity predictor serves as a baseline to indicate the effect of

other methood. We could see that these methods achives much better result than constant

velocity predictor. However, in prediction at 4s and 5s, the methods didn’t achieve signif-

icant difference. The error might come from the fact tha vehicle 4s and 5s have gone to

another event and thus makes it hard to predict in a non-linear way.

5.3.2 Experiment on NGSIM US-101

Experiment design

In the experiment, the multi-car model is added for comparison.

Model Input Output Metric
kalman[2] 5s 5s RMSE
Encoder-decoder 5s 5s RMSE
Attention 5s 5s RMSE
multi-car[1] 5s 5s RMSE

Table 5.3: Experiment for model comparison on NGSIM
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Figure 5.2: Result for model comparison on ngsim

Experiment result

Model 1s 2s 3s 4s 5s
Constant Velocity 1.402 1.581 1.747 1.85 2.053
Kalman 1.101 1.25 1.419 1.565 1.925
Encoder-decoder 0.851 1.12 1.293 1.544 1.871
Attention 0.752 1.03 1.257 1.51 1.82
Multi-car 0.71 0.99 1.25 1.49 1.8

Table 5.4: Result for model selection on NGSIM

Discussion

The result show the effectiveness of attention mechanism again. Besides, these method

couldn’t beat the multi-car model and this might because the interaction of surrounding

car is so important for prediction.
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5.4 Prediction under different scenario

5.4.1 Experiment for maneuver class

Experiment design for private dataset

In the experiment, the 3 maneuver classes are compared.The training and the predic-

tion will run for y direction. (tangential direction). The mixed one serves as a baseline to

validate the classification based on maneuver.

Maneuver input and output metric
Change lane 5s RMSE
Go straight 5s RMSE
Turn 5s RMSE
Mixed 5s RMSE

Table 5.5: Experiment for maneuver classification

Experiment result for private dataset

For the result, the RMSE for prediction at 1s, 2s, 3s, 4s and 5s are shown. The smallest

RMSE represent the best result. The unit for RMSE is meter per second.

Maneuver 1s 2s 3s 4s 5s
Turn 0.923 1.164 1.312 1.574 1.734
Go straight 0.82 1.021 1.228 1.454 1.543
Change lane 0.912 1.15 1.305 1.578 1.703
Mixed 0.881 1.1 1.293 1.544 1.674

Table 5.6: Result for maneuver on single car

Discussion

From the result, we found that go-straight maneuver has the best prediction, and it

is better than the mixed model. One of the reason might be that this maneuver suffers

from least influence of surrounded car. In order to validate this assumption, we used the

multi-car model for experiment.
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Figure 5.3: Result for maneuver classification

5.4.2 Experiment of maneuver for comparison between single car

model and multi-car model

Experiment design

In the experiment, two models are compared for the maneuver class "change lane"

and "go straight". Moreover, we use NGSIM as dataset.

Maneuver model input and output metric
Change lane multi-car 5s RMSE
Change lane single car 5s RMSE
Go straight multi-car 5s RMSE
Go straight single car 5s RMSE

Table 5.7: Experiment for maneuver classification
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Experiment result

For the result, the RMSE for prediction at 1s, 2s, 3s, 4s and 5s are shown. The smallest

RMSE represent the best result. The unit for RMSE is meter per second.

Maneuver model 1s 2s 3s 4s 5s
Go straihgt multi-car 0.713 0.992 1.228 1.454 1.543
Go straight single car 0.755 1.045 1.253 1.602 1.723
Change lane multi-car 0.718 1.012 1.273 1.483 1.602
Change lane single car 0.77 1.151 1.355 1.652 1.792

Table 5.8: Result for maneuver on single car and multi-car

Figure 5.4: Difference of prediction error between single car and multi-car

Discussion

From the figure, we could see that the difference between single-car model and multi-

car model is higher in change lane maneuver. The single car model could be enhanced
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by incorporating motion of ego vehicle in change lane maneuver. This serve as a future

work.

5.4.3 Experiment for speed limit and average speed

Experiment design

In the experiment, totally 25 cases are compared, as each factor has 5 classes.The

training and the prediction will run for y direction. (tangential direction)

The parameters and model are the same as the previous one. However, only the go-

straight maneuver is used for prediction at this stage.

Class for average speed class for speed limit input and output metric
V1, V2, V3, V4, V5 25,35, 40,45,65mph 5s MSE

Table 5.9: Experiment for speed limit and average speed

Experiment result

In the following table, the index for row is speed limit. Some entries are denoted N/A

as the data size is too small. For example, in highway, there are very few low speed tra-

jectories. We choose the prediction at 1s to analyze, as we believe it is the most important

prediction among 1-5s. The unit for MSE is meter per second.

limit 10-30mph 30-40mph 40-50mph 50-60mph 60mph up
25mph 0.923 0.91 NA NA NA
35mph 0.912 0.851 0.828 NA NA
40mph 0.857 0.858 0.824 0.821 NA
45mph 0.845 0.838 0.809 0.813 0.79
65mph NA NA 0.816 0.805 0.807

Table 5.10: Result for speed limit and average speed

Discussion

From the result, we found that the worst prediction will be at smallest average speed

and smallest speed limit. (Top-left corner) On the contrary, the best prediction will be
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at the bottom-right corner. The top-left corner is most likely to be in traffic jam. We

speculate that it’s the reason behind for this result.
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Chapter 6

Conclusion

To summary, our work improve the prediction in two aspect. At the frontend data

preprocessing, we identify several key semantics like maneuver class, average speed, and

road speed limit and use it to improve our prediction. Moreover, we utitlize the encoder-

decoder model with attention to achieve a 11% improvement over kalman filter. This

work could serve as a strong basis for future application like free space estimation.
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