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Abstract

The Khovanov’s homology is the most powerful knot invariant up to now.
In [1], Prof. Bar-Natan gives a new idea to interpret the Khovanov’s ho-
mology. We wonder whether we can mimic his method and apply to the
2-dimensional knots. In this article, we present some results we found, and

some difficulties we encountered.
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1 Introduction

In Khovanov’s theory, he introduces a homological invariant of knots by
smoothing a knot diagram of a given knot. Roughly speaking, it is obtained
by first smoothing a knot diagram, and then putting all smoothings in order.
In the next step, we assign each circle a graded vector space, and define a
proper homomorphism between two smoothings as its differential. The ho-
mology group of this chain complex turns out to be a knot invariant and we
call it Khovanov’s homology of this knot. Bar-Natan gives a clear introduc-

tion of this homological invariant in [2].

In the paper [1] of Prof.. Bar-Natai,"he found a new interpretation of
these chain complexes.a He'uses the cobordisfﬁé torjbe the differentials and
directly considers the d:i;ect sum“ofsthe smb"othings :ch'—the chain groups. It is
a very interesting and special 1dqa bﬁaulfsela}l the maps are not “real maps”
as functions but are the surfaciej Wlt];l bouhdary Moreover it seems to me

that he interprets the Khovano‘ir hom(ﬂogyl from a more foundamental point

of view. R ik | E !| L

We will review Bar-Natan’s iﬁterpretation for Khovanov’s homology in
the section 2. Many definitions used to define the Khovanov’s bracket, as
well as the idea of the proof for Khovanov’s bracket to be a knot invariant
will be contained in section 2.

In section 3, we will review some basic definitions about 2-dimensional
knots. The character of a 2-knot diagram and the definition of Roseman
moves which is an analogy of Reidemeister moves will be contained in this
section. For more details about 2-knots, we refer to Carter’s book [3].

In the last two sections, we want to mimic Bar-Natan’s method in [1]

and apply it to the 2-dimensional knot diagrams. We will present some basic



definitions which are an analogy of those for 1-dimensional knots in section
2, and also define the category Cob* whose morphisms are 3-dimensional
cobordisms. In order to understand these 3-dimensional cobordisms, we use
the movie method which will be described in section 4.3.

Finally, some homotopy equivalences between Roseman moves and some

problems we encountered will be described in the last section.




2 1-dimensional case

Most parts in this section can be found in [1] and we just review his con-

struction.

2.1 Review

We now begin to review some basic definitions which Prof. Bar-Natan used

to interpret the Khovanov’s chain complex.

Definition 2.1. A tangle 1s|a,11 ':r{qaée of 5:'11¢én}bedd1ng which embeds some
arcs or St into B3 with- endgomt&o‘f thed®tarcs l_Xlng in the boundary of B3.

\%tlon frnm B? onto B? which

A tangle diagram is bhe ima generic

will send the tangle mtc?- hat int secji:lon is transversal and

l

the ends of these a._rcs lie in th 1 ' 15-. "-n
L ] "3_
I

Figure 1: Labeled oriented tangle

Definition 2.3. Given a knot diagram, we also mark the sign of its crossings

— (+) for overcrossings and (—) for undercrossings.



overcrossing undercrossing

() =]
Figure 2:

Definition 2.4. The 0-smoothing and 1-smoothing: a crossing is an inter-
change involving two highways.

The 0-smoothing is when you enter on the lower level and turn right at the
crossing.

The 1-smoothing is when you enter on the upper level and turn right at the

crossing.

% “ e o
upper level '
0-smoothing’ 1-smoothing
lower level
v U W J

' I |
|

i F

Figure 3;:

Now, for a given n crossing knot we can get a n-dimensional cube with
vertices {0, 1}", projected by the “shifted height” to the interger points on
[—n_,ny]. And the edges of the cube are marked in the natural manner by
n-letter strings of 0’s, 1’s and precisely one x. The x denote the coordinate

which changes from 0 to 1 along a given edge.

Vertices: Each vertex of the cubes carries a smoothing of K (the given
labeled oriented knot diagram)— a planar diagram obtained by replacing ev-
ery crossing in the given diagram of K with either a “0O-smoothing” or a

“l-smoothing”.



(n+,n-)=(0,3) 001> 011
00*
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000 2% 010 10125111
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Shifted hight: 00 IOOLeikO 110 1*
k-(n-) -3 > -2 > -1 > 0

Figure 4: n-cube

Shifted height: If a vertex ( is labeled by a sequence (¢;) in the alphabet
{0,1}, then its height k = > (; and the "shifted height” is k — n_.

Edges: Each edge of the gube is labeled“by a c¢obordism between the
smoothing on the tail of/that edge and the smoothing on its head— an ori-
ented two dimensional surfacesembedded inl R? x [0, 1] whose boundary lies
entirely in R?x 0,1 aid whose “toﬁ;fﬁbUHdary ig'the “tail” smoothing and
whose “bottom” boundary is thé “h(egﬁ:(_‘:l” smoothing. . Specifically, to get the
cobordism for an edge &€ {0, i,*}” for which &= * we remove a disk
neighborhood of the crossing 7 from the smobthing £(0) =& |i=o of K, cross
with [0,1], and the empty cylindrical slot around the missing crossing with a

saddle cobordism (Figure 5).
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Figure 5: Saddle cobordism



Sign: We give a sign on each edge. If an edge £ is labeled by a sequence
(&) in the alphabet {0,1,x} and if {; = %, then the sign on the edge ¢ is
(_ 1)Zi<j &

Now, we will define a new category which plays an important role in this

new intepretation for Khovanov’s homology.

Definition 2.5. The Cob*(B) (or Cob*(())) is a category whose objects
are smoothings with boundary B (or () and whose morphisms are the 2-
dimensional cobordisms between such smoothings, regarded up to boundary-
preserving isotopies. The composition of morphisms is given by placing one
cobordism atop the other. :

(We will use the notation Cob® as A generic referenice either to C'ob’(B) or
to Cob®(P).) There is a picturé describing the&'r'norphism and the objects in
Cob?. ) — P

Figure 6: A morphism between two smoothings



The C’ob?l is a qoutient of C'ob3 by adding some relations in the morphisms

of Cob®. They are the following three relations:
e Sphere~0.
e Torus~2.

e 4Tu-relation can be described by following picture.

e o N
= i et W .
Remark 2.6. In fact, we can| thi , | as an additive category

to an allow of fromal

l?_,yﬁx{ending the compo-

by extending everz set
Z-linear combinatiélisr.gf

manner.

sition maps in the r;l-E);tlllI‘e*fb in.

Note that an a,ddltlve cat’iégo,t:y 1S a elategoqi'"y 111. Wthh the sets of mor-
phisms are Abelian groups and: ghe com?osltlbn maps are bilinear in the

obvious sense.

Definition 2.7. Given an additive category C, we can define another additive

category Mat(C):

e The objects of Mat(C) are formal sums(possibly empty)@ O; of ob-
i=1

jects O; of C.

o If O = @Oi and 0" = @(’)g, then a morphism F' : O’ — O in
i=1 i=1
Mat(C) will be an m x n matrix F' = (F};) of morphism Fj; : O — O;.



e Compositions of morphisms in Mat(C) are defined by a rule modeled
on matrix multiplication, but with compositions in C replacing the

multiplication of scalars,((F};) o (Gj;)) = Z Fij o Gjp.

Note that It is convenient to represent objects of Mat((C')) by column

vectors. The following picture is an example of M at(C’ob%)

p
@ 2x2 matrix of the 2-dim'| @

corbordism

g ;|-
Figure 8- M at(Cob_?.l;)
Definition 2.8. leen an addltj_ye ca’q:egory C, we deﬁne Kom(C) to be
the category of complexes over yg'_ﬁ!sg',ohbijects are chains of finite length
N O SR L 0 (. Q”Jl o 'L_for Wthh the-composition d” o d"!

is 0 for all r, and Whose morlp ism F = :(l "} satlsfy the commutativity

(Frtlod =d o F"). The comp051t1on is deﬁned via(F oG)" = F" o G".

Note that we also can define What is “TWO morphisms in Kom(C) are
homotopic.”, “A chain map is a homotopy equivalence.”, and “Two chain

complexes are equivalent.”.

Now, we can define the Khovanov’s bracket [ | which is a function from
the tangle diagram to the category of Kom(M at(Cob:;’l)). For a given tangle
diagram 7', we can interpret the n-cube (n-dimensional cube of smoothings)
as a chain complex denoted [T] by thinking of all smoothings as objects
in C’ob‘;’l and of all cobordisms as the morphism in C’ob?l. We set the r’s

chian space [T]* of the complex [T] to be the direct sum of those smoothings

8



whose shifted height is & (which is an object in M at(Cob;’l)) and to sum
those cobordisms from the smoothings at height-(k — 1) to those at height-k
in the cube to get the differential (which is a morphism in M at(Cob?l)).

(i.e, [T) == [T = [T]™-T — ..., — [T]"*+~1 — [T]™)

This is an example of [T7].

4 *1
(n+,n)=(1,1) @/ 11 ‘

shifted hight: i1 s e
e-"::'v 7 & ‘{%:.
i Lk
Figure 9: Kho qgl’eﬁiagram
o] iy
It is convenientﬁéo short Kol ) in ﬁie next subsection
":-‘I‘_;t_ 7 '-'.!,_' Jg::
,L-:%:;- \ £ :fé"i: 1
£ 'Cg'"J kT gad ""L'?w
(i ,1::::}.'-_ - .:_":| . :Fe:-‘i-__' I;‘;'-.
ih%? Y ST oy ;;ﬁfﬁﬂ
i oy S



2.2 Invariance

Before we begin this section, we must recall that two tangle diagrams are
equivalent iff one can be obtained by another via finite Reidemeister moves.
The main theorem which I will state in this section tells us that the Kho-
vanov’s bracket can be viewed as a tangle invariant. It means that we must
show that the Khovanov’s brackets of two equivalent tangle diagrams are two
homotopy equivalent chain complexes.

Notice that the homotopy equivalence here will be some 2-dim’l cobordisms,

for we are working in the category Kob (Kob(Mat(Cob‘;’l))).

In this section, we first state th(el:main;i;heorem, and then write down four
lemmas to make the scheme; ofiour proof cleaer. We won't carry out all the
proof of them, so if you want t(a—get moye- detalls about the proof of these
lemmas, you can refer tol the Baf‘Na&an s ,piaper [1]. T just rewrite his idea

and emphasize what will be UST mﬁ-"ﬂ)llowmg sections.

| - e

| I
\ :
Notation 2.9. We list.some fseful notatiohi below:

e 7Y(k) denote the collection t'(')-f all k-ended unoriented tangle diagram.

e 7Y(s) denote the collection of | s |-ended oriented tangle diagram whose
incoming/outgoing strands is specified by s.

(s is a sting of in(1) and out () symbols with a total lengh of | s |).
e 7 (k) denote the quotient of T9(k) by three Reidemeister moves.
e 7 (s) denote the quotient of 7°(s) by three Reidemeister moves.

10



o Kob(k)=Kom(Mat(Cob?(By)))(By is k points on the boundary.)

e Kob;,=Kob/(homotopy equivalent chain complexes)

Theorem 2.10. The Khovanov’s bracket | | can be thought of as a func-
tion from 7 to Kobj,. (i.e.It means if 77 and 75 are two equivalent tangle

diagrams, than [T}] and [T3] are homotopy equivalent.)

Our main strategy is first to construct homotopy equivalences between
three Reidemeister moves and'then to reduce the global case to local case
which is just one of three Reidem’eiéter fioves.

In order to reduce the global gase to the local case, he introduces the “planar

algebra” which will be“defined Jaten '|

‘ I~
Fars " ik I
e

Lemma 2.11. The Khovanov’s braeketf | i invatiarfce under three Reide-

|
meister moves. I[-l | &
%ol - 1

For example:(we want 'fo_ silolw these tw!b chain complexes are homotopy

equivalent)

-G

(nem=(1,0)

g~

(+9=0,0)

Figure 10: First type

Proof. We only verify the typel case. The proof of the other cases can be
found in [1]. In the proof for typel case, we can find how the relations:

Torus~2 and 47T u-relation work. In fact, they play an very important role

11



in constructing homotopy equivalence.

We will construct the maps A, B, and H in the figurell and then check

that it is a homotopy equivalence between them.

_(n+,r|-)=(1 ,0) y
no other choice
must be 0-map
o) )=

A o a
F..;gu"fblil v%ﬂ’ence
,'H.' I ™
L ] i
The maps: A, B B &
e BN
Notice that the top,of ear e 'sthoothing on the tail of

H

=

Figure 12: Maps: A, B and H

some arrow and the coefficient of H is negative one.

12



First, we check that whether they are chain maps.
doA=00od is OK.
do(B; — By)=(doB;) — (doBy)= 0 = 0cd.
The picture of the equality is like:

T

E the 4

f koles

Figure 14: How 4T 'u-relation works here

13



Then we obtain the equality:
BioA—BsoA — Id=Hod.

Hence we get a homotopy equivalence for first Reidemeister move. O

Note: We will use the relations: Sphere= 2 and 4T u-relation to construct
the homotopy equivalence for second Reidemeister move. And the homotopy
equivalence for third Reidemeister move can be obtain from the second Rei-

demeister move directly by some technique.

14



Definition 2.12. A d-input planar arc diagram D is a big “output” disk
with d “input” discs removed, along with a collection of disjoint embedded
oriented arcs that are either closed or begin and end on the boundary. The
input discs are numbered 1 through d, and there is a base point(*) marked
on each input disc and the output disc.

(Similarly, we can define the unoriented planar arc diagram by forgetting the

orientation of arcs.)

O

' output disc

o
G

E ..:-l

<= ||
Plagtar arc|diagram
m 1l

Figure 1}5:
|

Definition 2.13. A pléi}vllzinl @flgiebra is.a éb‘ilgr(_:tioﬁr of sets (P(k))(orP(s))
which has these properties:. : 2 v

(1)We can define an operation D& P (ki) X P(ks) X ... X P(kq) — P(k) for
each d-input planar arc diagram D.

(2)The operation defined for the identity diagram must be identity.

Figure 16: Identity planar arc diagram

15



(3)The associative law: If D; is the result of placing D’ into the i-th hole
of D, then as operations,D; = Do (I x ... x D’) . x I

-3

Figure 17: Associative law

For example the tangle diagram space T° is a planar algebra.

o o] [GI (oF N,
@ T ——— T
{
=
P

I list some planar \a}ge

1. Oriented planar algeb
=

o T9s)
o T(s)

2. Unriented planar algebra

Obj(Cob})

Mor(Cobj,)

Obj(Mat(C’ob;’l))

Mor(Mat(Cobj,))

We note that every unoriented planar algebra can be regarded as an

oriented one by setting P(s) = P(| s |).

16



Lemma 2.14. The collection of the objects in Kob(s) is a planar algebra.

Proof. Given a planar diagram D which has n-input discs and an output
disc.

We can define a function D:x,Kob — Kob by the following way: (like ten-
sor). Let Q; =(§2}) denote the n chain complexes for i = 1,...,n. Then we

define:

QED(Ql,QQ,...,Qn)
= P DO .9

r=ri+...+rn
i=n . -
d |pan ap,.om)= Z(—l);fﬁj Dl di, gy [
i=1 e

Lemma 2.15. We list some properties of such blanar algebra.:
L N EE!’EII.};TZI KI

T ||
o D(I,...F;..0) induceaif ncﬁﬂ(ﬂl,...,Qm,...,Qn) — D,y ey iy ooy Q)

!.
as FiIQZ’a — Qib ll I

e D(I,...F,...I)o D"("[,.(..l.,'(i', I)zDU,_::_._;, Fo@,....1)

o If I+ ..+ F, =G ¥+ —|—"Gm by somefdf the relations in C’ob?l

then D(I, ..., Fy, ... )+, o, + D(I, .., Fyy o, I) = D(I, ..., Gy, oo, Dy oo, +D(I, ..., G, ..

It can be shown by observing how the cobordism be put into a planar arc

diagram.

Lemma 2.16. The Khovanov’s bracket [ | has such commutative law:

[D<T1> 7Tn)] = D([Tl]v ) [Tn])

Proof. We can consider the case: All T1,...,T;, are single crossings. This is
true since it (D([T1], ..., [T5])) just is the definition of Khovanov’s bracket. So
by associative law of planar algebra, It is still true for arbitrary tangles(77, ..., T,,).

[]

17

1)



Now, we can prove the main theorem:
Recall that we want to show that the Khovanov’s bracket is a function from

tangle space to Koby, (Kob/homoyopy equivalence).

Proof. Suppose T} and Ty are equivalent tangles in 7°. It means they differ
from each other by finite Reidemeister moves. So we can assume that their
difference is just one of these three Reidemeister moves. We can circle all its
crossing so that Ty = D(T,T*,....,T"), Ty = D(T",T*,...,T") and T and T"
is one of the three Reidemeister moves.

Since we have lemma 4,

so [T1] = [D(T, T, ..., T™)] =.D(T],|TY, A

By lemma 1, we have hofnotopy equivalence F betieen [T and [T7].

By lemma 3, we can werify that D(F, [, ..., T)is sfill a homotopy equivalence
of D((T], [T, ... (L) EHAD([PAHTY), ).

But we have D([T1, [T"],}.., [T} Z2f}.L |

so (T3] ~ [T]. || ==

| [l

| J f |
The following picture.shows that Thow v&fle‘circle those crossings:

Figure 19:

Remark 2.17. If we consider the case of knot, then the smoothings of them
will not have ends on the boundary. It means each smoothing is some cir-

cles in B?. So we can assign a graded vector space to each circle in each

18



smoothing, and a proper linear map to each edge of the cube, then we will
obtain a chain complex over the category of vector spaces. After shifting
artificially the degree of those graded vector spaces, we will get Khovanov’s
homology from the complex. Moreover, the homology group’s Eular charac-
teristic which is a polynomial is the Jones polynomial.

More details can be found in [1] and [2].

19



3 Some basic definitions in 2-knots

In this section, we review some basic definitions about 2-knots. Since we
usually discuss 2-knots by their diagrams, so one of the points in this section
is to describe what the basic components of a 2-knot diagram are. The
other important terminology is the Roseman moves which is an analogy of
Reidemeister moves. Roseman moves, which has seven members, plays an

important role in defining a 2-knot invariant by 2-knot diagrams.

Definition 3.1. e A 2-knot is an embedding K:F — R* where F is a
orientable closed surface. Sometimes we also consider the image K (F')

as the 2-knot.

e We say two 2-knots:” k, and k, are ambfeﬁf isotopic or have the same
knot type, if there éxsists an, isotopy-L1:R¥x T —> R*
such that H(x,0) = z and H(J&-(a);]’) = ko(@), where a € F and F' is
| T | |

-

a closed surface. | | - | |
s 1
Ii'L, | ¢

e We say a 2-knet is unknolrt ng,if 1t is ambient iéotopic to the standard
a8 I I
[ i :

embedding in R8T VI LA

Remark 3.2. The definition of-tnknot is equivalent to that the image of

embedding is a boudary of some handlebodies in R*.

Since we want to introduce what a 2-knot diagram looks like in R?, which
is an analogy of classical knot diagram in R?, we first define the notion:

generic surface.

Definition 3.3. A smooth map f : K(a closed surface)— R? is generic

if and only if any point y € f(K) has a 3-ball neighborhood N (y)

such that the pair (N(y), N(y) () f(K)) is diffeomorphic to either (B?*, The
intersection of some coordinate planes)

or (B3, The cone on a figure eight).

The following picture can tell us what they look like.

20



TN ‘

non-singular case
# three plancs single plane
two planes

Figure 20: The local neighborhood of a generic surface

Remark 3.4. e The term ‘generic’ has the meaning of ‘stable’.

e In fact, we can use our understanding of generic map to prove the three
Reidemeister movesy It follows by® changlng the shape of these three

types of singularity a-littles

Definition 3.5. A brokén'surface diagrammis a diégfam in R® which is ob-

tained from a generic surface by:"' : —f',:f; | |

F l
1. Replace the intersection } ﬂN (y) Wlth some other manifolds:

casel: If the 1ntersect10ni 15 the case 91£ double pomts than we replace
it by three discs: It can be obtained by removing the neighborhood of
one of repeated lines. :

case2: If the intersection is‘the case of tripe points than we replace it
by seven discs. It can be obtained by removing two lines from one of
these three planes and then removing a line from one of the remainder
two planes.

case3d: If the intersection is the case of branch point than we replace it

by one discs. It can be obtained by removing the neighborhood of one

of repeated lines, but reserve the branch point.

Their pictures are listed below.

21



Ay

three planes single plane

non-singular case

two planes

Figure 21: Four kinds of the neighborhood of broken surface diagram

2. After we have finished modifing these neighborhoods, we still require

they are patched compatibly.

Notice that there is a generic surface cannot be converted into the broken
surface diagram because those neighborhlc!)bds can’t have a removing way to

be patched compatibly.

Now, we can preseht some basj_é_ the_breihs in the 2-knot theory, but we
. : S e
will not prove them insdetail. | e | ’

Vi ?(l—> ]Rf‘, we can find a vector v € R*
o= |

.

I
Theorem 3.6. For any 2-kn0j,
pgects R* ontid: the plane whose normal vector

and the projection 7,, which'p
is v, such that the compositiofy 7, 0 f is gerneri"é" (orgeneric surface) and the
generic surface has a natural Waf to be converted into the broken surface

diagram.

Proof. We just indicate how to convert this generic surface which is the image
of 7, o f into a broken surface diagram: Since we have the direction v, so we
can define the height of this 2-knot. We remove a neighborhood of the curve
which is at the higher position among those curves whose image of m, o f is
the same. Notice that we do this on the whole 2-knot in R*. We can find the
projection of the modified 2-manifold is a broken surface diagram for all of

those neighborhoods of its crossings are patched compatibly automatically.

[]

22



For more details and some pictures about the process, we refer to the
book [3] of Carter and Saito. We call the broken surface diagram of m, o f a
digram of the 2-knot: f. We must also note this any broken surface diagram

can be a diagram of a 2-knot.

Theorem 3.7. There is a 1-1 correspondance between {the collection of
2-knots} /ambient isotopy and {the broken surface diagram},~ Roseman

moves.

The complete pictures of seven Roseman moves can be found in the book
[3]. Here we only present some Roseman’s moves we may use later: first
type(bubble and saddle), second ty—pe(bu—}?'ble andssaddle).

Typel | y ;

middle sect ic'lx \/\l

'
OO Eo &

bubble saddle

I [
| i1
el 124
Figure 22:'Some of Roserhian' moves

23



EERSS—— “

bubble

saddle

Figure 23: Some of Roseman moves

Proof. 1 sketch a possible process to show the theorem:

In fact, we already have a fulncq:w&l_# LGy
from {the collection of 2 ngts} /éﬂmbv,é-izt'- zsot\fg...

i SmEe we can obtain a

Roseman moves. ‘?Phls S

2-knot from a brokeq ﬁr

,--s‘a Q'i_e onto follows.

O

24



4 Smooth 2-knot diagrams and Cob*

In this section, we want to imitate the method which is developed for clas-
sical knots in sec.1 and by using the method we try to construct a 2-knot
invariant. We divide this section into three subsections. In section 4.1, we
give some definitions about 0-smoothing, 1-smoothing, postive and negative
crossing and then describe the topology after smoothing those basic crossings
which are defined in sec.3. But there are some problems I still can’t solve or

explain in these definitions.

In the last two subsections, we introduce the category Cob* which is an

analogy of Cob® and we use-the novie-inethod to realize the morphisms in

Cob*.

|

embedding of some orientable sgurrfacés.:- : |

i | 1

I
!
In the following discussion, }w'e onlhpon:si:der those-2-knots which are the

4.1 Preliminary

Definition 4.1. A labelled oriented 2-knot diagram is a 2-knot diagram

which satisfies the following conditions:
e [t has an orientation on the surface.

e For each crossing, we have an orientation on it with some compatible
requirement. The compatibility involves the Roseman moves, but I

don’t realize it clearly yet.

e Each crossing has been numbered.
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There is an example of a labelled oriented 2-knot diagram. In fact, it is

unknot.

A O

(nt, n-)=(1, 1)

Figure 24: A labeled oriented 2-knot diagram

Definition 4.2. The positiye and’ négatix;gérossipgs in a 2-knot diagram can
be defined by following way: Jet the orientation of the crossing is v and the

oreintation of the surface is [el,ﬁ"& i
e

At a crossing, we have two plan tffl';nsivuerlsq

Let the direction e; of the two p ane?ﬂ)e thq v and con31der the orientation
[ea(under plane),e;(upper planT) v]. “Fhen Qorpare f%wigh the standard ori-
entation in R3. e

If they coincide then it is posltlve erossings If not 1t is negative crosssing.

Definition 4.3. 0-smoothing and 1-smoothing can be defined as following
way which doesn’t require giving an orientation on the surface. By the ori-
entation on the crossing, we can project the crossing to a plane and then
determine the smoothing type of the crossing as in the case of knot diagram.

The following picture tells us this process.
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1-smoothing

Figure 25: 0-smoothing and 1-smoothing

Remark 4.4. There are some serious problems in these definitions: For
example can we have a natural way to give.an orientation for those crossings.
And can the orientation be compatible between each Rossman moves which
will change the crossings ina-2.knot diagram.

It means I yet dou’t; kuow how to find"a"natural oreintation for each
crossing of a given 2-knot diagram) S0 we| won’t give a precise definition
about the chain complex as the one E’s@c.l And we directly begin to study
the category Cob* and_try to Constrff:gj_t the homotopy equivalence between

each Roseman move.

We now give an example of thé chian complex of a 2-knot diagram.

\ 11

QD /-

degree: -1 0 1

Figure 26: Chain complex for a 2-knot diagram
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4.2 The topology after smoothing

In classical knot diagrams, there is only one type of crossing. But in the
case of 2-knot diagrams, there are three types of crossing. In order to realize
its differential, we must realize the topology after smoothing those basic
crossings and the 3-cobordisms between two such smoothings. In classical
case, the differential is just a disc.

Note that in the case of triple point, there are three double curves in its

neighborhood. So there are not only two ways to smooth it as in other case.

Now we begin to study the topology after smoothing those basic crossings

e Double points:

p— o, |
—%

P QK

Figure 27:"Double point

e Branch points:

LL‘ @ ‘“fal

Figure 28: Branch points
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e Triple points:
It seems the case of triple point is more diffcult to realize, since it has
three double curves, and each of them has two ways to be smoothed.
So there are eight ways to smooth it. But the result is that there are

only two topological types among them. One is a disc, and the other

three discs one disc

0 Figuré 29 Tr;p'l'én‘point \
g | | =

is three discs.

=zt

Theorem 4.5. There is Iat)roc.s'sﬂt smooth a triple point such that

the eight kinds of smootrli
SN

E 14

- ,:t

g haéi’e orl}liy two tb'pological typies as the

above picture.

Proof. First, we smooth the twe double-curves with fixing the triple

point:

Smooth the bold
curves, first.

>

Figure 30:

Secondly, observe that no matter how we smooth these two double

curves with fixing the triple point, we get the same topological space
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by reflecting one to the other. Hence we only have two choices to
smooth the remainder double curve, and we can conclude that there

are only two topological typies in these eight kinds of smoothing.

They are different 1.
by a reflection bn

B
4 A ,- ‘Fki%ure 3L e,
v r ,:’tlf'-: ] E{ Za
Furthermore, ll&{g@gm;emwaa&s to smooth the re-
mainder double c{u"i/e e . deﬂa as f .ﬁgwiﬁ'g way: One is to

| e
smooth it along‘th fwo cones will leave the middle
disc. (figure 3%) So-

The other is tt)jmggip

disc.

Figure 32: The topology of it
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Note that the two different manifolds are those indicated before the

theorem. O

Remark 4.6. The differentials in the case of triple point are more
complicated than other two cases. We can observe that some of the
three double curves can be possibly joined together by some arcs out-
side the B3. So may have three different differentials at least: One
is smooth one double curve at a time, and the others are smooth two
double curves or three double curves at a time.
Here is an interesting phenomenon: Some of the 3-cobordisms between
%@@jb%%%_embedded into R?; For ex-
” W
ample smooth thrrg@houbla ‘curves-at a ti E‘}%
& )F N4 1',5‘%_

two smoothings of a
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4.3 The movie method

To analogize Bar-Natan’s theory, we introduce the C'ob* which is an analogy
of Cob®. Tts object is the surface (with boundary) in a 3-ball. Its morphism
is the 3-manifold (with boundary) embedded generically in B3 x I.

In order to describe the 3-manifold, we use the movie method.

To be clear we first apply this method to the 2-dimensional cobordisms
which are the morphisms in Cob3. It is an another way to describe the
2-cobordisms and it can be applied to the 3-cobordisms, too.

The main idea comes from the Morse theory [5]. It means we can use
the level sets and the critical points (must be discrete) to understand a 2-

dimensional cobordism.

Definition 4.7. We definesthese clips to be the O-handle,1-handle and 2-
handle. )

0-cell 1-cell O 2-cell
Q 7
or

O

Figure 33: movie diagram

In figure 34, we describe a generic 2-cobordism as a moive.
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0c<
04
X
o<

DIEIEIE

e
the 2-cobordism .‘—

Figure 34: Movie diagram

Theorem 4.8. Any 2-cobordism embedded in R? can be describe as a movie.

Proof. By Morse theory, we can find a height function which is a Morse
function as we restrict it ongthis 2-cobordism, 8o we can find its level set of
regular value is some l-dimensional objé'cfs in-R%. And the way to attach

those cells when we pass though a critical point arc just these three types. [

Now we use the similar Way" té’-ﬁi‘_ﬁ&é:rstand the 3-cobordism in R*. It
. ‘
means that we slice it-inte ma»n;Lr sli(f,_gsl;in R? so that,we can draw. By ob-

serving the change between eaph slice, we can undeérstand the 3-cobordism

in R%,

Definition 4.9. We define following clips to be attching cells in some certain

ways.

< 2D
e £ sene
g é& part)
==

S O

Figure 35: The basic short clips
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Theorem 4.10. All 3-manifolds embedded in R* can be described by a movie

which is a combination of some clips described in definition 4.9.

Note that the description is not unique.

Proof. By Morse theory, we know a 3-manifold can be constructed by attach-
ing some cells as we pass through the critical points of some Morse function.
So to prove this theorem, it suffices to show that the ways to attach 1-cell
and 2-cell are just these two types described in definition 3. We now rule out

two other possibilities so that the attaching way are only these two typies.

1. The case in the lefthand side will imply that the non-orientable surface

can be embedded in R?. But by the ‘Alexander duality, it is impossible.

casel _
atta h ihe 7ad n-full twists
sl - - e
N4

Figure 36: Two impossible cases

2. The case in the righthand side can’t occur, since the boundary of the
band had nonzero linking number. So one of the two circles can’t be

bounded by a disc without intersecting the other circle.
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4.4 The category: Cob*

To let the discussion in section 4 be systematic, we introduce the category

Cob* which is an analogy of the Cob®.

Definition 4.11. The object in C'ob? is some surfaces embedded in a 3-ball
with the intersection of the surfaces and the boundary of the 3-ball(B?) is

exactly the boundary of the surfaces.

(S(
< %y

Figure |37 Objects in Cob?

,’fibx
The morphism in Cob* is'a 3- dimej’lsional cobordism embedded in B? x [
with the height function restrlqted on the 3-cobordism is a Morse function.
So we can use the Mowie Method tertealize-this-3-cobordism.

Movie Method

20068

remove a 3-ball

total 3-cobordism:

solid

(3-dim.) bottom

Figure 38: Morphism in C'ob*

Note that we consider the Cob? as an additive category. It means we can

formally add two morphisms as those morphisms in Cob?.
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5 Homotopy equivalences

In this section, we present some homotopy equivalences for the first type
Roseman moves and some relations we require when we construct these ho-
motopy equivalences. But now there are still many problems we can’t solve
in constructing homotopy equivalence. In this section, we also summerize

them.

5.1 First type Roseman move (bubble)

Here we imitate the homotopy equivalence.which Bar-Natan gives in the first
Reidemeister move and comstructithe horr;'Qtopy equivalence for the first type
Roseman move (bubble). We-requite somiggelations which are an analogy of
the relations: Torus ~ 2 and 4Tu-relation in the.Clob. They are S' x 5% ~ 2
and NewdT u-relation: ' 7 [ ~ -

e o)
| == | |

N B ‘

X () ~2

SxS'=2

Figure 39: S x §% ~ 2
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+
It represent removing a smaller
3-ball from a 3-ball.

s‘___~’//// the curve represent a SxI tube with attaching each
component of 1ts boundary to the S in the 3-ball.

© 0O
@ ©

Figure 40: New4Tu-relation

Now we give a theorem, concerning this type of Roseman move.

Theorem 5.1. If we add the relations S* x $%'~2 and New4T u-relation into
the Morphisms of €ob?, then we can find-~the homotopy equivalence for the
first type Roseman move(bubble). It-eanbe shown by following diagrams:

/_\middlc section h

Q 0— <L = —0

Z Al BB,
© 00— ———

Figure 41: The chian homotopy equivalence
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Here, we use the movie method to describe (Its boundary is top)

the 3- dlmen51ona1 cobordism. f‘solld ball
A s CDH ——x1I
=,
B1:©© CD >
= S @ || x
e . T . 5 U8z
(Its boundary is bottom)

bottom

{solid ball

T OHOXI

Flgme 42: Tfl—e‘maps, A B, h and d

| .'i“"-n! l_,',I I
’i:r

Proof. First, we check that Wh«ft e{y a,qu chain maps or not.
The equality d o By = d’c By s due-to esfn h of theni are S? x ST\ B? with
its boundary S? in the beﬁndaf}{ of B3 x Ill nd d 0) o A = 0 is obvious.
Secondly, we want to show ‘it s a homotopy equlvalence The equality A o
(By— Bsy) = Id follows the relatlon 52 % S1 ~ 20 Since AoB; = AoB,US?x S
and Ao By = Id, so we have Ao(B; — By) = 2Id—Id = Id. To check another
case (B} — Bs) o A, we use the New4Tu-relation which is like the following

picture:
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bottom
means joining them by a S*tube

@ e
oY) 23+ 1A = 12 4 3
NG

G BeA + -hed = Id + ByrA

N pbottom

Figure 43: The New4dT'u-relation in this case

So we get (B; — By)o A—1Id —ﬁ
Finally, we can find the e‘yﬁ% ng‘? h =
h fills the hole (top) mﬁe)f; J

the ball (bottom) in the

x%.

5

5 ‘iﬁf’@ﬁj . #ﬁ-ﬂ_@ﬂ,

O

way to attach the

39



5.2 First type Roseman move (saddle)

oﬁ%lé)%clﬁﬂo
A TB
.Essga _)% e =)

1.You can see the crossing curve 1nv01ve boundary.
2.h is chain homotopy

3 .Preserve boundary means the corbordism between two
corresponding chaln group 1s identity when we restrict it on
the boundary of B’xI.

Figure 44: The first, type Roseman move (saddle)
. '| A

As the above picture wedencounter the first trouble which is that its
crossing (curve) meet £ho boundary of the" B3 But:it'dosen’t happen in the
Reidemeister moves since each cps?;g( (pblpt is enclosed in the boundary
of a 2-disk. It will lead to mar}y proﬁIems which'let constructlng the chain
homotopy equivalence (become more i‘[ﬁcult; To study these problems sys-
tematically, we list someﬁéssibﬂe{ strategies hmd jﬁhe,dli’ﬁcultles we encounter.
We also present some resulfs we haye found in'-::each strategy.

In fact, there is an another prbblem insthis case. It is that we have two
choices to smooth the upper knot diagram in figure 44: One is smoothing
two arcs at the same time and the other is one arc each time. But to avoid
making the problem become too complicated, we first discuss the case which

we smooth them at the same time.

Following list contains three approachs we consider. We try to use them

to realize how we constuct the homotopy equivalence in the case (saddle).

1. Preserve boundary: It means we want to preserve the boundary of the
corresponding surfaces which is in dB? when we construct homotopy

equivalence. It leads to two situations:
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(a) h =0 (The chain homotopy equals zero.):

i. It won’t touch the extension problem that how we can extend

the local chian map to a global one.

ii. We can guess what kinds of relation we need in constructing
homotopy equivalence by observing the topological type of its
boundary.

iii. The difficulty will not be met now. But when we try to es-

tablish those new relations, we will find many obstructions.
(b) h # 0 (The chian homotopy doesn’t equal zero.):

. This will encounter* 1mmed1ately the problem that we must
have some rélatlons whicl 1nvolve the boundary, but we can’t

understand yet how to mtepret thls Hnusual phenomenon.

I:'—{

ii. The other prob]temﬁﬁls the. ex'tensmn of the chain homotopy.
Since we ean’t d te:cglm'e-vfﬂat the nfanifold is outside the
B3, so-we are not sure'lhat Wilether the cobordism in the B?
can be extende Tutsuie thellﬁ%

2. Admit changing boundary: The probl@ms in_this strategy is very similar
to those in the strategyl (h #.0)-
(a) The relation will involve boundary.
(b) The extension problem will arise.

(c) In this section, I will present a natural way to construct the ho-

motopy equivalence which admits changing boundary.

(d) If we permit changing boundary, then the definition of the mor-

phisms in Cob* must be modified.

3. Classify the global cases: It means to construct the chain homotopy

equivalence for each given global case.
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(a) It seems that it is impossible to become a good way to solve this
problem completely, since there are too many global examples and

most of them are very complicated.

(b) The advantage of this strategy is that we can avoid that its cross-
ings meet the boundary of B3.

(c) It maybe can give us some possible chain homotopy equivalence

for the local case.

Now if we adopt the strategy 2, then we can have a natural way to find

a homotopy equivalence by using S!x first Reidemeister move.

* )
Lemma 5.3. If we add two addifional relationsin the Cob*: S!x 51 x S = 2

and S' x 4Tu — relation, which is-like the-following picture,

(=g |
L - T l
e
\h . Connet two torus holes by a

T2 tube

- A 3-ball hollowed out a solid
' torus.

S'x 4Tu-relation:
A+B=C+D

Figure 45: The S x 4Tu — relation

then we can have a homotopy equivalence between the following two knot

=k

Figure 46: The two equivalent knot diagrams

diagrams.
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Proof. We will prove it by constructing homotopy equivalence in the following

o—> <_1—>o

Al TBI-BZ

O—>! — 0

Figure 47:1/The chain complexes of them

diagram:

The following plcture descrlbes what those. maps are by mouvie method.

In fact, it is just StxC “the hom@topy equxvalence in“the first Reidemeister

— z -

move. X | ‘
L L ';; l
#l":"' l
el
L L i‘
v los s \
U solid torus
(For convention, I will 1gnore the XS (boundary is top)

since all of them must be "S)

» (0 <o <8 T g
6 (
t LR (O | D

bottom)

(¢ e 0
U solid torus

(boundary is bottom)

(O Q ( H DXI\sond torus

(Its boundary is top)

Figure 48: The homotopy equivalence
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Since the cobordisms here are just S'x those cobordisms in the first
Reidemeister move, so it is not difficult to check that they are chain maps:
do(By—B;) =0and 0o A = 0. To check it is a homotopy equivalence we use
St x S x S* = 2 which leads (B; — By) o A = Id and use S* x 4Tu —relation
which implies Ao (B; — By) — Id = hod.

And the inquality h od = —Id is due to that the solid torus in A will fill the

solid torus hole in d.

The following picture describes how we use the S! x 4Tu-relation in this

case.

Figure 49: Apply S¥x 4Tu “irelation to the case

]

On the other hand, the homotopy equivalence we construct in the section

4.1 gives us the following lemma.

Lemma 5.4. If we use the relations: S? x S! = 2 and New4Tu-relation on
Cob*, then there is a homotopy equivalence between the following two knot

diagrams.

Now, we combine the two homotopy equivalences, and take one piece

from each diagram. It is the region enclosed by the red bold rectangle. We
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~

Attach this two edges //'/
together e

Figure 50: The two equivalent knot diagrams

can see the figure 51. Then we can obtain the homotopy equivalence of the
first Roseman move (saddle), but the boundaries in these 3-cobordisms are

not fixed.

CE]EOCE”’; T o
T s ==
0~ ~+ )
h bTTC
=D ¢ 0~ = - -0

Figure 51: Cutting a piece of those surfaces

This can be stated as the following theorem.

Theorem 5.5. By adding some relations which involve boundary, we can

obtain the homotopy equivalence of the first Roseman move(saddle).

Remark 5.6. 1. The relations which are used in this theorem can be
gotten by observing how the cutting we did here effect the original re-
lations: S%Zx St =2, S1x S x St = 2 and the two kinds of 4T u-relation.
Figure 52 describes two of them which are induced from the relations:

S?2x St =2and St x S' x St =2. One is “T'wo solid tori” with their
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xS — @ @ $xS'x S — @ X

Figure 52: New relations in the theorem

boundaries in d(B?) x I and the other is “T'orus x I” with its boundary
also in O(B?) x I. Those relations induced from the S* x 4Tu-relation

and New4T'u-relation are not stated here since it is not easy to draw.

Note that all of its relationsiinvolve boundary of B x I, but I don’t

know how to explain this phenomeridn yebs

. If we restrict the:3-cobordisms on the, boundary: of B? and remove one
point on the dB? then it will _hecome a 2-dim’l cobordisms in B? x [
like a morphism in €ob?. For"exa‘mple the/boundaries of By o C' and

By o C are like the followmg plclure

|

Figure 53: The shape of boundary
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