Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101308| Title: | 應用具耐水性金屬有機骨架(MOFs)之混合基質膜於二氧化碳選擇性分離之研究與開發 Development of Mixed-Matrix Membranes with Water-Resistant Metal-Organic Frameworks (MOFs) for Selective CO2 Separation |
| Authors: | 蔡捷伃 Chieh-Yu Tsai |
| Advisor: | 吳嘉文 Kevin C.-W. Wu |
| Keyword: | 直接空氣捕獲,混合基質膜金屬有機骨架材料二氧化碳/氮氣分離耐水性 Direct Air Capture,DACMixed-Matrix MembraneMMMMetal-Organic FrameworkMOFCO₂/N₂ SeparationWater resistance |
| Publication Year : | 2026 |
| Degree: | 碩士 |
| Abstract: | 為因應大氣中二氧化碳(CO₂)濃度持續上升的環境議題,並解決直接空氣捕捉(DAC)過程中水氣與 CO₂ 間競爭吸附的問題,本研究著重於開發具有良好耐水性、兼具高 CO₂ 滲透率與 CO₂/N₂ 選擇性的混合基質膜(mixed-matrix membranes, MMMs)。首先,透過 Monte Carlo 模擬計算 5,500 種金屬有機框架材料(MOFs)的亨利常數(KH),以篩選出對 CO₂ 與 H₂O 具中等選擇性的候選材料。最終選定 MIL-53、Al-NDC 與 Al-BDC 三種鋁系 MOFs 進行合成與水氣耐受性測試。透過接觸角量測與熱重–質譜分析(TGA-MS)進行評估,結果顯示 Al-BDC 具有最好的疏水性。接續將 Al-BDC 添加至 Pebax® MH 2030 高分子材料中,製備出MOF含量為 5–20 wt% 的混合基質膜。TGA-MS 與氣體滲透實驗結果顯示,隨著 Al-BDC 含量增加,膜中水氣吸附量下降,證實其可有效降低水氣干擾。另外,含有 15 wt% Al-BDC 的膜展現出優異的 CO₂/N₂ 分離性能(PCO₂:351.89 Barrer,αCO₂/N₂:46.10),表現已接近 Robeson 上限,優於多數文獻中已報導的 MOF–Pebax 複合膜。整體而言,該膜兼具良好的抗水性與分離效率,為未來應用於含有水氣環境下的碳捕捉膜材開發,提供了具體且可行的設計依據。 To address the pressing issue of rising atmospheric carbon dioxide (CO₂) levels and to overcome the challenge of competitive water vapor adsorption in direct air capture environments, this work focuses on the development of water-resistant mixed-matrix membranes (MMMs) with high CO₂ permeability and exceptional CO₂/N₂ selectivity. Monte Carlo simulations were used to screen 5,500 MOFs for moderate CO₂/H₂O selectivity, leading to the selection of three aluminum-based MOFs—MIL-53, Al-NDC, and Al-BDC. These MOFs were synthesized and evaluated for water resistance via contact angle measurements and TGA-MS analysis, with Al-BDC exhibiting the highest hydrophobicity. Al-BDC was subsequently incorporated into Pebax® MH 2030 to fabricate MMMs with filler loadings ranging from 5 to 20 wt%. Comprehensive characterization, including TGA-MS and gas permeability testing, confirmed that Al-BDC-based MMMs decrease water uptake with Al-BDC increasing, indicating that the incorporation of Al-BDC can effectively lower the water uptake. Notably, the 15 wt% Al-BDC membrane exhibited excellent CO₂/N₂ separation performance (PCO2 : 351.89 Barrer, αCO2/N2 : 46.10), approaching the Robeson upper bound more closely than most MOF-Pebax-based MMMs reported in the literature, marking a promising breakthrough in overcoming the traditional permeability–selectivity trade-off using a water-resistant membrane. These findings offer valuable insights for designing practical, high-performance membranes for sustainable carbon capture. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101308 |
| DOI: | 10.6342/NTU202600019 |
| Fulltext Rights: | 未授權 |
| metadata.dc.date.embargo-lift: | N/A |
| Appears in Collections: | 化學工程學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-114-1.pdf Restricted Access | 11.69 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
