Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101308
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳嘉文zh_TW
dc.contributor.advisorKevin C.-W. Wuen
dc.contributor.author蔡捷伃zh_TW
dc.contributor.authorChieh-Yu Tsaien
dc.date.accessioned2026-01-14T16:08:43Z-
dc.date.available2026-01-15-
dc.date.copyright2026-01-14-
dc.date.issued2026-
dc.date.submitted2026-01-07-
dc.identifier.citationReferences
(1) Fu, L.; et al. Research progress on CO2 capture and utilization technology. J. CO2 Util. 2022, 66, 102260.
(2) Bhatti, H.; et al. Review of fibre optic geophones and accelerometers for potential application in seismic acquisition for carbon storage monitoring. Opt. Laser Technol. 2024, 179, 111368.
(3) Wang, Y.; et al. COP26: progress, challenges, and outlook. 2022.
(4) Li, B.; et al. Advances in CO2 capture technology: A patent review. Appl. Energy. 2013, 102, 1439-1447.
(5) 【COP26系列】聯合國氣候大會落幕,結果如何?減碳. 2025.
(6) Ibrahim, S.; et al. Review on recent progress in post-combustion carbon dioxide capture using carbonaceous and non-carbonaceous materials in fixed-bed adsorption column. J. Environ. Chem. Eng. 2025, 13 (1), 114952.
(7) Bhown, A. S.; Freeman, B. C. Analysis and status of post-combustion carbon dioxide capture technologies. Environ. Sci. Technol. 2011, 45 (20), 8624-8632.
(8) Merkel, T. C.; et al. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 2010, 359 (1-2), 126-139.
(9) Olabi, A.; et al. Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renew. Sustain. Energy Rev. 2022, 153, 111710.
(10) Jansen, D.; et al. Pre-combustion CO2 capture. Int. J. Greenh. Gas Control 2015, 40, 167-187.
(11) McQueen, N.; et al. A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future. Prog. Energy 2021, 3 (3), 032001.
(12) Sanz-Pérez, E. S.; et al. Direct capture of CO2 from ambient air. Chem. Rev. 2016, 116 (19), 11840-11876.
(13) Olajire, A. A. CO2 capture and separation technologies for end-of-pipe applications–A review. Energy 2010, 35 (6), 2610-2628.
(14) Vitillo, J. G.; et al. J. Membr. Sci. 2017, 117 (14), 9521-9523.
(15) Pascu, A.; et al. The package type influence on the performance of the CO2 capture process by chemical absorption. UPB Sci. Bull. C: Electr. Eng. Comput. Sci. 2016, 78, 259-270.
(16) NovoMOF. Comparing absorption and adsorption in carbon capture. 2025.
(17) Chung, T.-S.; et al. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32 (4), 483-507.
(18) Ji, G.; Zhao, M. Membrane separation technology in carbon capture. Recent advances in carbon capture and storage 2017, 59-90.
(19) Shi, L.; et al. Membrane fabrication for carbon dioxide separation: A critical review. ChemBioEng Rev. 2022, 9 (6), 556-573.
(20) Farhan, N. M.; et al. Modeling and simulation of pervaporation (PV) separation for alcohol dehydration. Heliyon 2023, 9 (2).
(21) Robeson, L. M. The upper bound revisited. J. Membr. Sci. 2008, 320 (1-2), 390-400.
(22) Scholes, C. A.; et al. Crosslinked PEG and PEBAX Membranes for Concurrent Permeation of Water and Carbon Dioxide. Membranes 2016, 6 (1), 1.
(23) Tocci, E.; et al. Transport properties of a co-poly (amide-12-b-ethylene oxide) membrane: A comparative study between experimental and molecular modelling results. J. Membr. Sci. 2008, 323 (2), 316-327.
(24) Vinoba, M.; et al. Recent progress of fillers in mixed matrix membranes for CO2 separation: A review. Sep. Purif. Technol. 2017, 188, 431-450.
(25) Zarshenas, K.; et al. Mixed matrix membrane of nano-zeolite NaX/poly (ether-block-amide) for gas separation applications. J. Membr. Sci. 2016, 510, 270-283.
(26) Howarth, A. J.; et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 2016, 1 (3), 1-15.
(27) Liao, Y.-T.; et al. Metal–organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass. ACS Sustain. Chem. Eng. 2018, 6 (11), 13628-13643.
(28) Zhang, J.-P.; et al. Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 2012, 112 (2), 1001-1033.
(29) Muthukumaraswamy Rangaraj, V.; et al. Metal Organic Framework — Based Mixed Matrix Membranes for Carbon Dioxide Separation: Recent Advances and Future Directions. Front. Chem. 2020, 8 Review.
(30) Guo, X.; et al. Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation. J. Membr. Sci. 2015, 478, 130-139.
(31) Meshkat, S.; et al. Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation. Sep. Purif. Technol. 2020, 235, 116150.
(32) Gao, J.; et al. Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation. Microporous Mesoporous Mater. 2020, 297, 110030.
(33) Li, G.; et al. Thin Film Mixed Matrix Hollow Fiber Membrane Fabricated by Incorporation of Amine Functionalized Metal-Organic Framework for CO2/N2 Separation. Materials 2021, 14 (12), 3366.
(34) Ehsani, A.; Pakizeh, M. Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes. J. Taiwan Inst. Chem. Eng. 2016, 66, 414-423.
(35) Dong, L.; et al. Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes. J. Membr. Sci. 2016, 520, 801-811.
(36) Feng, X.; et al. Mixed-matrix membranes based on novel hydroxamate metal–organic frameworks with two-dimensional layers for CO2/N2 separation. Sep. Purif. Technol. 2023, 305, 122476.
(37) Sarmadi, R.; et al. The assessment of honeycomb structure UiO-66 and amino functionalized UiO-66 metal–organic frameworks to modify the morphology and performance of Pebax®1657-based gas separation membranes for CO2 capture applications. Environ. Sci. Pollut. Res. 2020, 27 (32), 40618-40632.
(38) Hasan, M. R.; et al. Synthesis of ZIF-94 from Recycled Mother Liquors: Study of the Influence of Its Loading on Postcombustion CO2 Capture with Pebax Based Mixed Matrix Membranes. Adv. Sustainable Syst. 2022, 6 (1), 2100317.
(39) Qin, Z.; et al. Impact of Humidity on the CO2/N2 Separation Performance of Pebax-MOF Mixed Matrix Membranes. Ind. Eng. Chem. Res. 2023, 62 (35), 14034-14046.
(40) Zhou, Z.; et al. Carbon dioxide capture from open air using covalent organic frameworks. Nature 2024, 1-6.
(41) Alaerts, L.; et al. Selective Adsorption and Separation of ortho-Substituted Alkylaromatics with the Microporous Aluminum Terephthalate MIL-53. J. Am. Chem. Soc. 2008, 130 (43), 14170-14178.
(42) Comotti, A.; et al. Nanochannels of two distinct cross-sections in a porous Al-based coordination polymer. J. Am. Chem. Soc. 2008, 130 (41), 13664-13672.
(43) Loiseau, T.; et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL‐53) upon hydration. Chem. Eur. J. 2004, 10 (6), 1373-1382.
(44) Meshkat, S.; et al. Mixed matrix membranes based on amine and non-amine MIL-53 (Al) in Pebax® MH-1657 for CO2 separation. Sep. Purif. Technol. 2018, 200, 177-190.
(45) Ebadi, R.; et al. Fabrication and characterization of Pebax-1657 mixed matrix membrane loaded with Si-CHA zeolite for CO2 separation from CH4. J. Nat. Gas Sci. Eng. 2021, 90, 103947.
(46) Dubbeldam, D.; et al. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 2016, 42 (2), 81-101.
(47) Brubaker, D. W.; Kammermeyer, K. Separation of Gases by Means of Permeable Membranes. Permeability of Plastic Membranes to Gases. Ind. Eng. Chem. 1952, 44 (6), 1465-1474.
(48) Pye, D.; et al. Measurement of gas permeability of polymers. I. Permeabilities in constant volume/variable pressure apparatus. J. Appl. Polym. Sci. 1976, 20 (7), 1921-1931.
(49) Baschetti, M. G.; Minelli, M. Test methods for the characterization of gas and vapor permeability in polymers for food packaging application: A review. Polym. Test. 2020, 89, 106606.
(50) Ahadi, N.; et al. Facile synthesis of hierarchically structured MIL-53 (Al) with superior properties using an environmentally-friendly ultrasonic method for separating lead ions from aqueous solutions. Sci. Rep. 2022, 12 (1), 2649.
(51) Ping, E.; et al. H 2/D 2 separation in gas chromatography through a MOF-on-MOF strategy using γ-AlOOH@ Al (OH)(1, 4-NDC)@ ZIF-67 as the stationary phase via additive effects of chemical affinity quantum sieving and kinetic sieving. Dalton Trans. 2023, 52 (2), 376-383.
(52) Huang, J. The synthesis and characterization of microporous open-framework transition metal silicates and metal-organic frameworks; University of Houston, 2004.
(53) Hsieh, J. O.; et al. MIL-53 frameworks in mixed-matrix membranes. Microporous Mesoporous Mater. 2014, 196, 165-174.
(54) Fan, Y.; et al. Tröger's base mixed matrix membranes for gas separation incorporating NH2-MIL-53 (Al) nanocrystals. J. Membr. Sci. 2019, 573, 359-369.
(55) Khan, R.; et al. Fabrication of highly selective PEBA mixed matrix membranes by incorporating metal-organic framework MIL-53 (Al) for the pervaporation separation of pyridine-water mixture. J. Membr. Sci. 2023, 686, 122014.
(56) Loloei, M.; et al. Mixed matrix membranes based on NH2-MIL-53 (Al) and 6FDA-ODA polyimide for CO2 separation: Effect of the processing route on improving MOF-polymer interfacial interaction. Sep. Purif. Technol. 2021, 270, 118786.
(57) Nguyen, N. T.; et al. Effect of nitrogen-doped carbon dots (NCDs) on the characteristics of NCD/MIL-53 (Fe) composite and its photocatalytic performance for methylene blue degradation under visible light. Adsorpt. Sci. Technol. 2021, 2021, 5906248.
(58) Jawad, Z. A.; et al. A Performance Study of CAB-MWCNTs Blend Mixed Matrix Membrane for CO2/N2 Separation. Results Eng. 2025, 104344.
(59) Li, M.; et al. Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO 2 separation. RSC Adv. 2017, 7 (11), 6422-6431.
(60) Autié Castro, G.; et al. CH4 and CO2 adsorption study in ZIF-8 and Al-BDC MOFs. 2017.
(61) Raab, C. G. D. I. R. Measurement of the electric quadrupole moments of CO2, CO, N2, Cl2 and BF3. Mol. Phys. 1998, 93 (1), 49-56.
(62) Halkier, A.; et al. The molecular electric quadrupole moment of N2. Chem. Phys. Lett. 1998, 294 (4-5), 292-296.
(63) Serre, C.; et al. Very large breathing effect in the first nanoporous chromium (III)-Based solids: MIL-53 or CrIII (OH){O2C− C6H4− CO2}{HO2C− C6H4− CO2H}x H2Oy. J. Am. Chem. Soc. 2002, 124 (45), 13519-13526.
(64) Bourrelly, S.; et al. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc. 2005, 127 (39), 13519-13521.
(65) Goh, S. H.; et al. Metal–organic frameworks (MOFs)‐based mixed matrix membranes (MMMs) for gas separation: a review on advanced materials in harsh environmental applications. Small 2022, 18 (20), 2107536.
(66) Feng, X.; et al. Mixed-matrix membranes based on novel hydroxamate metal–organic frameworks with two-dimensional layers for CO2/N2 separation. Sep. Purif. Technol. 2023, 305, 122476.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101308-
dc.description.abstract為因應大氣中二氧化碳(CO₂)濃度持續上升的環境議題,並解決直接空氣捕捉(DAC)過程中水氣與 CO₂ 間競爭吸附的問題,本研究著重於開發具有良好耐水性、兼具高 CO₂ 滲透率與 CO₂/N₂ 選擇性的混合基質膜(mixed-matrix membranes, MMMs)。首先,透過 Monte Carlo 模擬計算 5,500 種金屬有機框架材料(MOFs)的亨利常數(KH),以篩選出對 CO₂ 與 H₂O 具中等選擇性的候選材料。最終選定 MIL-53、Al-NDC 與 Al-BDC 三種鋁系 MOFs 進行合成與水氣耐受性測試。透過接觸角量測與熱重–質譜分析(TGA-MS)進行評估,結果顯示 Al-BDC 具有最好的疏水性。接續將 Al-BDC 添加至 Pebax® MH 2030 高分子材料中,製備出MOF含量為 5–20 wt% 的混合基質膜。TGA-MS 與氣體滲透實驗結果顯示,隨著 Al-BDC 含量增加,膜中水氣吸附量下降,證實其可有效降低水氣干擾。另外,含有 15 wt% Al-BDC 的膜展現出優異的 CO₂/N₂ 分離性能(PCO₂:351.89 Barrer,αCO₂/N₂:46.10),表現已接近 Robeson 上限,優於多數文獻中已報導的 MOF–Pebax 複合膜。整體而言,該膜兼具良好的抗水性與分離效率,為未來應用於含有水氣環境下的碳捕捉膜材開發,提供了具體且可行的設計依據。zh_TW
dc.description.abstractTo address the pressing issue of rising atmospheric carbon dioxide (CO₂) levels and to overcome the challenge of competitive water vapor adsorption in direct air capture environments, this work focuses on the development of water-resistant mixed-matrix membranes (MMMs) with high CO₂ permeability and exceptional CO₂/N₂ selectivity. Monte Carlo simulations were used to screen 5,500 MOFs for moderate CO₂/H₂O selectivity, leading to the selection of three aluminum-based MOFs—MIL-53, Al-NDC, and Al-BDC. These MOFs were synthesized and evaluated for water resistance via contact angle measurements and TGA-MS analysis, with Al-BDC exhibiting the highest hydrophobicity. Al-BDC was subsequently incorporated into Pebax® MH 2030 to fabricate MMMs with filler loadings ranging from 5 to 20 wt%. Comprehensive characterization, including TGA-MS and gas permeability testing, confirmed that Al-BDC-based MMMs decrease water uptake with Al-BDC increasing, indicating that the incorporation of Al-BDC can effectively lower the water uptake. Notably, the 15 wt% Al-BDC membrane exhibited excellent CO₂/N₂ separation performance (PCO2 : 351.89 Barrer, αCO2/N2 : 46.10), approaching the Robeson upper bound more closely than most MOF-Pebax-based MMMs reported in the literature, marking a promising breakthrough in overcoming the traditional permeability–selectivity trade-off using a water-resistant membrane. These findings offer valuable insights for designing practical, high-performance membranes for sustainable carbon capture.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-14T16:08:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-01-14T16:08:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
誌謝 ii
ABSTRACT iii
大綱 iv
Table of Contents v
List of Figures viii
List of Tables xi
1 Introduction 1
1.1 Global carbon dioxide (CO₂) emissions and climate impact 1
1.2 Brief introduction of CO2 capture routes 3
1.2.1 Post-combustion capture 3
1.2.2 Pre-combustion capture 3
1.2.3 Direct air capture 4
1.3 CO2 separation technologies 5
1.3.1 Chemical absorption 5
1.3.2 Physical adsorption 6
1.3.3 Membrane-based separation 7
1.4 Gas separation mechanism 12
1.4.1 Solution-diffusion model 13
2 Literature Review 15
2.1 Polymeric membrane and Robeson Upper Bound 15
2.2 Mixed-matrix membrane 16
2.3 Humidity Interference in Direct Air Capture 21
3 Objective 23
4 Experimental 24
4.1 Chemicals and Materials 24
4.2 Equipment 25
4.3 Synthesis of Metal-Organic Frameworks 26
4.3.1 Synthesis of MIL-53(Al) 26
4.3.2 Synthesis of Al-NDC 26
4.3.3 Synthesis of Al-BDC 27
4.4 Fabrication of membrane 29
4.4.1 Fabrication of Pebax® MH 2030 membrane 29
4.4.2 Fabrication of Mixed-matrix membrane (MMM) 29
4.5 Characterization of MOFs and MMM 31
4.5.1 X-ray Diffractometer (XRD) 31
4.5.2 Field Emission Scanning Electron Microscope (FE-SEM) 31
4.5.3 Energy Dispersive Spectroscopy (EDS) 32
4.5.4 Specific Surface Area and Pore Size Distribution 32
4.5.5 Thermogravimetric Analysis (TGA) 33
4.5.6 Fourier-Transform Infrared Spectroscopy (FTIR) 33
4.5.7 Differential scanning calorimetry (DSC) 33
4.6 Monte Carlo Simulation 34
4.7 Single gas permeability measurement 35
4.7.1 Introduction of gas permeation system 35
4.7.2 Single gas and mixed gas permeability measurement 36
5 Results and Discussion 39
5.1 Screening for the MOFs candidates of the MMMs 39
5.2 Characterizations of the as-synthesized MOFs 40
5.2.1 MIL-53 40
5.2.2 Al-NDC 43
5.2.3 Al-BDC 46
5.3 Characterizations of the MMMs 49
5.3.1 MMM-MIL-53 49
5.3.2 MMM-Al-NDC 51
5.3.3 MMM-Al-BDC 53
5.4 Hydrophobicity and water content of the as-synthesized MOFs 55
5.4.1 Analytical Techniques for Water Resistance Assessment 55
5.4.2 The results of the Water Resistant test 56
5.5 Characterization of MMM with varying MOF loadings 58
5.5.1 NDC content of MMM-Al-NDC 58
5.5.2 BDC content of MMM-Al-BDC 61
5.6 Hydrophobicity test of the as-synthesized MMMs 64
5.7 Gas permeability performance of MMMs 67
6 Conclusions 75
7 Future work 76
References 77
-
dc.language.isoen-
dc.subject直接空氣捕獲-
dc.subject混合基質膜-
dc.subject金屬有機骨架材料-
dc.subject二氧化碳/氮氣分離-
dc.subject耐水性-
dc.subjectDirect Air Capture-
dc.subjectDAC-
dc.subjectMixed-Matrix Membrane-
dc.subjectMMM-
dc.subjectMetal-Organic Framework-
dc.subjectMOF-
dc.subjectCO₂/N₂ Separation-
dc.subjectWater resistance-
dc.title應用具耐水性金屬有機骨架(MOFs)之混合基質膜於二氧化碳選擇性分離之研究與開發zh_TW
dc.titleDevelopment of Mixed-Matrix Membranes with Water-Resistant Metal-Organic Frameworks (MOFs) for Selective CO2 Separationen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee康敦彥;林立強;葉禮賢;湯偉鉦zh_TW
dc.contributor.oralexamcommitteeDun-Yen Kang;Li-Chiang Lin;Li-Hsien Yeh;Wei-Cheng Tangen
dc.subject.keyword直接空氣捕獲,混合基質膜金屬有機骨架材料二氧化碳/氮氣分離耐水性zh_TW
dc.subject.keywordDirect Air Capture,DACMixed-Matrix MembraneMMMMetal-Organic FrameworkMOFCO₂/N₂ SeparationWater resistanceen
dc.relation.page83-
dc.identifier.doi10.6342/NTU202600019-
dc.rights.note未授權-
dc.date.accepted2026-01-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
11.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved