Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10086| Title: | 二維結的平滑化 Smoothings of Knot Diagrams for 2-dimensional Knots |
| Authors: | Yi-Sheng Wang 王以晟 |
| Advisor: | 楊樹文(Su-Win Yang),李瑩英(Yng-Ing Lee) |
| Keyword: | 結的不變量,二維結,二維結的平滑化, knot invariant,2-knots,smoothings of 2-knot diagrams, |
| Publication Year : | 2011 |
| Degree: | 碩士 |
| Abstract: | 在 Khovanov's theory 中,利用結的平滑化, 得到了一個chain complex, 更進一步的可以得到一個結的不變量,稱它為Khovanov's homology。
但在 Bar-Natan 教授的一篇文章中,曾用另一個方式重新解釋這個chain complex,他先不將每一個平滑化的圖,看作向量空間,反而用cobordism作為它的 differential。這是一個更抽象的chain complex,但很特別。這似乎是從一個更原始的角度來看此種chain complex。 本文描述了我們將這個方法推廣到曲面嵌入四維空間(2-knots)的一些結果及遇到的困難,其中也包括如何平滑化曲面圖和一些在 Roseman moves 間的 chain homotopy equivalence。 The Khovanov's homology is the most powerful knot invariant up to now. In [1], Prof. Bar-Natan gives a new idea to interpret the Khovanov's homology. We wonder whether we can mimic his method and apply to the 2-dimensional knots. In this article, we present some results we found, and some difficulties we encountered. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10086 |
| Fulltext Rights: | 同意授權(全球公開) |
| Appears in Collections: | 數學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-100-1.pdf | 3 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
