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An Eigenvalue Problem for Markov Chain with

Applications ∗

Shiu Tang Li †

Abstract

In this paper we investigate the equation
∑
y∈S

p(x, y) exp
(
h(y)−λ+w(y)

)
=

exp(w(x)) with two unknowns, λ ∈ R and w : S → R, where p is the transition

probability of a finitely supported Markov chain {Xn} on Zd. When h ≡ 0,

λ = 0, the solutions exp(w(x)) to the above equation are exactly the harmonic

functions for p. Our goal is to find the range of all possible λ’s and investigate

the properties of w(x) when λ is given. Furthermore, when h ≡ 0, we give

an explicit formula of all possible solutions (λ,w) when p is the transition

probability of a random walk.

∗Keywords: Markov chain, random walk, martingale, transient, recurrent, harmonic functions,

local central limit theorem, Choquet’s theorem, Martin boundary
†Department of Mathematics, National Taiwan University. E-mail: stazlee@hotmail.com
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1 Introduction

Let S = Zd be the state space of an irreducible Markov chain {Xn}, and its

transition probability from x to y is given by p(x, y). The goal of this paper is to

investigate the properties of solutions (λ,w) for a specific equation:∑
y∈S

p(x, y) exp
(
h(y)− λ+ w(y)

)
= exp(w(x)) ∀ x ∈ S (1)

where λ ∈ R, w : S → R.

Why are we interested in this equation? An important motivation is that we

can estimate the behavior of Ex[exp(
∑n

k=1 h(Xk))] when n is large. When (λ,w) is

a solution of (1), we can define a new probability kernel p̂λ,w � p(x, y) exp
(
h(y) −

λ+ w(y)− w(x)
)
, and we have

Ex[exp(
n∑

k=1

h(Xk))]

=Ex[exp
( n∑

k=1

(h(Xk)− λ+ w(Xk)− w(Xk−1)
)
exp(nλ+ w(x)− w(Xn))]

=Êλ,w
x [exp(nλ+ w(x)− w(Xn))]

≈ exp(nλ) if w is a bounded function.

However, w is unbounded in many cases (See Section 2.5). So we try another

easier case, the asymptotic behavior of Ex[exp(
∑n

k=1 h(Xk))f(Xn)] when n large,

where f has compact support. We will show in this paper that when certain as-

sumptions are made, p̂λ,w is positive recurrent, and thereby we have the following

estimate

Ex[exp(
n∑

k=1

h(Xk))f(Xn)] ≈ C(f) exp(nλ) exp(w(x))

for n large, where C(f) is a constant that depends on f . To work this out, we define
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g(x) � f(x) exp(−w(x)) and compute

Ex[exp(
n∑

k=1

h(Xk))f(Xn)]

=Ex[exp
( n∑

k=1

(h(Xk)− λ)
)
exp
(
w(Xn)− w(x)

)
g(Xn)] exp(w(x)) exp(nλ)

=Êλ,w
x [g(Xn)] exp(w(x)) exp(nλ),

where

Êλ,w
x [g(Xn)] =

∑
y∈S:f(y) �=0

p̂λ,wx (Xn = y)f(y) exp(−w(y)) → C(f)

as n → ∞ when p̂λ,w is positive recurrent.

In many cases, the Markov chain with transition p̂λ,w is transient. It may be

also interesting to study the behavior of w at ∞, which is supposed to be related to

the behavior of the Markov chain at ∞. Therefore, the theory of Martin boundary

could be helpful in this regard. We give a brief introduction to the Martin boundary

theory in the appendix.

We often need more assumptions rather than that {Xn} is merely an irreducible

Markov chain. In Sections 2.1, 2.3, 5, 6, and Theorems 3.3, 3.4, we assume that p

is finitely supported, that is, ∃M > 0 such that p(x, y) = 0 for all |x − y| > M .

In Sections 2.4, 4, 5.2, and 6, we assume that p is the transition probability of a

random walk.

In Section 2, we demonstrate how to obtain a solution (λ,w) when we have a

supersolution (λ,w′) to the above equation, that is, (λ,w′) satisfies the inequality

which replaces “ = ” above with “ ≤ ” in (1). We also prove several basic properties

of equation (1) in this section.

In Section 3, we apply measure changing skills to produce a new probability ker-

nel, and discover some properties of it. This transformation helps us prove if there

2



is only one solution (λ,w) to (1) when λ is fixed.

In Section 4, we use the local central limit theorem to find the smallest λ such

that (λ,w) is a solution to (1) under some occasions. Although the local central

limit theorem requires the existence of second moment of p, it does not require p to

be finitely supported. Therefore, we allow p not to be finitely supported here but

with finite second moments.

In Section 5, we investigate more deeply the structure of all solutions to (1),

and we derive an explicit formula of these solutions when h ≡ 0. The formulation

depends heavily on the convex structure of all solutions.

In the last section, we give several examples of equation (1).
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2 The structure of all solutions (λ,w)

We’d like to demonstrate how to obtain a solution (λ,w) of (1) when the solutions

(λ,w) of the following equation (2) is known:∑
y∈S

p(x, y) exp

(
h(y)− λ+ w(y)

)
≤ exp(w(x)) ∀ x ∈ S (2)

We state this result as the following theorem.

Theorem 2.1. Let p(x, y) be the transition probability from x to y of an ir-

reducible Markov chain {Xn} on Zd, where p(x, y) = 0 for |y − x| > M1, for all

x, y ∈ S and for some M1 > 0. If (λ,w) is a solution of (2), then for this λ, there

exists w̃ such that (λ, w̃) is a solution of (1).

Once we have proved this problem, the following important corollary is immedi-

ate:

Corollary 2.2. Let p(x, y) be the transition probability from x to y of an ir-

reducible Markov chain {Xn} on Zd, where p(x, y) = 0 for |y − x| > M1, for all

x, y ∈ S and for some M1 > 0. If (λ,w) is a solution of (1), then for any λ′ > λ,

there exists w̃ such that (λ′, w̃) is also a solution of (1).

Proof. Since (λ′, w) satisfies (2), there exists w′ such that (λ′, w′) is a solution of (1)

by the previous theorem.

Corollary 2.3. Let p(x, y) be the transition probability from x to y of an ir-

reducible Markov chain {Xn} on Zd, where p(x, y) = 0 for |y − x| > M1, for all

x, y ∈ S and for some M1 > 0. If h(x) is bounded from above, then there exists λ, w̃

such that (λ, w̃) is a solution of (1).

Proof. Let (λ,w) = (sup{h(x) : x ∈ S}, 0). It is easy to check that (λ,w) is a

solution of (2) and hence ∃w̃ such that (λ, w̃) is a solution of (1).
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After finishing the proof of Theorem 2.1, in Section 2.2, we prove that there is

a lower bound for each λ such that (λ,w) is a solution of (1), and p need not be

finitely supported here. In Section 2.3, we assume that p is finitely supported so

that when λ0 is the infimum of all possible λ’s in (1), (λ0, w) is also a solution of (1).

In Section 2.4 we put some limitation on h to ensure the existence of solutions of

(1) when p is the transition probability of a random walk. In Section 2.5 we study

the behavior of w under certain assumptions.

2.1 Proof of theorem 2.1.

1. Let (λ0, w0) be a solution of (2). We define τk � inf{n ≥ 0 : |Xn| > k},
and we have τk < ∞ a.s. because {Xn} is irreducible. We also define ŵk(x) �
log

(
Ex[exp

(∑τk
m=1 h(Xm) − λ0

)
exp
(
w0(Xτk)

)
]

)
> −∞. ŵk(x) < ∞ due to the

following lemma:

Lemma 2.4. {Yn,Fn = σ{X1, · · · , Xn}} is a supermartingale w.r.t Px, where

Yn =

⎧⎪⎨⎪⎩ exp

(∑n
i=1

(
h(Xi)− λ0

)
+ w0(Xn)

)
if n ≥ 1

exp(w(x)) if n = 0.

Proof. (i)We’d like to show Ex[Yn] < ∞ for every n, and we proceed by induction.

Assume Ex[Yn−1] < ∞,

Ex[Yn] = Ex

[
exp

( n∑
i=1

(
h(Xi)− λ0

)
+ w0(Xn)

)]
=

∑
x,y1,··· ,yn∈S

p(x, y1)p(y1, y2) · · · p(yn−1, yn)×

exp

( n∑
i=1

(
h(yi)− λ0

)
+ w0(yn)

)

=
∑

x,y1,··· ,yn−1∈S

(
p(x, y1)p(y1, y2) · · · p(yn−2, yn−1) exp

( n−1∑
i=1

(
h(yi)− λ0

))×
∑
yn∈S

p(yn−1, yn) exp
(
h(yn)− λ0 + w0(yn)

))

5



≤
∑

x,y1,··· ,yn−1∈S
p(x, y1)p(y1, y2) · · · p(yn−2, yn−1) exp

( n−1∑
i=1

(
h(yi)− λ0

))
×

exp
(
w0(yn−1)

)
= Ex[Yn−1].

(ii)We show E[Yn+1|Fn] ≤ Yn for all n ∈ N.

E[Yn+1|Fn] = exp

( n∑
i=1

(
h(Xi)− λ0

))
×

E
[
exp

(
h(Xn+1)− λ0 + w0((Xn+1))

)∣∣∣Fn

]
= exp

( n∑
i=1

(
h(Xi)− λ0

))∑
y∈S

p(Xn, y) exp

(
h(y)− λ0 + w0(y)

)

≤ exp

( n∑
i=1

(
h(Xi)− λ0

))
exp(w0(Xn))

= Yn.

Due to this lemma, we have exp(ŵk(x)) = Ex[Yτk ] ≤ Y0 = exp(w0(x)) because a

positive supermartingale is uniformly integrable and thus optional stopping theorem

is applicable.

2. Choose an arbitrary positive integer M2, and assume |x| ≤ M2. Let k ≥
M1 +M2. (M1 is chosen such that p(x, y) = 0 for |y − x| > M1.)

exp(ŵk(x)) = Ex[exp

( τk∑
m=1

(
h(Xm)− λ0

)
+ w0(Xτk)

)
]

= Ex[· · · ; |X1| > k] + Ex[· · · ; |X1| ≤ k]

= (a) + (b).

∵ |x| ≤ k, |X1| > k ⇒ τk = 1

∴ (a) = Ex[exp
(
h(X1)− λ0 + w0(X1)

)
; |X1| > k]

=
∑
|y|>k

p(x, y) exp
(
h(y)− λ0 + w0(y)

)
= 0.
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On the other hand,

(b) = Ex

[
exp

( τk∑
m=1

(
h(Xm)− λ0

)
+ w0(Xτk)

)
; |X1| ≤ k

]
= Ex

[
exp(h(X1)− λ0) exp

( τk∑
m=2

(
h(Xm)− λ0

)
+ w0(Xτk)

)
; |X1| ≤ k

]
= Ex

[
Ex

[
exp(h(X1)− λ0)

exp

( τk∑
m=2

(
h(Xm)− λ0

)
+ w0(Xτk)

)
1{|X1|≤k}

∣∣∣X1

]]
= Ex

[ ∑
|y|≤k

1{X1=y} exp(h(y)− λ0)

Ex

[
exp

( τk∑
m=2

(
h(Xm)− λ0

)
+ w0(Xτk)

)∣∣∣X1 = y
]]

= Ex

[ ∑
|y|≤k

1{X1=y} exp(h(y)− λ0)Ey

[
exp

( τk∑
m=1

(
h(Xm)− λ0

)
+ w0(Xτk)

)]]
=
∑
|y|≤k

p(x, y) exp(h(y)− λ0) exp(ŵk(y)).

Therefore,

exp(ŵk(x)) = Ex[exp

( τk∑
m=1

(
h(Xm)− λ0

)
+ w0(Xτk)

)
]

=
∑
|y|≤k

p(x, y) exp(h(y)− λ0) exp(ŵk(y))

=
∑
y∈S

p(x, y) exp(h(y)− λ0) exp(ŵk(y))

for every |x| ≤ M2 and k ≥ M1 +M2.

3. Next we make some adjustments to ŵk(x). We show here that as long as M2

is large enough, |ŵk(x)− ŵk(0)| ≤ Cx for every |x| ≤ M2 and k ≥ M1 +M2, where

the finite constant Cx depends on x and is independent of k.

To see this, first select n > 0 s.t. p(x, y∗1)p(y
∗
1, y

∗
2) · · · p(y∗n−1, 0) > 0 for some

y∗1, · · · , y∗n−1 ∈ S. Choose M2 be large enough that M2 ≥ |x|+(n− 1)M1. Thus, for

k ≥ M1 +M2,

7



exp
(
ŵk(x)

)
=
∑
y∈S

p(x, y) exp(h(y)− λ0) exp(ŵk(y))

=
∑
y1∈S

p(x, y1) exp(h(y1)− λ0)×(∑
y2∈S

p(y1, y2) exp(h(y2)− λ0) exp(ŵk(y2))
)

=
∑

y1,··· ,yn∈S
p(x, y1)p(y1, y2) · · · p(yn−1, yn) exp

( n∑
m=1

(h(ym)− λ0)
)
×

exp
(
ŵk(yn)

)
≥ p(x, y∗1)p(y

∗
1, y

∗
2) · · · p(y∗n−1, 0) exp

( n−1∑
m=1

h(y∗m) + h(0)− nλ0

)
exp
(
ŵk(0)

)
.

Here the first identity requires that |x| ≤ M2 and k ≥ M1 + M2, and the second

identity requires that |y1| ≤ M2 and k ≥ M1 +M2, for any y1 appeared in the RHS.

Because we choose M2 ≥ |x|+ (n− 1)M1, |yi| ≤ M2 ∀1 ≤ i ≤ n− 1. Therefore,

exp
(
ŵk(x)− ŵk(0)

)
≥ p(x, y∗1)p(y

∗
1, y

∗
2) · · · p(y∗n−1, 0)

exp
( n−1∑

m=1

h(y∗m) + h(0)− nλ0

)
= cx > 0.

∴ ŵk(x)− ŵk(0) ≥ log(cx) > −∞.

Similarly, we may choose M2 to be larger so that for k ≥ M1 +M2, we also have

ŵk(0) − ŵk(x) ≥ log(dx) > −∞. Thus we have proved |ŵk(x) − ŵk(0)| ≤ Cx for

every |x| ≤ M2 and k ≥ M1 +M2.

4. It is immediate to verify that w̃k(x) = ŵk(x)−ŵk(0) is again a solution for (1)

for every |x| ≤ M2 and k ≥ M1+M2, where M2 is arbitrarily chosen. Since w̃k(x) is

bounded in k for |x| ≤ M2 and k ≥ M1+M2, we may use both Bolzano-Weierstrass

theorem and diagonal process to select a subsequence {nk} s.t. w̃nk
(x) → w̃(x) for

8



every x ∈ S as k → ∞.

Fix x ∈ S and take k large enough such that

exp(w̃nk
(x)) =

∑
y∈S

p(x, y) exp(h(y)− λ0) exp(w̃nk
(y)).

Since there’s only finitely many terms in the summation above, letting k → ∞ we

obtain

exp(w̃(x)) =
∑
y∈S

p(x, y) exp(h(y)− λ0) exp(w̃(y)) ∀x ∈ S

which satisfies (1).

2.2 The greatest lower bound of all possible λ’s is finite

Theorem 2.5. Let p(x, y) be the transition probability from x to y of an irre-

ducible Markov chain {Xn} on Zd. We assert that inf{λ : (λ,w) is a solution of

(1)} > −∞.

Proof. Fix any two states x and y. Choose N,M > 0 such that p(x, x∗
1)p(x

∗
1, x

∗
2)

· · · p(x∗
N , y) > 0 and p(y, y∗1)p(y

∗
1, y

∗
2) · · · p(y∗M , x) > 0 for states x∗

1, · · · , x∗
N ,

y∗1, · · · , y∗M . We have

exp(w(x)) =
∑
z∈S

p(x, z) exp

(
h(z)− λ+ w(z)

)
≥ p(x, x∗

1) exp

(
h(x∗

1)− λ+ w(x∗
1)

)
= p(x, x∗

1) exp

(
h(x∗

1)− λ

)∑
z∈S

p(x∗
1, z) exp

(
h(z)− λ+ w(z)

)

≥ p(x, x∗
1)p(x

∗
1, x

∗
2) · · · p(x∗

N , y) exp

( N∑
i=1

(
h(x∗

i )− λ
))

× exp

(
h(y)− λ

)
exp(w(y))

9



≥ p(x, x∗
1)p(x

∗
1, x

∗
2) · · · p(x∗

N , y)× p(y, y∗1)p(y
∗
1, y

∗
2) · · · p(y∗M , x)

× exp

( N∑
i=1

(
h(x∗

i )− λ
))

exp

(
h(y)− λ

)

× exp

( M∑
j=1

(
h(y∗j )− λ

))
exp

(
h(x)− λ

)
exp(w(x)).

It follows that

exp
(
(N +M + 2)λ

)
≥ p(x, x∗

1)p(x
∗
1, x

∗
2) · · · p(x∗

N , y)× p(y, y∗1)×

p(y∗1, y
∗
2) · · · p(y∗M , x)× exp

( N∑
i=1

h(x∗
i )

)
exp

( M∑
j=1

h(y∗j )
)
exp
(
h(x) + h(y)

)
⇒ λ ≥ 1

N +M + 2

(
log
(
p(x, x∗

1)p(x
∗
1, x

∗
2) · · · p(x∗

N , y)× p(y, y∗1)

p(y∗1, y
∗
2) · · · p(y∗M , x)

)
+

N∑
i=1

h(x∗
i ) +

M∑
j=1

h(y∗j ) + h(x) + h(y)

)
.

Here’s a special case. If x, y are two states such that p(x, y) > 0 and p(y, x) > 0,

then we have

exp(w(x)) =
∑
y∈S

p(x, z) exp

(
h(z)− λ+ w(z)

)
≥ p(x, y) exp

(
h(y)− λ+ w(y)

)
= p(x, y) exp

(
h(y)− λ

)∑
t∈S

p(y, t) exp

(
h(t)− λ+ w(t)

)
≥ p(x, y)p(y, x) exp

(
h(x) + h(y)− 2λ

)
exp(w(x)).

This implies

p(x, y)p(y, x) exp

(
h(x) + h(y)− 2λ

)
≥ 1

⇒λ ≥ 1

2

(
h(x) + h(y) + log

(
p(x, y)p(y, x)

))
.

2.3 The greatest lower bound of all possible λ’s is a solution

Theorem 2.6. Let p(x, y) be the transition probability from x to y of an ir-

reducible Markov chain {Xn} on Zd, where p(x, y) = 0 for |y − x| > M1, and let
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λ0 = inf{λ : (λ,w) be a solution of (1)} > −∞. For this λ0, there exists w0 such

that (λ0, w0) is a solution of (1).

Proof. Let {(λ0 + 1
m
, wm)}m be a sequence of solutions of (1) due to corollary

2.2, and we normalize these w’s such that wm(0) = 0. The idea is similar to

what is presented in the third part of Section 2.1. First, we select n > 0 s.t.

p(x, y∗1)p(y
∗
1, y

∗
2) · · · p(y∗n−1, 0) > 0 for some y∗1, · · · , y∗n−1 ∈ S. Thus

exp
(
wm(x)

)
=
∑
y∈S

p(x, y) exp(h(y)− λ0) exp(wm(y))

=
∑
y1∈S

p(x, y1) exp(h(y1)− λ0)(∑
y2∈S

p(y1, y2) exp(h(y2)− λ0) exp(wm(y2))
)

=
∑

y1,··· ,yn∈S
p(x, y1)p(y1, y2) · · · p(yn−1, yn) exp

( n∑
i=1

(h(yi)− λ0)
)

exp
(
wm(ym)

)
≥ p(x, y∗1)p(y

∗
1, y

∗
2) · · · p(y∗n−1, 0) exp

( n−1∑
i=1

h(y∗i ) + h(0)− nλ0

)
exp
(
wm(0)

)
.

That is, exp(wm(x)) ≥ cx exp(wm(0)) where cx is independent of m but depends

on the position x. Similarly, exp(wm(0)) ≥ dx exp(wm(x)) for every m. Since we

assume that exp(wm(0)) = 1 for every m, wm(x) ∈ [log(1/dx), log(cx)].

Now we apply both Bolzano-Weierstrass theorem and diagonal process to select

a subsequence {mk} such that wmk
(x) → w̃(x) for every x ∈ S as k → ∞. There-

fore, as k → ∞ in

exp(wmk
(x)) =

∑
y∈S

p(x, y) exp(h(y)− λ0 − 1

mk

) exp(wmk
(y)),

we obtain

exp(w̃(x)) =
∑
y∈S

p(x, y) exp(h(y)− λ0) exp(w̃(y))

which satisfies (1).
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We hence have the following definition.

Definition 2.7. If λ0 = inf{λ : (λ,w) is a solution of (1)}, then we call (λ0, w
′)

a minimal solution of (1) if (λ0, w
′) satisfies (1), and we call this λ0 the minimal

point of (1) when (λ0, w
′) is a minimal solution of (1).

2.4 Restrictions on h such that (1) has solutions

Theorem 2.8. Let p(x, y) be the transition probability from x to y of an ir-

reducible random walk {Xn} on Zd. Let (λ,w) be a solution of (1). If there ex-

ists m ∈ R such that h(x) > m ∀ x ∈ S, then there is another K ∈ R such that

h(x) < K ∀ x ∈ S.

Proof. We first fix any state y ∈ S, and we chooseN,M > 0 such that p(0, x∗
1)p(x

∗
1, x

∗
2)

× · · · × p(x∗
N , y) > 0 and p(y, y∗1)p(y

∗
1, y

∗
2) · · · p(y∗M , 0) > 0 for states x∗

1, · · · , x∗
N ,

y∗1, · · · , y∗M ∈ S. As computed in Theorem 2.5,

exp(w(0)) ≥ p(0, x∗
1)p(x

∗
1, x

∗
2) · · · p(x∗

N , y)× p(y, y∗1)p(y
∗
1, y

∗
2) · · · p(y∗M , 0)

× exp

( N∑
i=1

(
h(x∗

i )− λ
))

exp

(
h(y)− λ

)

× exp

( M∑
j=1

(
h(y∗j )− λ

))
exp

(
h(0)− λ

)
exp(w(0)).

Now we replace 0 with any state x ∈ S. Since p(x, x+ x∗
1)p(x+ x∗

1, x+ x∗
2) × · · · ×

p(x + x∗
N , x + y) > 0 and p(x + y, x + y∗1)p(x + y∗1, x + y∗2) · · · p(x + y∗M , x) > 0, we

have

exp(w(x)) ≥ p(x, x+ x∗
1)p(x+ x∗

1, x+ x∗
2) · · · p(x+ x∗

N , x+ y)

× p(x+ y, x+ y∗1)p(x+ y∗1, x+ y∗2) · · · p(x+ y∗M , x)

× exp

( N∑
i=1

(
h(x+ x∗

i )− λ
))

exp

(
h(x+ y)− λ

)

× exp

( M∑
j=1

(
h(x+ y∗j )− λ

))
exp

(
h(x)− λ

)
exp(w(x))
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= p(0, x∗
1)p(x

∗
1, x

∗
2) · · · p(x∗

N , y)× p(y, y∗1)p(y
∗
1, y

∗
2) · · · p(y∗M , 0)

× exp

( N∑
i=1

(
h(x+ x∗

i )− λ
))

exp

(
h(x+ y)− λ

)

× exp

( M∑
j=1

(
h(x+ y∗j )− λ

))
exp

(
h(x)− λ

)
exp(w(x))

≥ p(0, x∗
1)p(x

∗
1, x

∗
2) · · · p(x∗

N , y)× p(y, y∗1)p(y
∗
1, y

∗
2) · · · p(y∗M , 0)

× exp

(
(N +M + 1)m− (N +M + 2)λ)

)
exp(h(x)) exp(w(x)).

This shows exp(h(x)) ≤ exp
(
(N +M + 2)λ− (N +M + 1)m)

)
×(

p(0, x∗
1)p(x

∗
1, x

∗
2) · · · p(x∗

N , y)p(y, y
∗
1)p(y

∗
1, y

∗
2) · · · p(y∗M , 0)

)−1

for every x ∈ S, so h(x)

is bounded from above, which contradicts our assumption.

2.5 Some properties of w(x) when certain restrictions on

h(x) are imposed

Theorem 2.9. Let p(x, y) be the transition probability from x to y of an irre-

ducible Markov chain {Xn} on Zd.

(i) Let supx∈S h(x) = M < ∞. If (λ,w) is a solution of (1), and λ > M , then for

any k ∈ R, ∃x ∈ S = Zd such that w(x) > k.

(ii) Let infx∈S h(x) = m > −∞. If (λ,w) is a solution of (1), and λ < m, then for

any k ∈ R, ∃x ∈ S = Zd such that w(x) < k.

Proof. (i) Assume to the contrary that supx∈S w(x) = K < ∞. Let λ−M = c > 0.
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For this c we may pick some x0 ∈ S such that w(x0) > K − c
2
. We observe that

exp(w(x0)) =
∑
y∈S

p(x0, y) exp

(
h(y)− λ+ w(y)

)
≤
∑
y∈S

p(x0, y) exp

(
− c+ w(y)

)
≤
∑
y∈S

p(x0, y) exp

(
− c+K

)
= exp

(
− c+K

)
.

A contradiction occurs because

−c+K ≥ w(x0) ≥ K − c

2
.

(ii) The proof is quite similar to (1). Again we assume to the contrary that

infx∈S w(x) = K > −∞. Let m − λ = c > 0. For this c we may pick some x0 ∈ S

such that w(x0) < K + c
2
. We have

exp(w(x0)) =
∑
y∈S

p(x0, y) exp

(
h(y)− λ+ w(y)

)
≥
∑
y∈S

p(x0, y) exp

(
c+ w(y)

)
≥
∑
y∈S

p(x0, y) exp

(
c+K

)
= exp

(
c+K

)
,

which implies

c+K ≤ w(x0) ≤ K +
c

2
,

a contradiction.
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3 The p̂λ,w transformation

For any solution (λ,w) of (1), we can define a new probability kernel p̂λ,w as

follows:

Definition 3.1. p̂λ,w(x, y) � p(x, y) exp

(
h(y)− λ+ w(y)− w(x)

)

It is immediate to check that
∑

y∈S p̂
λ,w(x, y) = 1. In the next two subsections

we provide criteria to check when p̂λ,w is transient, recurrent, or even positive re-

current. This helps us to check whether w is unique up to adding a constant when

λ is fixed and (λ,w) is a solution of (1).

In Theorem 3.2, we do not assume that p is finitely supported, while the assump-

tion that a minimal solution (λ0, w0) of (1) exists is necessary.

However, in Theorem 3.3 and Theorem 3.4, we assume that p is finitely sup-

ported since the proof of recurrence involves more details.

3.1 The transience, recurrence, and positive recurrence of

p̂λ,w

Theorem 3.2. Let p(x, y) be the transition probability from x to y of an ir-

reducible Markov chain {Xn} on Zd. Assume that there exists a minimal solution

(λ0, w0) of (1), then for any λ > λ0 such that (λ,w) is a solution of (1), p̂λ,w is

transient.

Proof. Since

p̂λ,wn (x, x) =
∑

y1,··· ,yn−1∈S
p̂λ,w(x, y1)p̂

λ,w(y1, y2)× · · · × p̂λ,w(yn−1, x)

15



=
∑

y1,··· ,yn−1∈S
p(x, y1)p(y1, y2)× · · · × p(yn−1, x)×

exp
(( n−1∑

i=1

h(yi)
)
+ h(x)− nλ

)
= exp(n(λ0 − λ))

∑
y1,··· ,yn−1∈S

p(x, y1)p(y1, y2)× · · · × p(yn−1, x)×

exp
(( n−1∑

i=1

h(yi)
)
+ h(x)− nλ0

)
= exp(n(λ0 − λ))

∑
y1,··· ,yn−1∈S

p̂λ0,w0(x, y1)p̂
λ0,w0(y1, y2)× · · · ×

p̂λ0,w0(yn−1, x)

= exp(n(λ0 − λ))p̂λ0,w0
n (x, x)

≤ exp(n(λ0 − λ)).

Thus
∑∞

n=0 p̂
λ,w
n (x, x) ≤ 1 +

∑∞
n=1 exp(n(λ0 − λ)) < ∞.

Theorem 3.3. Let p(x, y) be the transition probability from x to y of an irre-

ducible Markov chain {Xn} on Zd such that p(x, y) = 0 for |x− y| > M1; therefore,

a minimal solution (λ0, w0) of (1) exists. Assume that there is some δ > 0 such that

h(x)− λ0 < −δ for any |x| > R. We claim that p̂λ0,w0(x, y) is recurrent.

Proof. 1. Assume that p̂λ0,w0(x, y) is transient, and hence we can define

ĝ(x) �
∑
y∈S

∑
n≥0

p̂λ0,w0
n (x, y)f(y) < ∞,

where f(x) = 1 if |x| ≤ R + M1 and f(x) = 0 if |x| > R + M1. We have

p̂λ0,w0 ĝ(x) =
∑

y∈S p̂
λ0,w0(x, y)ĝ(y) = ĝ(x)(1−f(x)/ĝ(x)). Therefore, if |x| ≤ R+M1,

p̂λ0,w0 ĝ(x) ≤ (1 − μ)ĝ(x), where 0 < μ = inf |x|≤R+M1

f(x)
g(x)

≤ 1, and if |x| > R +M1,

p̂λ0,w0 ĝ(x) = ĝ(x).
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2. Define g̃(x) = exp(−w0(x)), we have

p̂λ0,w0 g̃(x) =
∑
y∈S

p(x, y) exp(h(y)− λ0) exp(w0(y)− w0(x))× exp(−w0(y))

= exp(−w0(x))
∑
y∈S

p(x, y) exp(h(y)− λ0)

≤ exp(−w0(x))
∑
y∈S

p(x, y) exp(−δ)

= exp(−δ)g̃(x)

for any |x| > R +M1.

3. Consider Ft(x) = ĝ(x)tg̃(x)1−t for 0 < t < 1. We have

p̂λ0,w0Ft(x) ≤
(
p̂λ0,w0 ĝ(x)

)t(
p̂λ0,w0 g̃(x)

)1−t

= Ft(x)
( p̂λ0,w0 ĝ(x)

ĝ(x)

)t( p̂λ0,w0 g̃(x)

g̃(x)

)1−t

≤ Ft(x)

(
t
( p̂λ0,w0 ĝ(x)

ĝ(x)

)
+ (1− t)

( p̂λ0,w0 g̃(x)

g̃(x)

))
.

Here the first inequality is Holder’s inequality and the third one is the Young’s

inequality. For each |x| ≤ R +M1,

t
( p̂λ0,w0 ĝ(x)

ĝ(x)

)
+ (1− t)

( p̂λ0,w0 g̃(x)

g̃(x)

)
≤ t(1− μ) + (1− t) max

|y|≤R+M1

{ p̂
λ0,w0 g̃(y)

g̃(y)
}

≤ 1− μ/2,

for some t close to 1. Fix this t and consider the case |x| > R +M1, we have

t
( p̂λ0,w0 ĝ(x)

ĝ(x)

)
+ (1− t)

( p̂λ0,w0 g̃(x)

g̃(x)

)
≤ t+ (1− t) exp(−δ) < 1.

4. Therefore, for every x ∈ S, p̂λ0,w0Ft(x) =
∑

y∈S p̂
λ0,w0(x, y)Ft(y) ≤ exp(−δ′)Ft(x)

for some δ′ > 0, where Ft is defined in the previous step.

5. The existence of Ft shows that (λ0 − δ′, logFt(x)) is a solution of (2). This

implies (λ0 − δ′, w′) is a solution of (1) for some w′, contradicts the minimality of

λ0.
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Now we strengthen the above theorem by proving that p̂λ0,w0(x, y) is positive

recurrent.

Theorem 3.4. Let p(x, y) be the transition probability from x to y of an ir-

reducible Markov chain {Xn} on Zd such that p(x, y) = 0 for all x, y ∈ S satis-

fying |x − y| > M1, for some M1 > 0. Assume that there exists δ > 0 such that

h(x) − λ0 < −δ for all |x| > R. We claim that if (λ0, w0) is a minimal solution of

(1), then p̂λ0,w0(x, y) is positive recurrent.

Proof. 1. We claim that {M̂n � exp
(−∑n

i=1(h(Xi)− λ0)− w0(Xn)
)
;

Fn = σ(M̂1, · · · , M̂n)} is a martingale with respect to p̂λ0,w0
x , where M̂0 = exp(−w0(X0)) =

exp(−w0(x)). To prove the claim, first we note that since p(x, y) = 0 for |x−y| > M1,

Êλ0,w0
x [M̂n] < ∞ for all n. For any n ≥ 1,

Êλ0,w0
x [M̂n|Fn−1] = exp

(
−

n−1∑
i=1

(
h(Xi)− λ0

))×
∑
y∈S

p̂λ0,w0(Xn−1, y) exp
(− (h(y)− λ0)− w0(y)

)
=exp

(
−

n−1∑
i=1

(
h(Xi)− λ0

))
exp(−w0(Xn−1))

∑
y∈S

p(Xn−1, y)

=M̂n−1.

2. For any |x| > R, we define τx � min{n : X0 = x, |Xn| ≤ R}. By 1. and the

optional sampling theorem,

Êλ0,w0
x [M̂τx ; τx < n] ≤ Êλ0,w0

x [M̂n∧τx ] = exp(−w0(x)).

Since p̂λ0,w0
x (τx < n) → 1 as n → ∞ by the conclusion of Theorem 3.3, we have

exp(−w0(x)) ≥Êλ0,w0
x [M̂τx ]

≥Êλ0,w0
x [exp

(
−

τx∑
i=1

(
h(Xi)− λ0

)− w0(Xτx)
)
]

≥ min
|y|≤R

{exp(−w0(y)− h(y) + λ0)}Êλ0,w0
x [exp

(
(τx − 1)δ

)
].

18



Now if we restrict our choice of x to the finite set {|x| > R, x ∈ Zd : ∃|y| ≤ R so

that p̂λ0,w0(y, x) > 0}, then we have Êλ0,w0
x [τx] < K1, for all x in this set.

3. For each |y| ≤ R, there exists a fixed time Ty > 0 such that p̂λ0,w0
y (|XTy | ≤

R) < 1 − δy for some δy > 0. Let T = max{Ty : |y| ≤ R}, δ = min{δy : |y| ≤ R} ,

we claim that for any |y| ≤ R,

p̂λ0,w0
y (|Xn| ≤ R ∀ 1 ≤ n ≤ kT ) ≤ (1− δ)k.

To see this, for k = 1 we have

p̂λ0,w0
y (|Xn| ≤ R ∀ 1 ≤ n ≤ T ) ≤p̂λ0,w0

y (|XTy | ≤ R)

<1− δy

≤1− δ,

and for k > 1,

p̂λ0,w0
y (|Xn| ≤ R ∀ 1 ≤ n ≤ kT )

=p̂λ0,w0
y (Êλ0,w0

y

[|Xn| ≤ R ∀ 1 ≤ n ≤ kT
∣∣XTy

]
)

=
∑
|z|≤R

p̂λ0,w0
y (p̂λ0,w0

z (|Xn| ≤ R ∀ 1 ≤ n ≤ kT − Ty), XTy = z)

≤
∑
|z|≤R

p̂λ0,w0
y (p̂λ0,w0

z (|Xn| ≤ R ∀ 1 ≤ n ≤ (k − 1)T ), XTy = z)

≤
∑
|z|≤R

(1− δ)k−1p̂λ0,w0
y (XTy = z) by induction hypothesis

=(1− δ)k−1p̂λ0,w0
y (|XTy | ≤ R) ≤ (1− δ)k.

For each |y| ≤ R, let τy = min{n : X0 = y, |Xn| > R}, we have

Êλ0,w0
y [τy] =

∞∑
k=0

Êλ0,w0
y [τy, kT + 1 ≤ τ̂y ≤ kT + T ]

≤
∞∑
k=0

(kT + T )p̂λ0,w0
y (kT + 1 ≤ τy ≤ kT + T )

≤
∞∑
k=0

(kT + T )p̂λ0,w0
y (|Xn| ≤ R ∀ 1 ≤ n ≤ kT )
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≤
∞∑
k=0

(kT + T )(1− δ)k

= K2 < ∞.

4. Define A = {|y| ≤ R : y ∈ Zd}, B = {|x| > R, x ∈ Zd : ∃y ∈ A so that

p̂λ0,w0(y, x) > 0}. For any z ∈ B, we let {ρzn}∞n=1 be a sequence of stopping times

such that

ρz0 � 0,

ρz1 � min{n : X0 = z, |Xn| ≤ R},
ρz2 � min{n > ρz1 : |Xn| > R},
ρz3 � min{n > ρz2 : |Xn| ≤ R},

and so on. We find that {X̃n}∞n=0 = {X0 = z,Xρz1
, Xρz2

, · · · } is a Markov chain on

A ∪ B, and its transition probability p̃(x, y) is given by p̂λ0,w0(X̃n = y|X̃n−1 = x)

for arbitrary n. Let A′ � {x ∈ A : p̃z(X̃N = x) = p̂λ0,w0
z (XρzN

= x) > 0 for some

N ≥ 0}, B′ � {x ∈ B : p̃z(X̃N = x) = p̂λ0,w0
z (XρzN

= x) > 0 for some N ≥ 0}. Now
{X̃n}∞n=0 is a Markov chain on A′ ∪B′ with transition probability p̃(x, y).

If the z we chose is a recurrent state with respect to {X̃n}∞n=0 on A′ ∪ B′, then

{X̃n}∞n=0 is irreducible on A′ ∪ B′, and we’re done. If z is transient with respect to

{X̃n}∞n=0 on A′ ∪B′, the chain must contain some transient states and one or more

recurrent classes. We may always pick a state z′ ∈ B′ in one of these recurrent

classes. Now we replace our original z with this new state z′ and perform the same

procedure as above. Note that the new A′ ∪B′ with respect to z′ is a subset of the

A′ ∪B′ of our original z in this case.

Now {X̃n}∞n=0, which starts from z ∈ B, is an irreducible, positive recurrent

Markov chain whose state space is A′ ∪B′ with transition probability p̃. Therefore,

we have ∞∑
k=1

kp̃z(X̃1 �= z, · · · , X̃k−1 �= z, X̃k = z) < ∞.

20



5. Fix z ∈ B′. Let ρ(z) � min{n > 0 : X0 = z,Xn = z} be the first return time

of z. Now our goal is to prove

Êλ0,w0
z [ρ(z)] < ∞,

and this implies the original process {Xn} is positive recurrent with respect to

p̂λ0,w0 . We take another random time T (z) � min{ρzn > 0 : X0 = z,Xρzn = z}, where
T (z) ≥ ρ(z). We start to estimate Êλ0,w0

z [T (z)]:

Êλ0,w0
z [T (z)]

=
∞∑
k=1

Êλ0,w0
z [ρzk;Xρz1

�= z, · · · , Xρzk−1
�= z,Xρzk

= z]

=
∞∑
k=1

k∑
n=1

Êλ0,w
z [ρzn − ρzn−1;Xρz1

�= z, · · · , Xρzk−1
�= z,Xρzk

= z]

=
∞∑
k=1

k∑
n=1

∑
a,b∈A′∪B′\{z}

Êλ0,w0
z [ρzn − ρzn−1;Xρz1

�= z, · · · , Xρzn−1
= a,

Xρzn = b, · · · , Xρzk−1
�= z,Xρzk

= z]

=
∞∑
k=1

k∑
n=1

∑
a,b∈A′∪B′\{z}

Êλ0,w0
z [Êλ0,w

z [ρzn − ρzn−1;Xρz1
�= z, · · · , Xρzn−1

= a,

Xρzn = b, · · · , Xρzk−1
�= z,Xρzk

= z|Xρz1
, · · · , Xρzn−1

, Xρzn , ρ
z
n − ρzn−1]]

=
∞∑
k=1

k∑
n=1

∑
a,b∈A′∪B′\{z}

Êλ0,w0
z [(ρzn − ρzn−1)Ê

λ0,w0
z [Xρzn+1

�= z, · · · , Xρzk−1
�= z,

Xρzk
= z|Xρz1

, · · · , Xρzn−1
Xρzn , ρ

z
n − ρzn−1];Xρz1

�= z, · · · , Xρzn−1
= a,Xρzn = b]

=
∞∑
k=1

k∑
n=1

∑
a,b∈A′∪B′\{z}

Êλ0,w0
z [(ρzn − ρzn−1);Xρz1

�= z, · · · , Xρzn−1
= a,Xρzn = b]

Êλ0,w0
z (Xρzn+1

�= z, · · · , Xρzk−1
�= z,Xρzk

= z|Xρzn = b)

=
∞∑
k=1

k∑
n=1

∑
a,b∈A′∪B′\{z}

Êλ0,w0
z [Êλ0,w0

z [(ρzn − ρzn−1);Xρz1
�= z, · · · , Xρzn−1

= a,Xρzn = b|

Xρz1
, · · · , Xρzn−1

]]× p̂λ0,w0
z (Xρzn+1

�= z, · · · , Xρzk−1
�= z,Xρzk

= z|Xρzn = b)
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=
∞∑
k=1

k∑
n=1

∑
a,b∈A′∪B′\{z}

Êλ0,w0
z [Êλ0,w0

z [(ρzn − ρzn−1);Xρzn = b|Xρzn−1
];Xρz1

�= z,

· · · , Xρzn−1
= a]× p̂λ0,w0

z (Xρzn+1
�= z, · · · , Xρzk−1

�= z,Xρzk
= z|Xρzn = b)

≤
∞∑
k=1

k∑
n=1

∑
a,b∈A′∪B′\{z}

Êλ0,w0
z [Êλ0,w0

z [ρzn − ρzn−1|Xρzn−1
= a];Xρz1

�= z,

· · · , Xρzn−1
= a]× p̂λ0,w0

z (Xρzn+1
�= z, · · · , Xρzk−1

�= z,Xρzk
= z|Xρzn = b)

=
∞∑
k=1

k∑
n=1

∑
a,b∈A′∪B′\{z}

Êλ0,w0
a [τa]p̂

λ0,w0
z (Xρz1

�= z, · · · , Xρzn−1
= a)×

p̂λ0,w0
z (Xρzn+1

�= z, · · · , Xρzk−1
�= z,Xρzk

= z|Xρzn = b)

≤
∞∑
k=1

k∑
n=1

∑
a,b∈A′∪B′\{z}

max{K1, K2}p̂λ0,w0
z (Xρz1

�= z, · · · , Xρzn−1
= a)×

p̂λ0,w0
z (Xρzn+1

�= z, · · · , Xρzk−1
�= z,Xρzk

= z|Xρzn = b)×

p̂λ0,w0
z (Xρzn = b|Xρzn−1

= a) max
a,b∈A′∪B′\{z}

(
p̂λ0,w0
z (Xρzn = b|Xρzn−1

= a)

)−1

=
∞∑
k=1

k∑
n=1

∑
a,b∈A′∪B′\{z}

max{K1, K2} max
a,b∈A′∪B′\{z}

(
p̃z(X̃n = b|X̃n−1 = a)

)−1

p̂λ0,w0
z (Xρz1

�= z, · · · , Xρzn−1
= a,Xρzn = b, · · · , Xρzk−1

�= z,Xρzk
= z)

=
∞∑
k=1

k∑
n=1

max{K1, K2} max
a,b∈A′∪B′\{z}p̃a( ˜X1=b)>0

(
p̃a(X̃1 = b)

)−1

×

p̂λ0,w0
z (Xρz1

�= z, · · · , Xρzk−1
�= z,Xρzk

= z)

=max{K1, K2} max
a,b∈A′∪B′\{z}

(
p̃a(X̃1 = b)

)−1
∞∑
k=1

kp̂λ0,w0
z (Xρz1

�= z, · · · , Xρzk−1
�= z,Xρzk

= z)

=max{K1, K2} max
a,b∈A′∪B′\{z}

(
p̃a(X̃1 = b)

)−1
∞∑
k=1

kp̃z(X̃1 �= z, · · · , X̃k−1 �= z, X̃k = z)

<∞.

Therefore, Êλ0,w0
z [ρ(z)] ≤ Êλ0,w0

z [T (z)] < ∞, and the proof is complete.
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3.2 Criteria for when all harmonic functions are constants

The following lemma taken from [4] shows us the recurrence of a Markov chain

is equivalent to the triviality of nonnegative superharmonic functions. Let us first

define harmonic functions and superharmonic functions.

Definition 3.5. Let p be the probability kernel of a Markov chain {Xn} on S. If

h(x) ≥ 0 for all x ∈ S and ph(x) �
∑

y∈S p(x, y)h(y) ≤ h(x) for all x ∈ S, then we

call h a p-superharmonic function for {Xn}, or simply superharmonic function

for {Xn}. If we replace ≤ above with =, then h is called a p-harmonic function

for {Xn}.

Lemma 3.6. Assume that p is the probability kernel of an irreducible Markov

chain on S. Then p is recurrent on S iff all superharmonic functions are constants.

Proof. We first consider the “if” part. When p is transient, then pick any x ∈ S,

G(·, x) is superharmonic but not harmonic, and hence nonconstant, which is a con-

tradiction.

In the following we consider the “only if” part.

1. Assume that f(x) is a superharmonic function. If f(y0) > pf(y0) for some

y0 ∈ S, then we have

f(x) =
( n∑

m=0

∑
y∈S

pm(x, y)(f(y)− pf(y))
)
+ pn+1f(x)

≥
n∑

m=0

pm(x, y0)(f(y0)− pf(y0)).

We may then let n → ∞ to get a contradiction because
∑∞

m=0 pm(x, y0) = ∞.

Therefore, f(x) ≡ pf(x).

2. Fix any x0 ∈ S and let M = f(x0). Because f(x) ∧ M is a superharmonic

function, f(x) ∧M is also harmonic by 1. If f(x1) < M for some x1 ∈ S, we may
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pick N > 0 such that PN(x0, x1) > 0. Therefore,

M = f(x0) ∧M =
∑
y∈S

pN(x0, y)(f(y) ∧M)

≤
( ∑

y∈S\{x1}
pN(x0, x1)M

)
+ PN(x0, x1)f(x1)

< M,

which is impossible. Hence f(x) ≥ f(x0) for all x ∈ S. Since x0 is arbitrarily chosen,

f must be a constant function.

When a Markov chain is transient, it may have many harmonic functions. The

Martin boundary theory provides us with a criteria about when all of the Markov

chain’s harmonic functions are trivial. The interested readers are invited to the

appendix of this paper.

Lemma 3.7. Assume that the probability kernel p of an irreducible Markov

chain is transient on S. Then the minimal boundary of p is a single point iff all

harmonic functions of p are constants.

The following theorem explains why we’re interested in the recurrence or tran-

sience for p̂λ,w.

Theorem 3.8. Let p be the probability kernel of an irreducible Markov chain

on S, and (λ,w) is a solution of (1). Assume that all harmonic functions of p̂λ,w

are constants, then for this λ, (λ, w) is the unique solution of (1) in the sense that

w is unique up to the addition of a constant.

Proof. Assume that (λ,w1) is another solution of (1) such that exp(w1(x))
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/ exp(w(x)) is not a constant function. Then W (x) = exp(w1(x)− w(x)) satisfies

W (x) =
∑
y∈S

p(x, y) exp(h(y)− λ) exp(w(y)− w(x))W (y)

=
∑
y∈S

p̂λ,w(x, y)W (y) ∀ x ∈ S,

and this implies W (x) is a nonconstant harmonic function for p̂λ,w. However, this is

impossible by our assumption, and it turns out that w is unique up to the addition

of a constant when λ is fixed and (λ, w) is a solution of (1).
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4 Estimates for some lower bound for all λ’s such

that (λ,w) is a solution of (1) under some con-

ditions

In this section we assume that p is the transition probability from x to y of an irre-

ducible random walk {Xn} on Zd. We prove several results when
∑

x∈S |x|2p(0, x) <
∞ and μ =

∑
x∈S xp(0, x) = 0, but we do not assume that p is finitely supported.

We start with some definitions and lemmas that help us develop a powerful tool,

the local central limit theorem. We then use this tool to provide a lower bound

for all λ’s such that (λ,w) is a solution of (1). For some h we may even prove the

existence of the minimal point and find what it is, without assuming that p is finitely

supported.

The local central limit theorem is taken from [1], and we give a detailed proof

here. For further reference, see [2].

4.1 Local central limit theorem

Definitions 4.1. Let the state space S be Zd.

1. The mean μ is defined as
∑

x∈S xp(0, x).

2. Let m2 =
∑

x∈S |x|2p(0, x) < ∞. The second moment quadratic form Q is

defined as Q[θ] = (Q̃θ · θ) �∑x∈S |((x− μ) · θ)|2p(0, x) for θ ∈ S. Indeed, the

ij-th component (Q̃)ij of the d-dimensional matrix Q̃ equals
∑

x∈S(xi−μi)(xj−
μj)p(0, x), where xi = (x·ei) is the i-th component of x. The associated bilinear

form B(θ1, θ2) =
∑

x∈S((x− μ) · θ1)× ((x− μ) · θ2)p(0, x).

3. The determinant |Q| of the quadratic form Q is defined as det(Q̃).

4. The inverse quadratic form Q−1 is defined as Q−1[θ] � (Q̃−1θ · θ) for θ ∈ S.

5. The characteristic function ψ(θ) �
∑

x∈S e
iθ·(x−μ)p(0, x).
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Lemma 4.2. Let p be the transition function of an irreducible random walk on

S = Zd. Then, Q is a positive quadratic form, namely, ∃c1 ≥ c2 > 0 such that

c1|θ|2 ≥ Q[θ] ≥ c2|θ|2.

Proof. It suffices to prove Q[θ] > 0 for any θ ∈ Zd. Assume to the contrary that

Q[θ0] = 0 for some θ0 ∈ Zd, and thus ((x − μ) · θ0) = 0 for any x ∈ S such that

p(0, x) > 0.

If (y · θ0) = 0 for every y ∈ S such that p(0, y) > 0, then for any y′ such that

(y′ · θ0) �= 0, pn(0, y
′) = 0 for every n ∈ N ∩ {0}, contradicts the irreducibility on S.

Therefore, there must be some y ∈ S such that (y · θ0) �= 0 and p(0, y) > 0. For

this y, we pick y1, · · · , yn ∈ S such that y1 + · · · + yn = y and p(0, y1)p(y1, y1 +

y2)p(y1 + y2, y1 + y2 + y3)× · · · × p(y1 + · · ·+ yn−1, y) > 0. We find that

(μ · θ0) = (y · θ0) ∵ p(0, y) > 0

=
n∑

i=1

(yi · θ0)

= n(μ · θ0) ∵ p(0, yi) > 0 ∀1 ≤ i ≤ n,

and this implies (y · θ0) = (μ · θ0) = 0, a contradiction to our assumption (y · θ0) �=
0.

Lemma 4.3. Let p be the transition function of an irreducible random walk on

S = Zd, and we assume that m2 =
∑

x∈S |x|2p(0, x) < ∞. Then we have

(2π)−d/2

∫
Rd

exp(−1

2
Q[w]) exp(−iw·(x−nμ)/

√
n)dw = |Q|−1/2 exp

(−1

2n
Q−1[x−nμ]

)
.

Proof. Since the associated matrix Q̃ of the quadratic form Q is also positive def-

inite, it has an orthonormal basis of eigenvectors {v1, · · · , vd} and corresponding

eigenvalues {λ1, · · · , λd}. For each w ∈ Rd, with a little bit abuse of notation we

define wj = (w · vj) for 1 ≤ j ≤ d in this lemma. We have Q[w] = (Q̃w · w) =

(
∑d

j=1 λjwjvj ·
∑d

j=1 wjvj) =
∑d

j=1 λjw
2
j . Therefore,
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(2π)−d/2

∫
Rd

exp(−1

2
Q[w]) exp(−iw · (x− nμ)/

√
n)dw

=(2π)−d/2

∫
Rd

exp(−1

2

d∑
j=1

λjw
2
j ) exp

(
− i√

n

d∑
j=1

wj(xj − nμj)
)

exp
(
− 1

2

d∑
j=1

(
i√
n
)2(xj − nμj)

2 1

λj

)
exp
(1
2

d∑
j=1

(
i√
n
)2(xj − nμj)

2 1

λj

)
dw

=(2π)−d/2

∫
Rd

exp
(
− 1

2

d∑
j=1

(√
λjwj +

i√
n
(xj − nμj)

1√
λj

)2)
exp
(1
2

d∑
j=1

(
i√
n
)2(xj − nμj)

2 1

λj

)
dw

=(2π)−d/2

∫
Rd

exp
(
− 1

2

d∑
j=1

(√
λjwj +

i√
n
(xj − nμj)

1√
λj

)2)
exp
(−1

2n
Q−1[x− nμ]

)
dw

=(2π)−d/2 exp
(−1

2n
Q−1[x− nμ]

)
×∫

R
· · ·
∫
R
exp
(
− 1

2

d∑
j=1

(√
λjwj +

i√
n
(xj − nμj)

1√
λj

)2)
dw1 · · · dwd

=(2π)−d/2 exp
(−1

2n
Q−1[x− nμ]

)
d∏

j=1

∫
R
exp
(
− 1

2
(
√

λjwj +
i√
n
(xj − nμj)

1√
λj

)2
)
dwj

=(2π)−d/2 exp
(−1

2n
Q−1[x− nμ]

) d∏
j=1

∫
R
exp
(
− 1

2
(
√
λjwj)

2
)
dwj

=(2π)−d/2 exp
(−1

2n
Q−1[x− nμ]

) d∏
j=1

√
2π

λj

=|Q|−1/2 exp
(−1

2n
Q−1[x− nμ]

)
.

To prove the identity∫
R
exp
(
− 1

2
(
√

λjwj)
2
)
dwj =

∫
R
exp
(
− 1

2
(
√

λjwj +
i√
n
(xj − nμj)

1√
λj

)2
)
dwj

given above, we consider the rectangular contour

C : −M → N → N +
i√
n
(xj − nμj)

1

λj

→ −M +
i√
n
(xj − nμj)

1

λj

→ −M,
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and notice that
∫
C
exp(−1

2
λjw

2
j )dwj = 0 because f(z) = exp(

−λjz
2

2
) is an entire

function on the complex plane. We have

0 =

∫
C

exp(−1

2
λjw

2
j )dwj

=

∫ N

−M

exp(−1

2
λjw

2
j )dwj −

∫ N

−M

exp
(
− 1

2
(
√

λjwj +
i√
n
(xj − nμj)

1√
λj

)2
)
dwj

+

∫ N+ i√
n
(xj−nμj)

1
λj

N

exp(−1

2
λjw

2
j )dwj −

∫ −M+ i√
n
(xj−nμj)

1
λj

−M

exp(−1

2
λjw

2
j )dwj.

Let N,M → ∞, the last two terms vanish and we have the desired result.

Lemma 4.4. Let p be the transition function of an irreducible random walk on

S = Zd, where m2 =
∑

x∈S |x|2p(0, x) < ∞. We have lim|θ|→0
1−ψ(θ)
Q[θ]

= 1
2
.

Proof. 1. We claim that for every t ∈ R, |1 − eit + it + 1
2
(it)2| ≤ At2 for some

A > 0. This result is obvious for t ≥ 1. For t < 1, note that |1− eit + it+ 1
2
(it)2| ≤∑∞

n=3
1
n!
tn ≤ t2

(∑∞
n=3

1
n!

)
.

2. Since Q[θ] ≥ c2|θ|2 by Lemma 4.2,

|1− ψ(θ)

Q[θ]
− 1

2
| ≤ 1

c2|θ|2 |1− ψ(θ)− 1

2
Q[θ]|

≤ 1

c2|θ|2
∑
x∈S

|1− eiθ·(x−μ) + iθ · (x− μ) +
1

2

(
iθ · (x− μ)

)2|p(0, x)
≤ 1

c2|θ|2
∑
x∈S

A
(
θ · (x− μ)

)2
p(0, x)

≤ A

c2

∑
x∈S

|x− μ|2p(0, x) < ∞.

The convergence of |1−ψ(θ)
Q[θ]

− 1
2
| → 0 as |θ| → 0 follows from dominated convergence

theorem, since for each x ∈ S, 1
|θ|2 |1 − eiθ·(x−μ) + iθ · (x − μ) + 1

2

(
iθ · (x − μ)

)2| ≤
|θ|∑∞

n=3
|θ|n−3|x−μ|n

n!
→ 0 as θ → 0.

Lemma 4.5. Let p be the transition function of an irreducible random walk on

S = Zd, where m2 =
∑

x∈S |x|2p(0, x) < ∞. Then for any A > 0, ψn( w√
n
) → e−

1
2
Q[w]

uniformly for |w| ≤ A.
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Proof. 1. For z ∈ C with |z| small enough,

log(1− z)− log 1 =

∫ 1

0

d

dt
log(1− tz)dt

=

∫ 1

0

−z

1− tz
dt

= −z − z

∫ 1

0

tz

1− tz
dt,

where

| − z

∫ 1

0

tz

1− tz
dt| ≤ |z|

∫ 1

0

| tz

1− tz
|dt

≤ |z|2
∫ 1

0

t

1/2
dt = |z|2.

The second inequality is due to |z| small.

2. Let Rn(w) � 1−ψ( w√
n
)

Q[ w√
n
]

− 1
2
and Rn(0) � 0, then ψ( w√

n
) = 1 − 1

2n
Q[w] −

1
n
Rn(w)Q[w]. We have

ψn(
w√
n
) = exp

(
n log(1− 1

2n
Q[w]− 1

n
Rn(w)Q[w])

)
= exp

(
n(

−1

2n
Q[w]− 1

n
Rn(w)Q[w] + S(w))

)
= exp

(− 1

2
Q[w]−Rn(w)Q[w] + n · S(w)))

where

|S(w)| ≤ |−1

2n
Q[w]− 1

n
Rn(w)Q[w]|2 = Q[w]2

n2
|−1

2
−Rn(w)|2.

Given A > 0, for every N > 0, |RN(w)| is a continuous function of w on {w : |w| ≤
A}, so

MN = max{|RN(w)| : |w| ≤ A} < ∞.

In addition, for n ≥ N ,

MN ≥ Mn = max{|RN(w)| : |w| ≤
√

N

n
A},
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thus |Rn(w)| ≤ M1 for every |w| ≤ A and n ≥ N . Furthermore, since

Mn = max{|R1(w)| : |w| ≤
√

1

n
A},

we have Mn → 0 as n → ∞ since R1(w) is continuous at w = 0. Therefore, let

n → ∞,

ψn(
w√
n
) → exp(−1

2
Q[w])

uniformly for |w| ≤ A, where A is arbitrarily chosen.

Lemma 4.6. Let p be the transition function of an irreducible random walk on

S = Zd, and m2 =
∑

x∈S |x|2p(0, x) < ∞. Then there exists α > 0 small enough

such that |ψn( w√
n
)| ≤ e−

1
4
Q[w] for all n ∈ N and w where |w/√n| ≤ α.

Proof. First choose α small enough such that |1−ψ(θ)
Q[θ]

− 1
2
| ≤ 1

8
and Q[α] ≤ 1

8
for all

|θ| ≤ α. As what we’ve done in the previous lemma, for all n ∈ N and w such that

|w/√n| ≤ α, we have

|ψn(
w√
n
)| = exp(−1

2
Q[w])× ∣∣ exp(−Rn(w)Q[w])

∣∣× ∣∣ exp(n · S(w))∣∣
≤ exp(−1

2
Q[w]) exp(| −Rn(w)|Q[w]) exp(

1

n

∣∣−1

2
−Rn(w)

∣∣2Q[w]2)

≤ exp(−1

2
Q[w]) exp(

1

8
Q[w]) exp(Q[w/

√
n]
∣∣−1

2
−Rn(w)

∣∣2Q[w])

≤ exp(−1

2
Q[w]) exp(

1

8
Q[w]) exp(

1

8
Q[w]) = e−

1
4
Q[w]

and this completes the proof.

Lemma 4.7. Let p be the transition function of an irreducible, aperiodic random

walk on S = Zd. Then |ψ(θ)| = 1 if and only if for every 1 ≤ j ≤ d, θj is a multiple

of 2π, where θj is the j-th component of θ.

Proof. (⇐) Assume that for every 1 ≤ j ≤ d, θj is a multiple of 2π, we have

|ψ(θ)| = |∑x∈S e
iθ·(x−μ)p(0, x)| = |e−i(θ·μ)∑

x∈S e
iθ·xp(0, x)| = |e−i(θ·μ)| = 1.

(⇒) Assume that there exists θ ∈ Rd such that|ψ(θ)| = 1. This implies that

∃t ∈ R such that (θ · x) − t is a multiple of 2π for every x ∈ S such that
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p(0, x) > 0. Since p is aperiodic, there exists n ∈ N such that pn(0, 0) > 0

and pn+1(0, 0) > 0. Choose y1, · · · , yn, z1, · · · , zn+1 such that y1 + · · · + yn =

z1 + · · · + zn+1 = 0, and p(0, y1)p(y1, y1 + y2) × · · · × p(y1 + · · · + yn−1, 0) > 0,

p(0, z1)p(z1, z1 + z2)× · · · × p(z1 + · · ·+ zn, 0) > 0.

Therefore, (θ·∑n
i=1 yi)−nt = (θ·0)−nt and (θ·∑n+1

i=1 zi)−(n+1)t = (θ·0)−(n+1)t

are both multiples of 2π, and hence t is a multiple of 2π. This implies (θ · x) is a

multiple of 2π for every x ∈ S such that p(0, x) > 0.

Choose y1, · · · , yn ∈ S such that y1 + · · · + yn = ej and p(0, y1)p(y1, y1 + y2) ×
· · ·×p(y1+ · · ·+yn−1, ej) > 0. Thus for every 1 ≤ j ≤ d, θj = (θ ·ej) = (θ ·∑n

i=1 yi),

which is a multiple of 2π.

Lemma 4.8. Let p be the transition function of an irreducible, aperiodic random

walk on S = Zd. Given any α > 0, (2π)−d/2
∫
α
√
n≤|w|;w∈√nC

|ψn( w√
n
)|dw

→ 0 as n → ∞, where C = [−π, π]d.

Proof. 1. Since |ψ(θ)| is continuous on C = [−π, π]d, and |ψ(θ)| = 1 only when

θ = 0 by Lemma 4.7, ∃δ > 0 such that |ψ(θ)| < 1− δ for |θ| ≥ α, θ ∈ C.

2. (2π)−d/2
∫
α
√
n≤|w|;w∈√nC

|ψn( w√
n
)|dw ≤ (2π)−d/2(1 − δ)n(2

√
nπ)d → 0 as n →

∞.

Theorem 4.9.(local central limit theorem) Let p be the transition function of

an irreducible, aperiodic random walk on S = Zd, and m2 =
∑

x∈S |x|2p(0, x) < ∞
(This condition automatically holds when p is assumed to be finitely supported).

Then

(2πn)d/2pn(0, x)− |Q|−1/2 exp
(−1

2n
Q−1[x− nμ]

)
→ 0

uniformly for x ∈ S.

Proof. 1. First note that

e−inμ·θ∑
y∈S

eiy·θpn(0, y) = e−inμ·θ
(∑

y∈S
eiy·θp(0, y))n = ψ(θ)n.
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Multiply both sides by ei(nμ−x)·θ for some x ∈ S and integrate θ over C = [−π, π]d,

we have

(2π)dpn(0, x) =

∫
C

∑
y∈S

ei(y−x)·θpn(0, y)dθ =

∫
C

ei(nμ−x)·θψ(θ)ndθ.

Let θ = w/
√
n,

(2πn)d/2pn(0, x) = (2π)−d/2

∫
√
nC

ψ(
w√
n
)ne−i(x−nμ)·w/

√
ndw

2. Let (2πn)d/2pn(0, x) = I0(n)+I1(n,A)+I2(n,A)+I3(n,A, α)+I4(n, α), where

I0(n) = (2π)−d/2

∫
Rd

exp(−1

2
Q[w]) exp(−iw · (x− nμ)/

√
n)dw,

I1(n,A) = (2π)−d/2

∫
|w|≤A

(
ψ(

w√
n
)n − exp(−1

2
Q[w])

)
exp(−iw · (x− nμ)/

√
n)dw,

I2(n,A) = −(2π)−d/2

∫
|w|>A

exp(−1

2
Q[w]) exp(−iw · (x− nμ)/

√
n)dw,

I3(n,A, α) = (2π)−d/2

∫
A<|w|≤α

√
n

ψ(
w√
n
)n exp(−iw · (x− nμ)/

√
n)dw,

I4(n, α) = (2π)−d/2

∫
α
√
n≤|w|;w∈√nC

ψ(
w√
n
)n exp(−iw · (x− nμ)/

√
n)dw.

3. By Lemma 4.3, I0(n) = |Q|−1/2 exp
(

−1
2n
Q−1[x−nμ]

)
. By Lemma 4.6, we can

choose α small enough such that

|I3(n,A, α)| ≤ (2π)−d/2

∫
|w|>A

e−
1
4
Q[w]dw,

hence we can now let A be large enough so that both |I2(n,A)| and |I3(n,A, α)|
are small. Now, both α and A are fixed, by Lemma 4.5 we let n be large so that

|I1(n,A)| is small, and finally let n be even larger so that |I4(n,A)| is also small by

Lemma 4.8. The estimates are uniform for all x ∈ S.
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4.2 Lower bound for all λ’s such that (λ,w) is a solution of

(1)

In this section, we use the local central limit theorem to find a lower bound of

all λ’s in some cases, where (λ,w) is a solution of (1).

Theorem 4.10. Let p be the transition function of a irreducible, aperiodic

random walk on S = Zd, μ = 0, m2 =
∑

x∈S |x|2p(0, x) < ∞, and infx∈S h(x) =

m > −∞. Then λ ≥ m for every λ such that (λ,w) is a solution of (1).

Proof. 1. By Theorem 4.9, (2πn)d/2pn(0, 0)−|Q|−1/2 → 0 as n → ∞. Choose N > 0

such that (2πn)d/2pn(0, 0) >
1
2
|Q|−1/2 for all n ≥ N .

2. Assume that (λ,w) is a solution of (1) and m− λ = c > 0. Since

exp(w(0)) =
∑
y∈S

p(0, y) exp

(
h(y)− λ+ w(y)

)

=
∑

y1,··· ,yn∈S
p(0, y1)p(y1, y2) · · · p(yn−1, yn) exp

(
(

n∑
i=1

h(yi))− nλ+ w(yn)

)
≥

∑
y1,··· ,yn∈S

p(0, y1)p(y1, y2) · · · p(yn−1, yn) exp

(
nc+ w(yn)

)
≥

∑
y1,··· ,yn−1∈S

p(0, y1)p(y1, y2) · · · p(yn−1, 0) exp

(
nc+ w(0)

)
.

Thus 1 ≥ exp(nc)pn(0, 0) for every n ∈ N. Now, for every n ≥ N , we have

1 ≥ exp(nc)pn(0, 0) ≥ exp(nc)(2πn)−d/2 1
2
|Q|−1/2, but it is impossible for n large.

Therefore, λ ≥ m.

In fact, we can further remove the aperiodicity condition.

Theorem 4.11. Let p be the transition function of a irreducible random walk

on S = Zd, μ = 0, m2 =
∑

x∈S |x|2p(0, x) < ∞, and infx∈S h(x) = m > −∞. Then

λ ≥ m for every λ such that (λ,w) is a solution of (1).
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Proof. 1. Define pα(x, y) = (1 − α)δ(x, y) + αp(x, y) for every x, y ∈ S,0 < α < 1.

Since pα is aperiodic, so we can apply Theorem 4.9 to this new transition proba-

bility. The mean for pα is defined as μα �
∑

x∈S xpα(0, x) = 0, and its quadratic

form is defined as Qα[θ] = (Q̃αθ · θ) �
∑

x∈S |((x−μα) · θ)|2pα(0, x). The ij-th com-

ponent (Q̃α)ij of the d-dimensional matrix Q̃α equals
∑

x∈S xixjpα(0, x) = α(Q̃)ij,

where Q̃ is the corresponding matrix of the quadratic form Q induced from p, hence

|Qα|−1/2 = α−d/2|Q|−1/2.

2. Let (λ,w) be a solution of (1) such that m − λ = c > 0. As in the pre-

ceding theorem, we have 1 ≥ exp(nc)(pα)n(0, 0) for every n ∈ N. Now we fix

arbitrary 0 < α < 1, and then select N ∈ N large such that (αe−c + 1 − α)N <

1
4
(2πN)−d/2α−d/2|Q|−1/2 and (pα)N(0, 0) ≥ 1

2
(2πN)−d/2|Qα|−1/2.

3. We hence have

1

4
(2πN)−d/2α−d/2|Q|−1/2 ≥ (αe−c + 1− α)N

=
N∑
j=0

αj(1− α)N−j

⎛⎝ N

j

⎞⎠ exp(−jc)

≥
N∑
j=0

αj(1− α)N−j

⎛⎝ N

j

⎞⎠ pj(0, 0)

= (pα)N(0, 0)

≥ 1

2
(2πN)−d/2|Qα|−1/2

=
1

2
(2πN)−d/2α−d/2|Q|−1/2,

which is clearly a contradiction. This implies m− λ ≤ 0.

We strengthen Theorem 4.11 a little bit more in the next theorem.

Theorem 4.12. Let p be the transition function of a irreducible random walk

on S = Zd, μ = 0, m2 =
∑

x∈S |x|2p(0, x) < ∞, and the random walk has period
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k ≥ 1. We partition S into S0, S1, · · · , Sk−1, and for each x ∈ Si, pi+(n−1)k(0, x) > 0

for some n ∈ N. Assume that infx∈Si
h(x) = mi > −∞ for each 0 ≤ i ≤ k − 1, and

define m � 1
k
(m0 + · · ·+mk−1). We assert that λ ≥ m for every λ such that (λ,w)

is a solution of (1).

Proof. We assume that (λ,w) is a solution of (1) and m− λ = c > 0. We have

exp(w(0)) =
∑
y∈S

p(0, y) exp
(
h(y)− λ+ w(y)

)
=

∑
y1,··· ,ynk∈S

p(0, y1)p(y1, y2) · · · p(ynk−1, ynk) exp
(
(

nk∑
i=1

h(yi))− nkλ+ w(ynk)
)

≥
∑

y1,··· ,ynk∈S
p(0, y1)p(y1, y2) · · · p(ynk−1, ynk) exp

(
n(

k−1∑
j=0

mj)− nkλ+ w(ynk)
)

≥
∑

y1,··· ,ynk∈S
p(0, y1)p(y1, y2) · · · p(ynk−1, ynk) exp

(
nkc+ w(ynk)

)
≥

∑
y1,··· ,ynk−1∈S

p(0, y1)p(y1, y2) · · · p(ynk−1, 0) exp
(
nkc+ w(0)

)
.

Thus 1 ≥ exp(nkc)pnk(0, 0) for every n ∈ N. Indeed, we also have

1 ≥ exp(nkc+ (m1 + · · ·+mj)− jλ)pnk+j(0, 0)

for 1 ≤ j ≤ k − 1, when we replace nk above with nk + j. Therefore, when

we define m′ = min{0,m1 − λ − c, · · · ,∑k−1
j=1 mj − (k − 1)λ − (k − 1)c}, we have

exp(−nc) ≥ em
′
pn(0, 0) for every n ∈ N. The rest of the proof is almost the same

as that of Theorem 4.11, and only the following needs revision:

N∑
j=0

αj(1− α)N−j

⎛⎝ N

j

⎞⎠ exp(−jc)

≥
N∑
j=0

αj(1− α)N−j

⎛⎝ N

j

⎞⎠ em
′
pj(0, 0)

=em
′
(pα)N(0, 0).
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Below are some applications of the above theorems.

Corollary 4.13. Let p be the transition function of an irreducible random walk

on S = Zd, m2 =
∑

x∈S |x|2p(0, x) < ∞, and μ = 0. If h(x) ≡ 0, then the minimal

point exists, and it is 0.

Proof. By Theorem 4.11, λ ≥ 0 for every λ such that (λ,w) is a solution of (1).

Since for any constant function w ≡ c, (0, w) is a solution of (1), it turns out that

λ0 exists and λ0 = 0.

Corollary 4.14. Let p be the transition function of an irreducible random walk

on S = Zd, μ = 0, m2 =
∑

x∈S |x|2p(0, x) < ∞, and the random walk has period

k ≥ 1. We partition S into S0, S1, · · · , Sk−1, and for each x ∈ Si, pi+(n−1)k(0, x) > 0

for some n ∈ N. If h(x) = mi > −∞ for each 0 ≤ i ≤ k − 1 and x ∈ Si, then the

minimal point λ0 exists and λ0 = m � 1
k
(m0 + · · ·+mk−1).

Proof. By Theorem 4.12, λ ≥ m = 1
k
(m0 + · · ·+mk−1) for every λ such that (λ,w)

is a solution of (1). Now we let w(x) = 0 for x ∈ S0, and w(x) = jm−∑j
i=1 mi for

x ∈ Sj, 1 ≤ j ≤ k−1. We find (m,w) is a solution of (1), and therefore λ0 = m.
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5 One step further about the the solution struc-

ture

We hope to prove that when λ is fixed, all W (x) = exp(w(x)) such that (λ,w)

is a solution of (1) form a convex set under certain assumptions. With this convex

structure, we may find the explicit form of all solutions (λ,w) of (1) when the pro-

cess is a random walk and h ≡ 0.

We assume that the irreducible Markov chain {Xn} on Zd is finitely supported

throughout this section, and in Section 5.2 we assume that {Xn} is a random walk.

5.1 The solution structure: general case

For every real-valued function f(x) on S = Zd with f(0) = 1, we may treat f

as an element in RS\{0}. If we enumerate Zd \ {0} = {x1, x2, · · · } and we define a

metric d on RS\{0} with d(f, g) = supi∈N
|f(xi)−g(xi)|∧1

i
, for f, g ∈ RS\{0}. With this

metric, d(fn, f) → 0 if and only if fn(x) → f(x) for every x ∈ S \ {0}. Indeed, this
metric induces the product topology on RS\{0}. We adopt this metric throughout

this section when we talk about the space RS\{0}.

Lemma 5.1. Let Aλ = {W : W (x) > 0 ∀x ∈ S,W (0) = 1,
∑

y∈S p(x, y)

exp
(
h(y) − λ

)
W (y) = W (x) ∀x ∈ S} ⊂ RS\{0}. We assert that Aλ is a convex,

compact subset of RS\{0}.

Proof. 1. The proof of convexity is straightforward.

2. We first show that Aλ is a subset of some compact set in RS\{0}. Just as

what we’ve done in the third part of the proof of Theorem 2.1, we show that for any

W ∈ Aλ, |W (x)| ≤ Cx, where Cx is independent of the choice of W but depends

on x ∈ S \ {0}. The idea is as follows. For arbitrary W ∈ Aλ, we select n > 0 s.t.

p(x, y∗1)p(y
∗
1, y

∗
2) · · · p(y∗n−1, 0) > 0 for some y∗1, · · · , y∗n−1 ∈ S. Therefore,
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W (x) =
∑
y∈S

p(x, y) exp(h(y)− λ)W (y)

=
∑
y1∈S

p(x, y1) exp(h(y1)− λ)
(∑

y2∈S
p(y1, y2) exp(h(y2)− λ)W (y2)

=
∑

y1,··· ,yn∈S
p(x, y1)p(y1, y2) · · · p(yn−1, yn) exp

( n∑
m=1

(h(ym)− λ)
)
W (yn)

≥ p(x, y∗1)p(y
∗
1, y

∗
2) · · · p(y∗n−1, 0) exp

( n−1∑
m=1

h(y∗m) + h(0)− nλ0

)
W (0)

= p(x, y∗1)p(y
∗
1, y

∗
2) · · · p(y∗n−1, 0) exp

( n−1∑
m=1

h(y∗m) + h(0)− nλ0

)
So we obtain a lower bound of W (x), which is independent of the choice of

W ∈ Aλ and is greater than 0. Exchange x and 0 above we obtain an upper bound

of W (x).

We find that Aλ ⊂ [ax, bx]
S\{0}, where ax, bx > 0 for any x ∈ S. This set is a

compact set due to Tychonoff theorem (See [6]; we list it below).

3. We’d like to show Aλ is closed. Note that d(Wn,W ) → 0 ⇔ Wn(x) → W (x)

for every x ∈ S \ {0} as n → ∞. The closedness of Aλ follows directly from taking

pointwise limit in Wn(x) =
∑

y∈S p(x, y) exp
(
h(y)− λ

)
Wn(y) for each x ∈ S, where

the summation below consists of only finitely many terms:

W (x) = lim
n→∞

Wn(x)

=
∑
y∈S

p(x, y) exp
(
h(y)− λ

)
lim
n→∞

Wn(y)

=
∑
y∈S

p(x, y) exp
(
h(y)− λ

)
W (y).

Note that W (x) > 0 and W (0) = 1, so W ∈ Aλ.

4. As a closed subset of a compact set, Aλ is compact in RS\{0}.
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Theorem 5.2.(Tychonoff theorem) An arbitrary product of compact spaces

is compact in the product topology.

Let Aλ
e be the set of all extreme points of Aλ = {W ∈ RS\{0} : W (x) > 0 ∀x ∈

S,W (0) = 1,
∑

y∈S p(x, y) exp
(
h(y) − λ

)
W (y) = W (x) ∀x ∈ S}, we’d like to show

Aλ
e is a Borel set in RS\{0} by the following lemma, which is taken from [5].

Lemma 5.3. If X is a metrizable, compact convex subset of a topological vector

space, then the extreme points of X form a Gδ set, which is the intersection of

countably many open sets.

Proof. Let d be the metric for X. Let Fn = {x : x = y+z
2

for some y, z ∈ X with

d(y, z) ≥ 1
n
}. For each xm ∈ Fn and xm → x ∈ X, we’d like to show x ∈ Fn and

hence Fn is a closed set.

Write xm = ym+zm
2

, ym, zm ∈ X for all m ∈ N. Since X is compact, we may

find a subsequence {m1,j}j of {m}m such that {ym1,j
} → y when j → ∞. We may

pick a further subsequence {m2,j}j of {m1,j}j such that {zm2,j
} → j when j → ∞.

Therefore, let j → ∞ in xm2,j
=

ym2,j+zm2,j

2
, we have x = y+z

2
for y, z ∈ X. Notice

that d(y, z) ≥ 1
n
.

Let Xe be the set of all extreme points of X. We claim that Xe =
⋂∞

n=1 F
c
n and

the proof is complete. To this end, if x ∈ Xe, then x cannot be written as any

convex combination of y, z where y, z ∈ X and y �= z. Thus x ∈ F c
n for all n ∈ N.

Conversely, for x �= Xe, we consider x = cy+ (1− c)z for some 0 < c < 1, y �= z,

and y, z ∈ X. WLOG we assume that 1 > c ≥ 1
2
. We find that

x =
1

2
y +

1

2

(
(2c− 1)y + 2(1− c)z

)
,

which implies that x ∈ FN for some N large. Thus x /∈ ⋂∞
n=1 F

c
n.

Next we give the definition of locally convex linear space, and then give the
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statement of Choquet’s theorem from [5]. Choquet’s theorem plays an important

role in our later developments.

Definition 5.4. Let V be a topological vector space over R or C. If the topology

of V has a basis where each member is a convex set, then V is a locally convex

topological vector space.

Theorem 5.5.(Choquet’s theorem) Suppose that X is a metrizable compact

convex subset of a locally convex linear space E, and that x0 is an element of X.

Then there is a probability measure (namely, a Borel measure of total measure 1) μ

on X which is supported by the extreme points of X and f(x0) =
∫
X
f(x)dμ(x) for

every continuous linear functional f on E.

Note that RS\{0} with the product topology is a locally convex linear space, and

Aλ is compact and convex in RS\{0}. Besides, for each x ∈ S\{0}, fx : W ∈ RS\{0} �→
W (x) is a continuous linear functional. We hence apply Choquet’s theorem: if

W ∈ RS\{0},W (x) > 0 ∀x ∈ S,W (0) = 1, and
∑

y∈S p(x, y) exp
(
h(y) − λ

)
W (y) =

W (x) ∀x ∈ S, then for every x ∈ S \ {0},

W (x) = fx(W ) =

∫
X

fx(W̃ )dμ(W̃ )

=

∫
X

W̃ (x)dμ(W̃ ),

where μ is supported in Aλ
e . For x = 0,

W (0) = 1 =

∫
X

1dμ(W̃ )

=

∫
X

W̃ (0)dμ(W̃ ).

Note that Choquet’s theorem also tells usAλ
e must be nonempty whenAλ is nonempty.

5.2 The solution structure when h(x) ≡ 0

Throughout this subsection, we assume that h(x) ≡ 0. This strong assumption

helps us find an explicit form for elements in Aλ
e . See the following theorem.
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Theorem 5.6. Let Aλ
e be the set of all extreme points of Aλ = {W ∈ RS\{0} :

W (x) > 0 ∀x ∈ S,W (0) = 1,
∑

y∈S p(x, y) exp
(
h(y) − λ

)
W (y) = W (x) ∀x ∈

S}. If Aλ is nonempty, then for any W ∈ Aλ
e , W (x) = eu·x, where φ(u) =∑

x∈S e
u·xp(0, x) = exp(λ).

Proof. 1. For any x, z ∈ S,

W (x+ z) =
∑
y∈S

p(x+ z, y) exp(−λ)W (y)

=
∑
y∈S

p(x+ z, y + z) exp(−λ)W (y + z)

=
∑
y∈S

p(x, y) exp(−λ)W (y + z)

Hence as a function of x, 1
W (z)

W (x+ z) ∈ Aλ.

2. Choose N > 0 such that pN(0, z) > 0. For every x ∈ S we have

W (x) =
∑
y∈S

pN(x, y) exp(−Nλ)W (y)

≥ pN(x, x+ z) exp(−Nλ)W (x+ z)

= pN(0, z) exp(−Nλ)W (x+ z).

Therefore, W (x) ≥
(
pN(0, z) exp(−Nλ)W (z)

)
1

W (z)
W (x + z) = c(z) 1

W (z)
W (x + z)

for every x ∈ S. In particular, when x = 0, we have 1 ≥ c(z) > 0.

3. If c(z) = 1, then for any x′ ∈ S, we choose N > 0 s.t. pN(0, x
′) > 0:

0 = W (0)− 1

W (z)
W (0 + z)

=
∑
y∈S

pN(0, y) exp(−Nλ)
(
W (y)− 1

W (z)
W (y + z)

)
≥ pN(0, x

′) exp(−Nλ)
(
W (x′)− 1

W (z)
W (x′ + z)

)
≥ 0.
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Thus W (x′)W (z) = W (x′ + z), for any z such that c(z) = 1 and x′ ∈ S.

4. If c(z) < 1, then

W (x) =

(
W (x)− c(z)

1

2W (z)
W (x+ z)

)
+

c(z)

2W (z)
W (x+ z)

=(1− c(z)

2
)

(
1

1− c(z)/2
W (x)− c(z)/2

1− c(z)/2

1

W (z)
W (x+ z)

)
+

c(z)

2

(
1

W (z)
W (x+ z)

)
representing W as a convex combination of two elements in Aλ. Since W ∈ Aλ

e ,

we have

W (x) =
1

1− c(z)/2
W (x)− c(z)/2

1− c(z)/2

1

W (z)
W (x+ z)

=
1

W (z)
W (x+ z).

So W (x)W (z) = W (x+ z), for any z such that c(z) < 1 and x ∈ S.

5. Since W (x)W (z) = W (x+ z) for all x, z ∈ S, for any x = (n1, · · · , nd) ∈ Zd,

W (x) = W (e1)
n1 × · · · × W (ed)

nd , where ei = (0, · · · , 0, 1, 0, · · · , 0) taking val-

ues 1 on its i-th component. Now we let W (ei) = exp(ui) for 1 ≤ i ≤ d and

u = (u1, u2, · · · , ud), we have W (x) = exp(u · x).

6. Substitute W (x) = exp(u ·x) for W (x) =
∑

y∈S p(x, y) exp(−λ)W (y), we have

exp(λ) =
∑
y∈S

p(x, y) exp(u · (y − x))

=
∑
y∈S

p(x, x+ y) exp(u · (y + x− x))

=
∑
y∈S

p(0, y) exp(u · y) = φ(u).

We hope to know more about φ(u). The properties of φ(u), u ∈ Rd are discussed

in the following theorem.
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Theorem 5.7. φ(u) =
∑

y∈S p(0, y) exp(u ·y) is a strictly convex function which

belongs to C∞(Rd), and its gradient vector Dφ(u) is given by
∑

y∈S yp(0, y) exp(u·y).
Furthermore, φ(u0) = min{φ(u) : u ∈ Rd} if and only if Dφ(u0) = 0, and such u0

is unique. In particular, when μ = 0, u0 = 0, and φ(u0) = 1.

Proof. The fact that φ is strictly convex and its gradient vector exists is easily de-

rived from the fact that p is finitely supported.

The existence of the minimal value of φ is a nontrivial fact, which follows from

the fact that φ(u) → ∞ as |u| → ∞. To see this, as |u| large enough, we may

pick M large so that |(u · ei)| > M for some ei = (0, · · · , 0, 1, 0, · · · , 0), which only

takes value on its i-th component. By the irreducibility of p, for each ei > 0 we

may find yi1, · · · , yiN(i) ∈ S and zi1, · · · , ziM(i) ∈ S so that yi1 + · · ·+ yiN(i) = ei and

zi1 + · · · + ziM(i) = −ei for 1 ≤ i ≤ d, and p(0, yik), p(0, zil) > 0 for 1 ≤ k ≤ N(i)

and 1 ≤ l ≤ M(i).

Let m be the minimum of the above p(0, yik) and p(0, zil)’s, and M ′ be the

maximum of the above N(i) and M(i)’s. Now, for any u so that (u · ei) > M for

some ei (The case (u · −ei) > M is similar), we have

φ(u) =
∑
y∈S

p(0, y) exp(u · y)

≥
∑

1≤k≤N(i)

p(0, yik) exp(u · yik)

≥m
∑

1≤k≤N(i)

exp(u · yik)

>m exp(M/N(i))

≥m exp(M/M ′) → ∞ as M → ∞.

We hence have the following result derived from the above theorems.
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Corollary 5.8. Let m = min{φ(u) : u ∈ Rd}. If exp(λ) = m, then there is

exactly one element in Aλ
e and so is Aλ. If exp(λ) < m, then Aλ

e is empty and so

is Aλ. If exp(λ) > m, then every W ∈ Aλ
e is given by W (x) = exp(u · x), where

φ(u) = exp(λ), and every W ∈ Aλ is given by W (x) =
∫
X
W̃ (x)dμ(W̃ ) for all x ∈ S,

where μ is supported in Aλ
e .

Proof. By Theorem 5.6, every W ∈ Aλ
e is given by W (x) = exp(u ·x), where φ(u) =

exp(λ). If exp(λ) = m, there is a unique u ∈ Rd such that φ(u) = exp(λ) = m. That

is, there is only one member in Aλ
e . Therefore, by Theorem 5.5(Choquet’s theorem),

Aλ contains exactly one member.

If exp(λ) < m and W ∈ Aλ
e , then m ≤ φ(u) = exp(λ) < m, which is impossible.

This shows Aλ
e is empty. Hence Aλ is empty due to Theorem 5.5.

The case exp(λ) > m follows directly from Theorem 5.5, and we have demon-

strated how to use Theorem 5.5 to give an explicit form for W ∈ Aλ in the last

paragraph of Section 5.1.
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6 Miscellaneous examples

In this section, the minimal point of (1) in each example exists by theorem 2.6

and is denoted by λ0.

6.1 An example: h(y)− λ0 < −δ for all |y| > M

Recall that if x, y are two states such that p(x, y) > 0 and p(y, x) > 0, then we

have

exp(w(x)) =
∑
y∈S

p(x, z) exp

(
h(z)− λ+ w(z)

)
≥ p(x, y) exp

(
h(y)− λ+ w(y)

)
= p(x, y) exp

(
h(y)− λ

)∑
t∈S

p(y, t) exp

(
h(t)− λ+ w(t)

)
≥ p(x, y)p(y, x) exp

(
h(x) + h(y)− 2λ

)
exp(w(x)).

This implies p(x, y)p(y, x) exp

(
h(x) + h(y)− 2λ

)
≥ 1 ⇒

λ ≥ 1
2

(
h(x) + h(y) + log

(
p(x, y)p(y, x)

))
.

Assume that S = Z3, p(x, y) = 1
6
for |x− y| = 1, and h((0, 0, 0)) = h((0, 0, 1)) >

log 6, h(x) = 0, x ∈ S\{(0, 0, 0), (0, 0, 1)}. It follows that λ0 > 0 and that h(x)−λ0 <

−δ for |x| > 1.

6.2 An example: h(y)− λ0 > δ for all |y| > M

Let S = Z. For any x ∈ S, let p(x, x+ 1) = 1
7
and p(x, x− 1) = 6

7
. Assume that

h(0) = h0, and h(x) = 0 for x �= 0. Let λ = log 5
7
< 0. Under these assumptions,

the equation (1) becomes

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
exp(w(x)) = 1

5
exp(w(x+ 1)) + 6

5
exp(w(x− 1)) if |x| �= 1

exp(w(x)) = 1
5
exp(w(x+ 1)) + 6

5
exp(h0) exp(w(x− 1)) if x = 1

exp(w(x)) = 1
5
exp(h0) exp(w(x+ 1)) + 6

5
exp(w(x− 1)) if x = −1.
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For simplicity, define W (x) = exp(w(x)) and k = exp(h0). We may solve the

above difference equations with solutions in terms of W (0),W (1),W (−1):

W (x) =

⎧⎪⎨⎪⎩
(
6kW (0)− 2W (1)

)
2x−1 +

(
3W (1)− 6kW (0)

)
3x−1 for x ≥ 1(

3W (−1)− kW (0)
)
(1
2
)x+1 +

(
kW (0)− 2W (−1)

)
(1
3
)x+1 for x ≤ −1.

If we choose W (0) = 1,W (1) = W (−1) = 5
7
, and k = 0.1, for example, then

W (x) > 0 for all x ∈ S. This means under such assumptions, h(x)−λ0 ≥ h(x)−λ =

− log 5
7
> 0 for |x| ≥ 1.

We also observe that k cannot be taken too large, otherwiseW (x) will not always

be positive. On the other hand, when the values of W (0),W (1),W (−1) are given,

and k is chosen s.t. W (x) > 0 for all x ∈ S, we also have W (x) > 0 when k is

replaced by any smaller constant.

6.3 An example: both #{y : h(y) − λ0 > δ} and #{y : h(y) −
λ0 < −δ} are infinite

Assume that S = Z3, p(x, y) = 1
6
for |x− y| = 1. Define Ao = {x = (x1, x2, x3) :

|x1|+ |x2|+ |x3| is odd } and Ae = {x = (x1, x2, x3) : |x1|+ |x2|+ |x3| is even }. Let
h(x) = 2 + log 36 for x ∈ Ao, and h(x) = 0 for x ∈ Ae.

For any solution (λ̃, w̃) of (1), we have λ̃ ≥ 1
2

(
h(x) + h(y) + log

(
p(x, y)

p(y, x)
))

= 1, and hence λ0 ≥ 1. On the other hand, for λ = 1 + log 6, we can

choose exp(w(x)) = 1 for x ∈ Ao and exp(w(x)) = 6 exp(1) for x ∈ Ae such that

exp(w(x)) =
∑

y:|x−y|=1

p(x, y) exp
(
h(y)− (1 + log 6)

)
exp(w(y))

for either x ∈ Ae or x ∈ Ao. Since (λ,w) just defined satisfies (1), λ0 ≤ λ = 1+log 6.

It follows that h(x)− λ0 ≤ −1 for x ∈ Ae and h(x)− λ0 ≥ 1 + log 6 for x ∈ Ao.
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Appendix: Martin boundary theory

A.1 Introduction

Given an irreducible and transient Markov chain {Xn} with countable state space

S, there is a way to assign distance d on this chain. After performing completion

procedure on S with this metric d, we obtain a compact space ŜM . The Martin

boundary ∂SM is then defined as ŜM \ S.

One interesting property is that {Xn} converges a.s. to ∂SM in this new topol-

ogy. Later, we introduce two smaller boundaries ∂RSM and ∂mSM , so that ∂mSM ⊂
∂RSM ⊂ ∂SM , and we prove that {Xn} actually converges a.s. to ∂mSM .

An important property is that we are able to represent arbitrary harmonic func-

tion h in an integral form with some measure μ(h), which is supported on ∂SM

(Theorem A.4.1), and we show that μ(h) can be chosen to be supported on ∂mSM

and such representation is unique (Theorem A.5.10).

The main references of this appendix are [7], [3], and [8]. Our approach is ba-

sically from [7]. [3] adopts a completely different approach from ours. To prove

Theorem A.3.2, I introduce the method in [8] instead of the one in [7].
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A.2 Construction of Martin boundary

Let {Xn} be an irreducible and transient Markov chain with state space S.

Transience of {Xn} implies that, for any i, j ∈ S, g(i, j) �
∑∞

n=0 pn(i, j) < ∞. Now

we pick a reference point x0 ∈ S, and define

K(i, j) � g(i, j)

g(x0, j)
.

With this special function K, we are able to define a metric d on S:

d(i, j) �
∑
q∈S

w(q)

(
pm(q)(x0, q)|K(q, i)−K(q, j)|+ |δqi − δqj|

)
,

where δxy = δ(x, y) is the Kronecker delta, m(q) ∈ N ∪ {0} is chosen such that

pm(q)(x0, q) > 0 (since {Xn} is irreducible), and
∑

q∈S w(q) < ∞, w(q) > 0 for

each q ∈ S. Because pm(q)(x0, q)g(q, i) ≤ g(x0, i), we find that |K(q, i)−K(q, j)| ≤
2/pm(q)(x0, q).

It is not difficult to check d is a metric. However, S endowed with this metric

is not a complete metric space. We denote the completion of S with metric d by

ŜM , and call ∂SM � ŜM \ S the Martin boundary of S. It is noteworthy that for

each i ∈ S, i is not a limit point due to the existence of the term |δqi − δqj| in the

definition of d. Therefore, ∂SM is a closed set.

When we have a Cauchy sequence {xn} ⊂ S, by the definition of Martin bound-

ary we know that ∃α ∈ ŜM such that d(xn, α) → 0. In addition, {K(i, xn)} is also

a Cauchy sequence ⊂ R for each i ∈ S. Therefore, there exists a number n(i) such

that {K(i, xn)} → n(i), and we denote n(i) by K(i, α).

Theorem A.2.1. ŜM is compact.

Proof. For arbitrary sequence {xn} ⊂ ŜM , {K(i, xn)} is bounded in n for each i ∈ S.

Thus we may apply diagonal process to select a subsequence {xnj
} such that for each

i ∈ S, {K(i, xnj
)} → n(i). We want to show that ∃α ∈ ŜM such that d(xnj

, α) → 0.
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We enumerate S = {i1, i2, · · · }. If xnj
∈ ∂SM , then we replace it with some

yj ∈ S such that for 1 ≤ k ≤ j, |K(ik, yj) −K(ik, xnj
)| ≤ 1

j
and d(yj, xnj

) ≤ 1
j
. If

xnj
∈ S, then we let yj = xnj

.

Therefore, for each i ∈ S, the new sequence {K(i, yj)} is still a Cauchy sequence,

and thus {yj} ⊂ S is Cauchy in the space ŜM , by our definition of d. It follows that

∃α ∈ ŜM such that d(yj, α) → 0 as j → ∞, and this implies d(xnj
, α) → 0.
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A.3 Harmonic measure

We hope to prove in Theorem A.3.1 that for any A ∈ B(ŜM), {X∞ ∈ A} ∈ G ,

where G � σ(X1, X2, · · · ). In Theorem A.3.2, we prove that px0(X∞ ∈ ∂SM) = 1.

Theorem A.3.1. If A ∈ B(ŜM), then {limn→∞ Xn = X∞ ∈ A} ∈ G .

Proof. 1. We first prove that {ω : limn→∞ Xn(ω) = X∞(ω) exists} ∈ G .

Since {ω : K(x,Xn(ω)) ∈ B} ∈ σ(Xn) ⊂ G for all x ∈ S, where B ∈ B(R), we

have lim supn→∞ K(x,Xn(ω)) ∈ G and lim infn→∞ K(x,Xn(ω)) ∈ G .

In addition, because

{ω : lim
n→∞

Xn(ω) = X∞(ω) exists}

=
⋂
x∈S

{ω : lim sup
n→∞

K(x,Xn(ω)) = lim inf
n→∞

K(x,Xn(ω))},

E � {ω : limn→∞ Xn(ω) = X∞(ω) exists} ∈ G .

2. Define

Yn(ω) =

⎧⎨⎩ Xn(ω), if ω ∈ E;

y0, if ω /∈ E,

where y0 ∈ S is arbitrarily chosen.

We claim that Yn : Ω → ŜM such that for all B ∈ B(ŜM), Y −1
n (B) ∈ G . In-

deed, if y0 /∈ B, then Y −1
n (B) = X−1

n (B) ∩ E ∈ G . If y0 ∈ B, then Y −1
n (B) =

(X−1
n (B) ∩ E) ∪ Ec ∈ G .

Now we can define

Y � lim
n→∞

Yn(ω) =

⎧⎨⎩ limn→∞ Xn(ω), if ω ∈ E;

y0, if ω /∈ E.
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3. We note that for all A ∈ B(ŜM), Y −1(A) ∈ G . To see this, consider C ∈
B(ŜM), a compact set in ŜM . We have

Y −1(C) =
∞⋂
k=1

∞⋃
n=1

∞⋂
m=n

Y −1
m (N1/k(C)) ∈ G

where Nε(C) � {x ∈ ŜM : d(x, C) < ε} is an open set.

Since ŜM is compact, every closed subset of ŜM is compact, and {A ∈ ŜM :

Y −1(A) ∈ G } is a σ-algebra containing {C ∈ ŜM : C closed }. That is, {A ∈ ŜM :

Y −1(A) ∈ G } contains B(ŜM).

4. Therefore, for A ∈ B(ŜM), {limn→∞ Xn = X∞ ∈ A} = {limn→∞ Yn = Y ∈
A} ∩ E ∈ G .

Theorem A.3.2. For any i ∈ S, limn→∞ K(i, Xn) exists and is finite px0 −a.s..

Therefore, px0(X∞ ∈ ∂SM) = 1, for x is not a limit point every x ∈ S.

Proof. 1. Define the last exit time τD from set D as τD � sup{n : Xn ∈ D}. If the
chain has never entered D, then τD is left undefined. For any negative integer n,

define Xn = ∗, where this additional state ∗ /∈ S. Let a0, a1, · · · , an ∈ S, we have

px0(XτD = a0, XτD−1 = a1, · · · , XτD−n = an)

=
∞∑

m=n

px0(τD = m,Xm = a0, Xm−1 = a1, · · · , Xm−n = an)

=
∞∑

m=n

pm−n(x0, an)p(an, an−1) · · · p(a1, a0)pa0(τD = 0)

=g(x0, an)p(an, an−1) · · · p(a1, a0)pa0(τD = 0)

Define K(i, ∗) = 0 for all i ∈ S. We hope to prove that {K(i, XτD−k); σ(XτD ,

· · · , XτD−k)}nk=0 is a supermartingale with respect to px0 . It suffices to check the

following three cases:
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Case 1. XτD−(n−1) � {x0, ∗} ⇒ XτD−n ∈ S∑
an∈S∪{∗}

px0(XτD = a0, XτD−1 = a1, · · · , XτD−n = an)K(i, an)

=
∑
an∈S

px0(XτD = a0, XτD−1 = a1, · · · , XτD−n = an)K(i, an)

=
∑
an∈S

px0(XτD = a0, XτD−1 = a1, · · · , XτD−n = an)
g(i, an)

g(x0, an)

=
∑
an∈S

g(x0, an)p(an, an−1) · · · p(a1, a0)pa0(τD = 0)
g(i, an)

g(x0, an)

=
∑
an∈S

p(an, an−1) · · · p(a1, a0)pa0(τD = 0)g(i, an)

≤ p(an−1, an−2) · · · p(a1, a0)pa0(τD = 0)g(i, an−1)

= g(x0, an−1)p(an−1, an−2) · · · p(a1, a0)pa0(τD = 0)K(i, an−1)

=px0(XτD = a0, XτD−1 = a1, · · · , XτD−(n−1) = an−1)K(i, an−1)

Case 2. XτD−(n−1) = ∗ ⇒ XτD−n = ∗∑
an∈S∪{∗}

px0(XτD = a0, XτD−1 = a1, · · · , XτD−(n−1) = an−1 = ∗, XτD−n = an)K(i, an)

=px0(XτD = a0, XτD−1 = a1, · · · , XτD−(n−1) = an−1 = ∗, XτD−n = ∗)K(i, ∗)
=0

=px0(XτD = a0, XτD−1 = a1, · · · , XτD−(n−1) = an−1 = ∗)K(i, ∗)
=px0(XτD = a0, XτD−1 = a1, · · · , XτD−(n−1) = an−1)K(i, an−1)

Case 3. XτD−(n−1) = x0 ⇒ XτD−n ∈ S ∪ {∗}∑
an∈S∪{∗}

px0(XτD = a0, XτD−1 = a1, · · · , XτD−n = an)K(i, an)

=
∑
an∈S

px0(XτD = a0, XτD−1 = a1, · · · , XτD−n = an)K(i, an)

+ px0(XτD = a0, XτD−1 = a1, · · · , XτD−n = ∗)K(i, ∗)
=
∑
an∈S

px0(XτD = a0, XτD−1 = a1, · · · , XτD−n = an)K(i, an) + 0

=px0(XτD = a0, XτD−1 = a1, · · · , XτD−(n−1) = an−1)K(i, an−1)
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where the last line is by exactly the same reasoning as in case 1.

2. Now that K(i, XτD), K(i, XτD−1), · · · , K(i, XτD−n) is a supermartingale with

respect to px0 , we have the following result: (see [9], Theorem 9.4.3)

Lemma A.3.3. Let Y1, · · · , Yn be a supermartingale and let −∞ < a < b < ∞.

Let νn
[a,b] be the number of downcrossings of [a, b] by the sample sequence Y1(ω), · · · , Yn(ω).

We have E[νn
[a,b]] ≤ E[Y1 ∧ b]− E[Yn ∧ b]/(b− a).

Define ν[a,b],D be the number of upcrossings of [a, b] by the sample sequence

K(i, X1(ω)), K(i, X2(ω)), · · · , K(i, XτD(ω)), and νn
[a,b],D be the number of downcross-

ings of [a, b] by the sample sequenceK(i, XτD(ω)), K(i, XτD−1)(ω), · · · , K(i, XτD−n(ω)).

Notice that if D is a finite set, then τD < ∞ px0-a.s., and hence for px0-a.s. ω,

νn
[a,b],D(ω) ↗ ν[a,b],D(ω) or νn

[a,b],D(ω) ↗ ν[a,b],D(ω) + 1. Therefore, by the lemma

above,

Ex0 [ν
n
[a,b],D] ≤

Ex0 [K(i, XτD) ∧ b]− Ex0 [K(i, XτD−n) ∧ b]

b− a
≤ b

b− a

⇒Ex0 [ν[a,b],D] ≤ lim inf
n→∞

Ex0 [ν
n
[a,b],D] = lim

n→∞
Ex0 [ν

n
[a,b],D] ≤

b

b− a
(∗)

for arbitrary finite set D. Let {Dm} be a collection of finite sets such that Dm ⊂
Dm+1 and

⋃∞
m=1 Dm = S, and define ν[a,b] as the number of upcrossings of [a, b] by the

infinite sample sequence K(i, X1(ω)), K(i, X2(ω)), · · · , K(i, Xn(ω)), · · · , we have

ν[a,b],Dm ↗ ν[a,b] px0-a.s. as m → ∞. By monotone convergence theorem applied on

Ex0 [ν[a,b],Dm ] in (∗), we have

Ex0 [ν[a,b]] ≤
b

b− a
.

Arbitrariness of a, b shows that for any i ∈ S, limn→∞ K(i, Xn) exists px0 − a.s.

3. Now our last job is to show that, for any i ∈ S, limn→∞ K(i, Xn) < ∞
px0 − a.s. This is actually an easy task. Choose M > 0 such that pM(x0, i) > 0,

we have g(x0, y) ≥ ∑
z∈S pM(x0, z)g(z, y) ≥ pM(x0, i)g(i, y), and thus K(i, y) ≤

1/pM(x0, i) ∀ y ∈ S.
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Corollary A.3.4. pi(X∞ ∈ ∂SM) = 1 for every i ∈ S.

Proof. Assume the statement does not hold, that is, ∃j0 such that pj0(X∞ ∈ ∂SM) <

1. We also choose pN(x0, j) > 0.

1 = px0(X∞ ∈ ∂SM)

=
∑
j∈S

p(X∞ ∈ ∂SM , XN = j|X0 = x0)

=
∑
j∈S

pN(x0, j)p(X∞ ∈ ∂SM |X0 = x0, XN = j)

=
∑
j∈S

pN(x0, j)p
(⋂
i∈S

⋂
m≥1

⋃
k≥N

⋂
n,l≥k

{|K(i, Xn)−K(i, Xl)| ≤ 1

m
}∣∣X0 = x0, XN = j

)
=
∑
j∈S

pN(x0, j)p
(⋂
i∈S

⋂
m≥1

⋃
k≥0

⋂
n,l≥k

{|K(i, Xn)−K(i, Xl)| ≤ 1

m
}∣∣X0 = j

)
=
∑
j∈S

pN(x0, j)pj(X∞ ∈ ∂SM)

≤ pN(x0, j0)pj0(X∞ ∈ ∂SM) +
∑

j∈S,j �=j0

pN(x0, j)

<
∑
j∈S

pN(x0, j) = 1,

which is a contradiction.

Since px0({ω : X∞ ∈ ∂SM}) = px0((
⋂

i∈S{ω : lim supn→∞ K(i, Xn(ω)) =

lim infn→∞ K(i, Xn(ω)) < ∞}) = 1, we have the following definition:

Definition A.3.5. Let μ(A) � px0({ω : X∞ ∈ A}) for every A ∈ B(ŜM). μ

thus defined is a probability measure on B(ŜM) (Indeed, μ is still a probability mea-

sure when the space is restricted on ∂SM), and we call μ the harmonic measure

for px0.

Given the harmonic measure for px0 , we may derive a representation formula for

harmonic measure of pi with respect to px0 for any i ∈ S.

Theorem A.3.6. For any A ∈ B(ŜM), pi(X∞ ∈ A) =
∫
A
K(i, x)dμ(x), where

μ is the harmonic measure for px0.
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Proof. 1. Let {Am} be a collection of finite sets such that Am ⊂ Am+1 and⋃∞
m=1 Am = S. Define the last exit time τD from set D as τD � sup{n : Xn ∈ D}.

(This definition has already appeared in Theorem A.3.2). For each i ∈ S,A ∈
B(ŜM), define μi,n(A) � pi(XτAn

∈ A) and μi(A) � pi(X∞ ∈ A). Note that

μx0 = μ is the harmonic measure for px0 .

2. We have

pi(XτAn
= j) = g(i, j)pj(XτAn

= 0)

= K(i, j)g(x0, j)pj(XτAn
= 0)

= K(i, j)px0(XτAn
= j),

that is, μi,n(j) = K(i, j)μx0,n(j). Because An is finite, and {Xn} is irreducible and

transient for pi-a.s. ω, τAn < ∞ and XτAn
∈ An. Thus μi,n is supported on a finite

set An.

3. By the definition of μi,n, we have∫
̂SM

1{x∈E}dμi,n(x) =

∫
Ω

1{XτAn
(ω)∈E}dpi(ω)

for all E ∈ B(ŜM). Thus for any f(x) continuous on ŜM we have∫
̂SM

f(x)dμi,n(x) =

∫
Ω

f(XτAn
)dpi(ω).

Similarly, ∫
̂SM

f(x)dμi(x) =

∫
Ω

f(X∞)dpi(ω).

Since f is continuous on a compact set, f is bounded, hence we could apply bounded

convergence theorem to get

lim
n→∞

∫
̂SM

f(x)dμi,n(x) = lim
n→∞

∫
Ω

f(XτAn
)dpi(ω) =

∫
Ω

lim
n→∞

f(XτAn
)dpi(ω)

=

∫
Ω

f(X∞)dpi(ω) =

∫
̂SM

f(x)dμi(x).
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4. Therefore, together with the results in 2. we have∫
̂SM

f(x)dμi(x) = lim
n→∞

∫
̂SM

f(x)dμi,n(x)

= lim
n→∞

∫
̂SM∩An

f(x)dμi,n(x)

= lim
n→∞

∑
j∈̂SM∩An

f(j)μi,n(j)

= lim
n→∞

∑
j∈̂SM∩An

f(j)K(i, j)μx0,n(j)

= lim
n→∞

∫
̂SM∩An

f(x)K(i, x)dμx0,n(x)

= lim
n→∞

∫
̂SM

f(x)K(i, x)dμx0,n(x)

=

∫
̂SM

f(x)K(i, x)dμx0(x).

The last line is due to that f(·)K(i, ·) is continuous on ŜM and is henceforth bounded.

5. The goal is to replace f in 4. with 1E, where E ∈ B(ŜM). For any closed

subset C of ŜM(hence a compact set here), define Cε = {x : d(x, C) < ε}, and define

fC,ε : ŜM → [0, 1] such that fC,ε(x) = 1 for x ∈ C, fC,ε(x) = 0 for x ∈ ŜM \ Cε, and

use Urysohn’s lemma to extend fC,ε continuously on ŜM and f(ŜM) ⊂ [0, 1]. Since

ŜM is a metric space, ŜM is a normal space (See [6], Theorem 32.2), so Urysohn’s

lemma is applicable. We list Urysohn’s lemma below:

Lemma A.3.7. (Urysohn’s lemma) Let X be a normal space; let A and B

be disjoint closed subsets of X. Let [a, b] be a closed interval in the real line. Then

there exists a continuous map f : X → [a, b] such that f(x) = a for every x ∈ A,

and f(x) = b for every x ∈ B.

Let n → 0 in
∫
̂SM

fC,1/n(x)dμi(x) =
∫
̂SM

fC,1/n(x)K(i, x)dμx0(x), we have

∫
̂SM

1C(x)dμi(x) =

∫
̂SM

1C(x)K(i, x)dμx0(x)

58



for every closed set C, by the bounded convergence theorem. Since F = {A ⊂
ŜM :

∫
̂SM

1A(x)dμi(x) =
∫
̂SM

1A(x)K(i, x)dμx0(x)} is λ-system that contains all

closed subsets of ŜM , which is a π-system, by π − λ theorem, B(ŜM) ⊂ F . Thus

μi(E) =
∫
E
K(i, x)dμ(x).

Corollary A.3.8. For all i ∈ S,
∫
̂SM

K(i, x)dμ(x) =
∫
∂SM

K(i, x)dμ(x) = 1.

Proof. It follows directly from Corollary A.3.4 and Theorem A.3.6.
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A.4 h-process transform

Assume that h(x) is a harmonic function on S such that h(x0) = 1 (See Defi-

nition 3.5 for the definition of harmonic functions). Irreducibility of {Xn} implies

that h(i) > 0 for all i ∈ S. We may thus define a new probability kernel ph such

that ph(i, j) = p(i, j)h(j)/h(i).

If p(i, j) is transient, then gh(i, j) =
∑∞

n=0 p
h
n(i, j) = g(i, j)h(j)/h(i) < ∞, that

is, ph is also transient. We may define Kh(i, j) = gh(i,j)
gh(x0,j)

= 1
h(i)

K(i, j).

For all i, j ∈ S, define

dh(i, j) �
∑
q∈S

w(q)

(
phm(q)(x0, q)|Kh(q, i)−Kh(q, j)|+ |δqi − δqj|

)
=
∑
q∈S

w(q)

(
h(q)

h(x0)
pm(q)(x0, q)× 1

h(q)
|K(q, i)−K(q, j)|+ |δqi − δqj|

)
=
∑
q∈S

w(q)

(
pm(q)(x0, q)|K(q, i)−K(q, j)|+ |δqi − δqj|

)
= d(i, j)

It follows that p and ph have the same topology and hence the same Martin

boundary. Therefore, every result in the previous section remains true: we only

need to replace p with ph, K with Kh, and μ with μh, where μh is defined as the

harmonic measure of phx0
.

Therefore, the h-process counterpart of Corollary A.3.8. is that 1 =
∫
∂SM

Kh(i, x)dμh(x).

This implies the following:

Theorem A.4.1. For any harmonic function h(x) on S such that h(x0) = 1,

h(i) =
∫
∂SM

K(i, x)dμh(x) for every i ∈ S.
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A.5 Regular boundary and minimal boundary

For each x ∈ S, K(·, x) is a superharmonic function (see Definition 3.5 for the

definition of superharmonic functions). If x ∈ ∂SM , then K(·, x) is still a superhar-

monic function by Fatou’s lemma applied on a sequence {xn} ⊂ S so that xn → x.

We are interested in finding x ∈ ŜM where K(·, x) is a harmonic function.

Definition A.5.1. Define ∂RSM � {x ∈ ŜM : K(·, x) is a harmonic function} =

{x ∈ ∂SM : K(·, x) is a harmonic function}. The identity holds because K(·, x) is

superharmonic but not harmonic if x ∈ S. We call ∂RSM the regular boundary

for ŜM . Harmonic functions are also called regular functions.

Theorem A.5.2. ∂RSM ∈ B(ŜM). Furthermore, μ(∂RSM) = 1.

Proof. (i) For the first argument, define Bi = {x : K(i, x) =
∑

j∈S p(i, j)K(j, x)},
which belongs to B(ŜM) because it is the set that two B(ŜM)-measurable functions

coincide. The result follows from the fact that ∂RSM =
⋂

i∈S Bi.

(ii) 1. For the second argument, we first claim that for any B ∈ B(ŜM), u(i) =

pi(X∞ ∈ B) is a harmonic function. To prove this claim, it suffices to show that

p(X∞ ∈ C|X1 = i, X0 = k) = p(X∞ ∈ C|X0 = i) for any compact set C, and then

use π − λ theorem to prove that p(X∞ ∈ B|X1 = i, X0 = k) = p(X∞ ∈ B|X0 = i)

for any B ∈ B(ŜM), and this implies

pi(X∞ ∈ B) =
∑
j∈S

pi(X∞ ∈ B,X1 = j)

=
∑
j∈S

p(i, j)p(X∞ ∈ B|X1 = j,X0 = i)

=
∑
j∈S

p(i, j)p(X∞ ∈ B|X0 = j)

=
∑
j∈S

p(i, j)pj(X∞ ∈ B),

and this is what we want.
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To see p(X∞ ∈ C|X1 = i, X0 = k) = p(X∞ ∈ C|X0 = i) is true for any compact

set C, we define Cε = {x : d(x, C) ≤ 1}, and we have

p(X∞ ∈ C|X1 = i, X0 = k)

=p(
⋂
m≥1

⋃
N≥1

⋂
n≥N

{Xn ∈ C1/m}|X1 = i, X0 = k)

= lim
M1→∞

p(
⋂

M1≥m≥1

⋃
N≥1

⋂
n≥N

{Xn ∈ C1/m}|X1 = i, X0 = k)

= lim
M1→∞

lim
M2→∞

p(
⋂

M1≥m≥1

⋃
M2≥N≥1

⋂
n≥N

{Xn ∈ C1/m}|X1 = i, X0 = k)

= lim
M1→∞

lim
M2→∞

lim
M3→∞

p(
⋂

M1≥m≥1

⋃
M2≥N≥1

⋂
M3≥n≥N

{Xn ∈ C1/m}|X1 = i, X0 = k)

= lim
M1→∞

lim
M2→∞

lim
M3→∞

p(
⋂

M1≥m≥1

⋃
M2≥N≥1

⋂
M3≥n≥N

{Xn−1 ∈ C1/m}|X0 = i)

=p(
⋂
m≥1

⋃
N≥1

⋂
n≥N

{Xn−1 ∈ C1/m}|X0 = i)

=p(X∞ ∈ C|X0 = i).

2. By Theorem A.3.6, pi(X∞ ∈ B) =
∫
B
K(i, x)dμ(x). Therefore by (ii) 1. we

have ∫
B

K(i, x)dμ(x) =
∑
j

p(i, j)

∫
B

K(j, x)dμ(x)

=

∫
B

∑
j

p(i, j)K(j, x)dμ(x)

≤
∫
B

K(i, x)dμ(x).

it follows that
∑

j∈S p(i, j)K(j, x) = K(i, x) for μ-a.e. x. for any i ∈ S. That is,

μ(B) = 1.

Definition A.5.3. h ≥ 0 is called a minimal harmonic function if it is

harmonic and every harmonic function h′ ≤ h is a scalar multiple of h, that is,

h′ = ch, 0 ≤ c ≤ 1. h is called normalized minimal harmonic if, furthermore,

h(x0) = 1.
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Definition A.5.4. Define ∂mSM = {x ∈ ŜM : K(·, x) is minimal harmonic} =

{x ∈ ∂SM : K(·, x) is minimal harmonic} = {x ∈ ∂SM : K(·, x) is normalized

minimal harmonic}. Call it the minimal boundary for ŜM .

Below is a basic result for normalized minimal harmonic functions.

Proposition A.5.5. Let h(x) be a harmonic function with h(x0) = 1. Then

h(x) is a minimal harmonic function ⇔ h(x) cannot be written as a nontrivial

convex combination of two distinct normalized harmonic functions h1, h2. (Where

normalization is in the sense that h1(x0) = h2(x0) = 1).

Proof. (⇒) If h = c1h1 + c2h2, c1 + c2 = 1, c1, c2 > 0, then ch1 ≤ h is a harmonic

function, yet it is not a scalar multiple of h(Otherwise, h1 = h2 = h). This implies

h is not minimal harmonic.

(⇐) If h is not minimal harmonic, then there is some harmonic function h1 <

h, where h1 is not a scalar multiple of h. Write h(x) = h1(x0)
h1(x)
h1(x0)

+
(
h(x0) −

h1(x0)
) h(x)−h1(x)
h(x0)−h1(x0)

, which is a convex combination of two distinct harmonic functions,

each takes value 1 while evaluated at x0.

Proposition A.5.6. p and ph have the same Martin boundary, regular boundary,

and minimal boundary.

Proof. The first assertion is true because d(i, j) = dh(i, j) for all i, j ∈ S. The second

follows from
∑

j∈S p(i, j)K(j, x) = K(i, x) ⇔∑
j∈S p

h(i, j)Kh(j, x) = Kh(i, x). For

the last argument, assume x /∈ ∂mSM , by Proposition A.5.5, K(·, x) = c1h1(·) +
c2h2(·), c1 + c2 = 1, and h1, h2 are normalized p-harmonic functions. It is easy to

verify that K(·,x)
h(·) = c1

h1(·)
h(·) + c2

h2(·)
h(·) , and

K(·,x)
h(·) , h1(·)

h(·) ,
h2(·)
h(·) are all ph-harmonic and

normalized. Therefore, Kh(·, x) = K(·,x)
h(·) is not ph-minimal harmonic by Proposition

A.5.5. again. The proof that Kh(·, x) not ph-minimal harmonic ⇒ K(·, x) not

p-minimal harmonic is similar.
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When h(x) is a harmonic function with h(x0) = 1 but it is not minimal harmonic,

by Proposition A.5.5, h = c1h1 + c2h2, c1 + c2 = 1, c1, c2 > 0, where both h1, h2 are

normalized harmonic functions. We investigate the relation of μh, μh1 , and μh2 in

the following proposition.

Proposition A.5.7. If a normalized harmonic function h(x) can be written

as c1h1 + c2h2, c1 + c2 = 1, c1, c2 > 0, where both h1, h2 are normalized harmonic

functions, then the corresponding harmonic measure of h, h1, and h2 satisfies μh =

c1μ
h1 + c2μ

h2.

Proof. The relation phx0
(E) = c1p

h1
x0
(E) + c2p

h2
x0
(E) holds for any set E in the form

{X1 = a1, · · · , Xn = an}, namely, it holds for any E ∈ ⋃∞
i=1 Fi, where Fn � {{X1 =

a1, · · · , Xn = an} : a1, · · · , an ∈ S}. It is easy to check
⋃∞

i=1 Fi is a π-system, and

π − λ theorem tells us that this relation holds for any E ∈ G .

By Theorem A.3.1, for any A ∈ B(ŜM), {X∞ ∈ A} ∈ G . Therefore, phx0
(X∞ ∈

A) = c1p
h1
x0
(X∞ ∈ A) + c2p

h2
x0
(X∞ ∈ A), and this completes the proof.

Below is an important characterization for normalized minimal harmonic func-

tions.

Theorem A.5.8. Let h(x) be a normalized harmonic function. The following

are equivalent:

(i) h(x) is a normalized minimal harmonic function.

(ii) μh({α}) = 1 for some α ∈ ∂RSM .

(iii) μh({α}) = 1, where α ∈ ∂mSM and h(i) = K(i, α) for all i ∈ S.

Proof. (iii)⇒(ii) is straightforward.

(ii)⇒(i): Assume that h(x) is not minimal harmonic, then by proposition A.5.5

and A.5.7, μh = c1μh1 + c2μh2 , where c1 + c2 = 1, c1, c2 > 0, and both h1, h2 are

normalized harmonic functions with corresponding harmonic measure μh1 , μh2 . This
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shows that μh cannot be a point mass.

(i)⇒(iii): Choose arbitrary B ∈ B(ŜM) such that 0 < μh(B) < 1. By Theorem

A.4.1, for each i ∈ S we have

h(i) =

∫
̂SM

K(i, x)dμh(x)

=

∫
̂SM\B

K(i, x)dμh(x) +

∫
B

K(i, x)dμh(x)

=μh(ŜM \B)× 1

μh(ŜM \B)

∫
̂SM\B

K(i, x)dμh(x)

+μh(B)× 1

μh(B)

∫
B

K(i, x)dμh(x),

representing h as a convex combination of two normalized harmonic functions. Since

h is minimal harmonic, by Theorem A.5.5 we have h(i) = 1
μh(B)

×∫
B
K(i, x)dμh(x) for every i ∈ S. That is, for each i ∈ S and B ∈ B(ŜM) such that

0 < μh(B) < 1, we have ∫
B

K(i, x)− h(i)dμh(x) = 0,

and this shows K(i, x) = h(i) for every i ∈ S and μh-a.s. x. We remark that for

α, β ∈ ∂SM , α �= β, there must be some j ∈ S such that K(j, α) �= K(j, β), and

this fact shows K(i, α) = h(i) for a single α ∈ ∂SM . By the definition of minimal

boundary, α ∈ ∂mSM .

The following theorem strengthens the results in Theorem A.5.2.

Theorem A.5.9. ∂mSM ∈ B(ŜM). Furthermore, μ(∂mSM) = 1.

Proof. 1. We show that for each A ∈ B(ŜM), p
K(·,x)
x0 (X∞ ∈ A) = μK(·,x)(A) is

a Borel measurable function of x on ∂RSM . Indeed, for any set E of the form

{X1 = a1, · · · , Xn = an}, pK(·,x)
x0 (E) = p(x0, a1)p(a1, a2) × · · · × p(an−1, an)K(an, x)

is a continuous function of x ∈ ∂RSM . In addition, {F ∈ G : p
K(·,x)
x0 (F ) is a Borel

measurable function on ∂RSM} is a λ-system that contains all sets of the form {X1 =

a1, · · · , Xn = an}. It follows by π − λ theorem that for any F ∈ G , p
K(·,x)
x0 (F ) is a
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Borel measurable function on ∂RSM}. In particular, p
K(·,x)
x0 (X∞ ∈ A) = μK(·,x)(A)

is a Borel measurable function of x on ∂RSM .

2. We have the following identity:

px0(A,X∞ ∈ B) =

∫
B

pK(·,x)
x0

(A)dμ(x),

for A ∈ G and B ∈ B(ŜM). To see this, we first consider the case A = {X1 =

a1, · · · , Xn = an}. We have

px0(A,X∞ ∈ B)

=px0(X1 = a1, · · · , Xn = an, X∞ ∈ B)

=p(x0, a1)p(a1, a2)× · · · × p(an−1, an)pan(X∞ ∈ B)

=p(x0, a1)p(a1, a2)× · · · × p(an−1, an)

∫
B

K(an, x)dμ(x) by Theorem A.3.6

=

∫
B

p(x0, a1)p(a1, a2)× · · · × p(an−1, an)K(an, x)dμ(x)

=

∫
B

pK(·,x)
x0

(A)dμ(x).

Since {A ∈ G : px0(A,X∞ ∈ B) =
∫
B
p
K(·,x)
x0 (A)dμ(x)} is a λ-system, the result

follows by π − λ theorem.

3. By 2. we have∫
B

1A(x)dμ(x) =μ(A ∩B)

=px0(X∞ ∈ A ∩B)

=

∫
B

pK(·,x)
x0

(X∞ ∈ A)dμ(x)

for any A,B ∈ B(ŜM). Therefore, for each A ∈ B(ŜM), 1A(x) = p
K(·,x)
x0 (X∞ ∈ A)

for μ-a.e. x.

4. Let T = {x ∈ ∂RSM : 1A(x) = p
K(·,x)
x0 (X∞ ∈ A) for any A = Br(y), where

y ∈ S and r ∈ Q+}. By 1., 3., and Theorem A.5.2 we have T ∈ B(ŜM) and
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μ(T ) = 1.

5. Our goal is to show that T = ∂mSM and the proof is complete. Assume

that x′ ∈ T . We choose a sequence of balls B1/n(yn) such that yn ∈ S and x ∈⋂∞
n=1 B1/n(yn). We have

1 = lim
n→∞

1B1/n(yn)(x
′)

= lim
n→∞

pK(·,x′)
x0

(X∞ ∈ B1/n(yn))

=pK(·,x′)
x0

(X∞ = x′) = μK(·,x′)({x′}).

Here we have applied dominated convergence theorem on the third equality. Since

μK(·,x′) is a point mass, we find that K(·, x′) is a normalized minimal harmonic func-

tion by Theorem A.5.8. That is, x′ ∈ ∂mSM .

Conversely, if x′ ∈ ∂mSM , then it follows directly from the definition of T and

Theorem A.5.8 that x′ ∈ T .

Our last task is to show that the integral representation of Theorem A.4.1 is

unique.

Theorem A.5.10. Let h(x) be a normalized harmonic function on S such

that h(x0) = 1. Then there exists a unique Borel measure ν such that h(i) =∫
̂SM

K(i, x)dν(x) for every i ∈ S, and ν(ŜM) = ν(∂mSM) = 1. Indeed, by Theorem

A.4.1, the unique measure ν is μh.

Proof. We only need to check that if h(i) =
∫
∂mSM

K(i, x)dν(x) =
∫
∂mSM

K(i, x)dμh(x),

then ν ≡ μh. We have proved the existence in Theorem A.4.1.

1. We claim that for each A ∈ G , we have

phx0
(A) =

∫
∂mSM

pK(·,x)
x0

(A)dν(x).
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It is sufficient to check A = {X1 = a1, · · · , Xn = an} and then apply π−λ theorem.

To this end,

phx0
(A) =px0(X1 = a1, · · · , Xn = an)h(an)

=px0(X1 = a1, · · · , Xn = an)

∫
∂mSM

K(an, x)dν(x)

=

∫
∂mSM

pK(·,x)
x0

(A)dν(x).

2. For each A ∈ B(ŜM),

μh(A) =phx0
(X∞ ∈ A)

=

∫
∂mSM

pK(·,x)
x0

(X∞ ∈ A)dν(x)

=

∫
∂mSM

1A({x})dν(x)

=ν(A ∩ ∂mSM)

=ν(A).

Here the third equality is due to the fact that K(·, x) is a normalized minimal

harmonic function, and thus μK(·,x) is a point mass centered at x by Theorem A.5.8.

This implies ν ≡ μh and the proof is complete.
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