請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100960完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王暉 | zh_TW |
| dc.contributor.advisor | Huei Wang | en |
| dc.contributor.author | 呂致廣 | zh_TW |
| dc.contributor.author | Chih-Kuang Lu | en |
| dc.date.accessioned | 2025-11-26T16:15:43Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-10-19 | - |
| dc.identifier.citation | [1] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, "Five disruptive technology directions for 5G," IEEE Communications Magazine, vol. 52, no. 2, pp. 74-80, 2014, doi: 10.1109/MCOM.2014.6736746.
[2] X. You et al., "Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts," Science China Information Sciences, vol. 64, no. 1, p. 110301, 2020/11/24 2020, doi: 10.1007/s11432-020-2955-6. [3] T. S. Rappaport et al., "Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond," IEEE Access, vol. 7, pp. 78729-78757, 2019, doi: 10.1109/ACCESS.2019.2921522. [4] N. DOCOMO, "5G Evolution and 6G (version 3.0)," White Paper February 2021. [5] A. Wootten and A. R. Thompson, "The Atacama Large Millimeter/Submillimeter Array," Proceedings of the IEEE, vol. 97, no. 8, pp. 1463-1471, 2009, doi: 10.1109/JPROC.2009.2020572. [6] A. Partnership et al., "THE 2014 ALMA LONG BASELINE CAMPAIGN: AN OVERVIEW*," The Astrophysical Journal Letters, vol. 808, no. 1, p. L1, 2015/07/14 2015, doi: 10.1088/2041-8205/808/1/L1. [7] 呂柏澤, "天文接收機之放大器和第五代行動通訊之功率放大器的研究," 國立臺灣大學, 2020. [Online]. Available: https://doi.org/10.6342%2fNTU202000206 [8] J. R. Pardo, J. Cernicharo, and E. Serabyn, "Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications," IEEE Transactions on Antennas and Propagation, vol. 49, no. 12, pp. 1683-1694, 2001, doi: 10.1109/8.982447. [9] 賴致學, "應用於天文接收機之Q頻段可變增益低雜訊放大器、G頻段二倍頻器與相位陣列收發系統之平方混合器研究," 國立臺灣大學, 2025. [Online]. Available: https://doi.org/10.6342%2fNTU202500223 [10] Y. J. Hwang et al., "Performance of the first three preproduction 35–50 GHz receiver front-ends for atacama large millimeter / submillimeter array," in 2017 12th European Microwave Integrated Circuits Conference (EuMIC), 8-10 Oct. 2017 2017, pp. 404-407, doi: 10.23919/EuMIC.2017.8230744. [11] 黃煒智, "寬頻且低功耗之毫米波放大器之設計," 國立臺灣大學, 2022. [Online]. Available: https://doi.org/10.6342%2fNTU202200996 [12] Y. De Huang et al., "The Atacama Large Millimeter/submillimeter Array (ALMA) Band-1 Receiver," arXiv preprint arXiv:1612.00893, 2016. [13] L. J. Huang, C. C. Chiong, Y. S. Wang, H. Wang, T. W. Huang, and C. C. Chien, "A D-band Low-Noise Amplifier in 28-nm CMOS Technology for Radio Astronomy Applications," in 2023 18th European Microwave Integrated Circuits Conference (EuMIC), 18-19 Sept. 2023 2023, pp. 369-372, doi: 10.23919/EuMIC58042.2023.10288999. [14] B. Yun, D. W. Park, H. U. Mahmood, D. Kim, and S. G. Lee, "A D-Band High-Gain and Low-Power LNA in 65-nm CMOS by Adopting Simultaneous Noise- and Input-Matched Gmax-Core," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 5, pp. 2519-2530, 2021, doi: 10.1109/TMTT.2021.3066972. [15] A. Hamani, A. Siligaris, B. Blampey, C. Dehos, and J. Jimenez, A 125.5-157 GHz 8 dB NF and 16 dB of Gain D-band Low Noise Amplifier in CMOS SOI 45 nm. 2020, pp. 197-200. [16] T. Heller, E. Cohen, and E. Socher, "A 102–129-GHz 39-dB Gain 8.4-dB Noise Figure I/Q Receiver Frontend in 28-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 5, pp. 1535-1543, 2016, doi: 10.1109/TMTT.2016.2547390. [17] D. H. Kim, D. Kim, and J. S. Rieh, "A $D$ -Band CMOS Amplifier With a New Dual-Frequency Interstage Matching Technique," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 5, pp. 1580-1588, 2017, doi: 10.1109/TMTT.2017.2655508. [18] D. Parveg, M. Varonen, D. Karaca, A. Vahdati, M. Kantanen, and K. A. I. Halonen, "Design of a D-Band CMOS Amplifier Utilizing Coupled Slow-Wave Coplanar Waveguides," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1359-1373, 2018, doi: 10.1109/TMTT.2017.2777976. [19] F. Karasawa, T. Machii, M. Motoyoshi, T. Furuichi, and N. Suematsu, "130 GHz Band CMOS Amplifier with Miniaturized Interstage Circuit by Stacked Radial Stubs," in 2023 Asia-Pacific Microwave Conference (APMC), 5-8 Dec. 2023 2023, pp. 769-771, doi: 10.1109/APMC57107.2023.10439779. [20] Y. Mehta, S. Thomas, and A. Babakhani, "A 140–220-GHz Low-Noise Amplifier With 6-dB Minimum Noise Figure and 80-GHz Bandwidth in 130-nm SiGe BiCMOS," IEEE Microwave and Wireless Technology Letters, vol. 33, no. 2, pp. 200-203, 2023, doi: 10.1109/LMWC.2022.3208204. [21] R. B. Yishay, E. Shumaker, and D. Elad, "A 122-150 GHz LNA with 30 dB gain and 6.2 dB noise figure in SiGe BiCMOS technology," in 2015 IEEE 15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 26-28 Jan. 2015 2015, pp. 15-17, doi: 10.1109/SIRF.2015.7119860. [22] A. Ç. Ulusoy et al., "A SiGe D-Band Low-Noise Amplifier Utilizing Gain-Boosting Technique," IEEE Microwave and Wireless Components Letters, vol. 25, no. 1, pp. 61-63, 2015, doi: 10.1109/LMWC.2014.2369992. [23] W. Z. Huang, Y. Wang, S. W. Liu, C. C. Chiong, and H. Wang, "A 30–50-GHz Ultralow-Power Low-Noise Amplifier With Second-Stage Current-Reuse for Radio Astronomical Receivers in 90-nm CMOS Process," IEEE Microwave and Wireless Technology Letters, vol. 33, no. 5, pp. 555-558, 2023, doi: 10.1109/LMWT.2022.3222854. [24] H. C. Yeh, Z. Y. Liao, and H. Wang, "Analysis and Design of Millimeter-Wave Low-Power CMOS LNA With Transformer-Multicascode Topology," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 12, pp. 3441-3454, 2011, doi: 10.1109/TMTT.2011.2173350. [25] J. H. Kim et al., "High-Performance Broadband CMOS Low-Noise Amplifier with a Three-Winding Transformer for Broadband Matching," in 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 11-13 June 2023 2023, pp. 125-128, doi: 10.1109/RFIC54547.2023.10186167. [26] H. C. Yeh, C. Chau-Ching, and H. Wang, "A low voltage Q-band CMOS LNA with magnetic coupled cascode topology," in 2012 IEEE/MTT-S International Microwave Symposium Digest, 17-22 June 2012 2012, pp. 1-3, doi: 10.1109/MWSYM.2012.6258378. [Online]. Available: https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=&arnumber=6258378&ref= [27] Y. T. Chou, C. C. Chiong, and H. Wang, "A Q-band LNA with 55.7% bandwidth for radio astronomy applications in 0.15-μm GaAs pHEMT process," in 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 24-26 Aug. 2016 2016, pp. 1-3, doi: 10.1109/RFIT.2016.7578197. [28] L. Y. Lee, Y. Wang, and H. Wang, "A 25-31 GHz LNA in GaAs 0.15-μm pHEMT," in 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 25-27 Aug. 2021 2021, pp. 1-3, doi: 10.1109/RFIT52905.2021.9565292. [29] R. Y. Huang, M. T. Fang, P. Y. Chen, and H. Y. Chang, "A 36-42 GHz 0.18-μm CMOS Amplifier Using Cascode-Cascade Matching Topology for Millimeter-wave Broadband Applications," in 2023 Asia-Pacific Microwave Conference (APMC), 5-8 Dec. 2023 2023, pp. 626-628, doi: 10.1109/APMC57107.2023.10439918. [30] H. Min, J. H. Tsai, and T. W. Huang, "A 917-µW Q-band transformer-feedback current-reused LNA using 90-nm CMOS technology," in 2012 IEEE/MTT-S International Microwave Symposium Digest, 17-22 June 2012 2012, pp. 1-3, doi: 10.1109/MWSYM.2012.6258388. [31] A. Ershadi, S. Palermo, and K. Entesari, "A 22.2-43 GHz Gate-Drain Mutually Induced Feedback Low Noise Amplifier in 28-nm CMOS," in 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 7-9 June 2021 2021, pp. 27-30, doi: 10.1109/RFIC51843.2021.9490469. [32] P. Qin and Q. Xue, "Compact Wideband LNA With Gain and Input Matching Bandwidth Extensions by Transformer," IEEE Microwave and Wireless Components Letters, vol. 27, no. 7, pp. 657-659, 2017, doi: 10.1109/LMWC.2017.2711524. [33] M. K. Hedayati, A. Abdipour, R. S. Shirazi, C. Cetintepe, and R. B. Staszewski, "A 33-GHz LNA for 5G Wireless Systems in 28-nm Bulk CMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 10, pp. 1460-1464, 2018, doi: 10.1109/TCSII.2018.2859187. [34] Y. T. Chang, Y. N. Chen, and H. C. Lu, "A 38 GHz Low Power Variable Gain LNA Using PMOS Current-Steering Device and Gm-Boost Technique," in 2018 Asia-Pacific Microwave Conference (APMC), 6-9 Nov. 2018 2018, pp. 654-656, doi: 10.23919/APMC.2018.8617525. [35] B. Yun, D. W. Park, C. G. Choi, H. J. Song, and S. G. Lee, "280.2/309.2 GHz, 18.2/9.3 dB Gain, 1.48/1.4 dB Gain-per-mW, 3-Stage Amplifiers in 65nm CMOS Adopting $\text{Double-embedded-}G_{max}\text{-core}$," in 2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 19-21 June 2022 2022, pp. 91-94, doi: 10.1109/RFIC54546.2022.9863110. [36] D. W. Park, D. R. Utomo, B. H. Lam, J. P. Hong, and S. G. Lee, "A 280-/300-GHz Three-Stage Amplifiers in 65-nm CMOS With 12-/9-dB Gain and 1.6/1.4% PAE While Dissipating 17.9 mW," IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 79-81, 2018, doi: 10.1109/LMWC.2017.2777106. [37] L.-J. Huang, "Researches of Low Noise Amplifiers and Phase Shifter for Millimeter Wave Applications," Master’s thesis, National Taiwan University, 2023. [Online]. Available: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90799 [38] C.-C. Chien, "Design of D-band Frequency Doubler, Low-Noise Amplifiers for 5G Communication and Bidirectional Amplifier for Next-Generation Phased-Arrays," Master’s thesis, National Taiwan University, 2023. [Online]. Available: https://hdl.handle.net/11296/a8cn6g [39] C. k. Lu, Y. S. Wang, C. C. Chiong, and H. Wang, "A 140 GHz Low-Noise Amplifier with 22-dB Gain and 8.2-dB Noise Figure in 65-nm CMOS," in 2024 IEEE Asia-Pacific Microwave Conference (APMC), 17-20 Nov. 2024 2024, pp. 351-353, doi: 10.1109/APMC60911.2024.10867280. [40] J. Lee and S. Hong, "A 21–41-GHz Common-Gate LNA With TLT Matching Networks in 28-nm FDSOI CMOS," IEEE Microwave and Wireless Components Letters, vol. 32, no. 9, pp. 1051-1054, 2022, doi: 10.1109/LMWC.2022.3169066. [41] L. Gao and G. M. Rebeiz, "A 24-43 GHz LNA with 3.1-3.7 dB Noise Figure and Embedded 3-Pole Elliptic High-Pass Response for 5G Applications in 22 nm FDSOI," in 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2-4 June 2019 2019, pp. 239-242, doi: 10.1109/RFIC.2019.8701782. [42] N. Ono, M. Motoyoshi, K. Takano, K. Katayama, R. Fujimoto, and M. Fujishima, "135 GHz 98 mW 10 Gbps ASK transmitter and receiver chipset in 40 nm CMOS," in 2012 Symposium on VLSI Circuits (VLSIC), 13-15 June 2012 2012, pp. 50-51, doi: 10.1109/VLSIC.2012.6243784. [43] B. P. Ginsburg, S. M. Ramaswamy, V. Rentala, E. Seok, S. Sankaran, and B. Haroun, "A 160 GHz Pulsed Radar Transceiver in 65 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 49, no. 4, pp. 984-995, 2014, doi: 10.1109/JSSC.2014.2298033. [44] A. Chakraborty, S. Trotta, J. Wuertele, and R. Weigel, "A D-band transceiver front-end for broadband applications in a 0.35μm SiGe bipolar technology," in 2014 IEEE Radio Frequency Integrated Circuits Symposium, 1-3 June 2014 2014, pp. 405-408, doi: 10.1109/RFIC.2014.6851753. [45] D. Simic and P. Reynaert, "A 14.8 dBm 20.3 dB Power Amplifier for D-band Applications in 40 nm CMOS," in 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 10-12 June 2018 2018, pp. 232-235, doi: 10.1109/RFIC.2018.8428981. [46] C. J. Lee and C. S. Park, "A D-Band Gain-Boosted Current Bleeding Down-Conversion Mixer in 65 nm CMOS for Chip-to-Chip Communication," IEEE Microwave and Wireless Components Letters, vol. 26, no. 2, pp. 143-145, 2016, doi: 10.1109/LMWC.2016.2517132. [47] B. Razavi, RF Microelectronics, 2nd ed. Upper Saddle River, NJ: Prentice Hall (in English), 2011. [48] D. M. Pozar, Microwave Engineering, 4th ed. Hoboken, NJ: John Wiley & Sons (in English), 2012. [49] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1996. [50] L. Belostotski and E. A. M. Klumperink, "Figures of Merit for CMOS Low-Noise Amplifiers and Estimates for Their Theoretical Limits," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 734-738, 2022, doi: 10.1109/TCSII.2021.3113607. [51] Y. Qian, Y. Shen, Y. Ding, and S. Hu, "A D-Band Low-Noise Amplifier With Gm-Boosting Technique Based on Asymmetric Coupling," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 72, no. 5, pp. 708-712, 2025, doi: 10.1109/TCSII.2025.3555310. [52] C. J. Lee, H. Nam, D. Kim, S. K. Kim, and D. Y. Lee, "A D-Band Variable Gain Low Noise Amplifier in a 28-nm CMOS Process for 6G Wireless Communications," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 1, pp. 131-135, 2024, doi: 10.1109/TCSII.2023.3295430. [53] H. Lee, H. R. Jeon, S. G. Lee, and K. S. Choi, "A 150-GHz Single-to-Differential LNA Adopting Wideband Gmax-Cores Based on Single-Ended Compact Lumped L-C-L and Differential Coupled-Line Embedding Networks," IEEE Journal of Solid-State Circuits, vol. 60, no. 6, pp. 1973-1984, 2025, doi: 10.1109/JSSC.2024.3474008. [54] Y. H. Wang, Y. Wang, and Y. H. Cheng, "A D-Band High-Gain Low-Noise Amplifier With Transformer-Embedded Network Gmax-Core in 40-nm CMOS," IEEE Microwave and Wireless Technology Letters, vol. 34, no. 12, pp. 1355-1358, 2024, doi: 10.1109/LMWT.2024.3477468. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100960 | - |
| dc.description.abstract | 本論文分為兩部分,分別針對D頻段及Q頻段低雜訊放大器(LNA)之設計與實測,應用於6G無線通訊與天文接收系統。
第一部分提出一款採用65奈米CMOS製程之D頻段LNA,採用三級Gmax-core架構以兼顧高增益與低雜訊。第一級同步進行雜訊與輸入匹配最佳化,並提出改良之電晶體模擬方法,以提升高頻模擬與量測結果一致性。量測結果顯示,電路於140 GHz具22 dB峰值增益、8.2 dB最低雜訊指數,於130–145 GHz頻帶內維持逾15 dB增益,直流功耗僅17.3 mW,驗證CMOS技術於6G高頻前端應用之可行性。 第二部分則提出一款以90奈米CMOS製程實現之Q頻段LNA。電路首級採用變壓器耦合共源共閘架構以抑制後級雜訊,並於次級導入電流再利用技術提升增益與功率效率。量測結果顯示,該LNA於46.6 GHz具15.7 dB最大增益,3 dB頻寬覆蓋36.6–46.6 GHz,最低及平均雜訊指數分別為3.3 dB與3.8 dB,總直流功耗僅7.8 mW,展現優異性能及良好權衡。 | zh_TW |
| dc.description.abstract | This thesis presents the design and measurement of low-noise amplifiers (LNAs) in the D-band and Q-band, targeting next-generation wireless communication systems and radio astronomy receivers.
The first part describes a D-band LNA fabricated using a 65-nm CMOS process, employing a three-stage Gmax-core architecture to achieve high gain and low noise. The first stage is optimized for noise and input matching, while an improved transistor modeling approach is introduced to enhance the agreement between simulation and measurement at high frequencies. The LNA demonstrates a peak gain of 22 dB at 140 GHz, a minimum noise figure of 8.2 dB, and maintains over 15 dB gain from 130 to 145 GHz. With a power consumption of 17.3 mW, the results confirm the feasibility of CMOS technology for high-frequency 6G front-end circuits. The second part presents a Q-band LNA implemented in a 90-nm CMOS process. A transformer-coupled cascode is used in the first stage to suppress noise from subsequent stages, and a current-reuse technique is adopted in the second stage to boost gain with limited power. Measurement results show a maximum gain of 15.7 dB at 46.6 GHz and a 3-dB bandwidth of 36.6–46.6 GHz. The minimum and average noise figures are 3.3 dB and 3.8 dB, respectively. Total DC power consumption is only 7.8 mW, demonstrating an effective trade-off between gain, noise figure, and power efficiency. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:15:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:15:43Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.1.1 D-Band LNA for 6G Wireless Communication Systems 1 1.1.2 Next-generation Radio Astronomical Receiving System 2 1.2 Literature Surveys 3 1.2.1 D-Band Low Noise Amplifier in CMOS Process 3 1.2.2 Q-band Low Noise Amplifier in CMOS Process 7 1.3 Contributions 9 1.3.1 Design of a D-band LNA with Gmax core in CMOS process 9 1.3.2 Design of a Q-band LNA in CMOS Process 10 1.4 Thesis Organization 11 Chapter 2 Design of a 140 GHz Low-Noise Amplifier in 65-nm CMOS 12 2.1 Introduction 12 2.2 The Design of D-band LNA 17 2.2.1 Transistor Size and Biasing Selection 17 2.2.2 Gmax-Core Architecture Design 22 2.2.3 Transmission Line-Based Matching Network 24 2.3 Complete Circuit Architecture 31 2.3.1 A single-stage amplifier 31 2.3.2 A three-staged Gmax core LNA 34 2.4 Measurement Result 41 2.5 Discussions 45 2.5.1 TRL Calibration 46 2.5.2 Device measurement and modeling 50 2.5.3 Comparison with measurement results 59 2.5.4 Re-design and Verification 62 2.6 Summary 68 Chapter 3 Design of a Q-Band Low-Noise Amplifier 70 3.1 Introduction 70 3.2 The Design of Q-band LNA 75 3.2.1 Transistor Size and Biasing Selection 75 3.2.2 Noise-reduction Transformer 82 3.2.3 Current reuse technique 89 3.3 Circuit Schematic and Simulation Results 93 3.3.1 Circuit Schematic 93 3.3.2 Simulation Results 94 3.4 Measurement Result and Discussion 101 3.4.1 Measurement Result 101 3.4.2 Discussion 106 3.5 Summary 109 Chapter 4 Conclusions 111 REFERENCES 112 LIST OF FIGURES | - |
| dc.language.iso | en | - |
| dc.subject | 低雜訊放大器(LNA) | - |
| dc.subject | D頻段 | - |
| dc.subject | Q頻段 | - |
| dc.subject | CMOS | - |
| dc.subject | Gmax-core | - |
| dc.subject | 電流再利用 | - |
| dc.subject | 變壓器耦合共源共閘 | - |
| dc.subject | 6G通訊 | - |
| dc.subject | 天文接收機 | - |
| dc.subject | Low-noise amplifier (LNA) | - |
| dc.subject | D-band | - |
| dc.subject | Q-band | - |
| dc.subject | CMOS | - |
| dc.subject | Gmax-core | - |
| dc.subject | current-reuse | - |
| dc.subject | transformer-coupled cascode | - |
| dc.subject | 6G | - |
| dc.subject | radio astronomy | - |
| dc.title | 應用於無線通訊與天文接收系統之D頻段與Q頻段CMOS低雜訊放大器設計 | zh_TW |
| dc.title | Design and Implementation of D-band and Q-band CMOS Low-Noise Amplifiers for Wireless Communication and Astronomical Receiver Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡政翰;黃天偉;林坤佑;王雲杉 | zh_TW |
| dc.contributor.oralexamcommittee | Jeng-Han Tsai;Tian-Wei Huang;Kun-You Lin;Yunshan Wang | en |
| dc.subject.keyword | 低雜訊放大器(LNA),D頻段Q頻段CMOSGmax-core電流再利用變壓器耦合共源共閘6G通訊天文接收機 | zh_TW |
| dc.subject.keyword | Low-noise amplifier (LNA),D-bandQ-bandCMOSGmax-corecurrent-reusetransformer-coupled cascode6Gradio astronomy | en |
| dc.relation.page | 116 | - |
| dc.identifier.doi | 10.6342/NTU202504604 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-10-20 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2025-11-27 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 7.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
