Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1183| Title: | 三維代數多樣體 Geometry of Algebraic Threefolds |
| Authors: | Hsin-Ku Chen 陳星谷 |
| Advisor: | 陳榮凱(Jungkai Alfred Chen) |
| Keyword: | 複三體,極小模型計劃,貝堤數,複正則系統,有效飯高猜想,黑肯-瑪柯能猜想, Complex threefolds,minimal model program,Betti numbers,pluricanonical systems,effective Iitaka conjecture,Hacon-McKernan conjecture, |
| Publication Year : | 2018 |
| Degree: | 博士 |
| Abstract: | 這篇論文包含兩個部份。於第一部份我們證明了一個平滑三維多樣體和其極小模型的
貝堤數的差可被該平滑三維多樣體的皮喀數所限制。於第二部份我們證明了任一小平 維度為一的平滑三維多樣體的第九十六個複正則系統會決定其飯高纖維。 This thesis consists of two parts. In the first part we prove that the difference of the Betti numbers of a smooth threefold and its minimal model can be bounded by a constant depending only on the Picard number of the smooth threefold. In the second part we prove that the 96-th pluricanonical system of a smooth threefold of Kodaira dimension one defines the Iitaka fibration. |
| URI: | http://tdr.lib.ntu.edu.tw/handle/123456789/1183 |
| DOI: | 10.6342/NTU201801712 |
| Fulltext Rights: | 同意授權(全球公開) |
| Appears in Collections: | 數學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-107-1.pdf | 716.81 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
