Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10119
Title: 一個馬可夫鏈的特徵值問題及其應用
An Eigenvalue Problem for Markov Chains
With Applications
Authors: Shiu-Tang Li
李旭唐
Advisor: 許順吉(Shuenn-Jyi Sheu)
Co-Advisor: 張志中(Chih-Chung Chang)
Keyword: 馬可夫鏈,隨機漫步,平賭序列,暫態,再生態,調和函數,局部中央極限定理,Choquet定理,Martin 邊界,
Markov chain,random walk,martingale,transient,recurrent,harmonic functions,local central limit theorem,Martin boundary,
Publication Year : 2011
Degree: 碩士
Abstract: 在這篇論文中我們探討一個具有兩個變量 $lambda,w$ 的方程組 $sum_{y in
S}p(x,y)exp ig(h(y)-lambda+w(y) ig) = exp(w(x))$, 其中 $p$ 是一個狀態空間為 $mathbb Z^d$ 的馬可夫鏈的轉移機率, 且不論從任何狀態出發, $p$ 只會轉移至有限多個狀態. 當 $h equiv 0$, $lambda =0$ 之情況下所解出的 $exp(w(x))$ 即是此轉移機率 $p$ 的調和函數. 本論文的目標旨在探討 $lambda$ 之範圍, 以及當 $lambda$ 給定時其對應之 $w$ 為何. 當 $h equiv 0$ , 且 $p$ 為一隨機漫步之轉移機率時, 我們將更進一步給出 $(lambda,w)$ 之明確表現形式.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10119
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-100-1.pdf944.45 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved