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摘要

在 Khovanov’s theory 中, 利用結的平滑化, 得到了一個 chain complex, 更

進一步的可以得到一個結的不變量, 稱它為 Khovanov’s homology。

但在 Bar-Natan教授的一篇文章中,曾用另一個方式重新解釋這個 chain com-

plex, 他先不將每一個平滑化的圖, 看作向量空間, 反而用 cobordism 作為它的

differential。 這是一個更抽象的 chain complex, 但很特別。 這似乎是從一個更原

始的角度來看此種 chain complex。

本文描述了我們將這個方法推廣到曲面嵌入四維空間 (2-knots)的一些結果及

遇到的困難, 其中也包括如何平滑化曲面圖和一些在 Roseman moves 間的 chain

homotopy equivalence。
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Abstract

The Khovanov’s homology is the most powerful knot invariant up to now.

In [1], Prof. Bar-Natan gives a new idea to interpret the Khovanov’s ho-

mology. We wonder whether we can mimic his method and apply to the

2-dimensional knots. In this article, we present some results we found, and

some difficulties we encountered.
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1 Introduction

In Khovanov’s theory, he introduces a homological invariant of knots by

smoothing a knot diagram of a given knot. Roughly speaking, it is obtained

by first smoothing a knot diagram, and then putting all smoothings in order.

In the next step, we assign each circle a graded vector space, and define a

proper homomorphism between two smoothings as its differential. The ho-

mology group of this chain complex turns out to be a knot invariant and we

call it Khovanov’s homology of this knot. Bar-Natan gives a clear introduc-

tion of this homological invariant in [2].

In the paper [1] of Prof. Bar-Natan, he found a new interpretation of

these chain complexes. He uses the cobordisms to be the differentials and

directly considers the direct sum of the smoothings as the chain groups. It is

a very interesting and special idea because all the maps are not “real maps”

as functions but are the surfaces with boundary. Moreover, it seems to me

that he interprets the Khovanov’s homology from a more foundamental point

of view.

We will review Bar-Natan’s interpretation for Khovanov’s homology in

the section 2. Many definitions used to define the Khovanov’s bracket, as

well as the idea of the proof for Khovanov’s bracket to be a knot invariant

will be contained in section 2.

In section 3, we will review some basic definitions about 2-dimensional

knots. The character of a 2-knot diagram and the definition of Roseman

moves which is an analogy of Reidemeister moves will be contained in this

section. For more details about 2-knots, we refer to Carter’s book [3].

In the last two sections, we want to mimic Bar-Natan’s method in [1]

and apply it to the 2-dimensional knot diagrams. We will present some basic
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definitions which are an analogy of those for 1-dimensional knots in section

2, and also define the category Cob4 whose morphisms are 3-dimensional

cobordisms. In order to understand these 3-dimensional cobordisms, we use

the movie method which will be described in section 4.3.

Finally, some homotopy equivalences between Roseman moves and some

problems we encountered will be described in the last section.
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2 1-dimensional case

Most parts in this section can be found in [1] and we just review his con-

struction.

2.1 Review

We now begin to review some basic definitions which Prof. Bar-Natan used

to interpret the Khovanov’s chain complex.

Definition 2.1. A tangle is an image of an embedding which embeds some

arcs or S1 into B3 with endpoints of these arcs lying in the boundary of B3.

A tangle diagram is the image of a generic projection from B3 onto B2 which

will send the tangle into B2 with that each intersection is transversal and

the ends of these arcs lie in the boundary of B2.

Definition 2.2. A labeled oriented tangle diagram is a tangle diagram which

we give them an orientation and number all its crossings.

Figure 1: Labeled oriented tangle

Definition 2.3. Given a knot diagram, we also mark the sign of its crossings

– (+) for overcrossings and (−) for undercrossings.
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Figure 2:

Definition 2.4. The 0-smoothing and 1-smoothing: a crossing is an inter-

change involving two highways.

The 0-smoothing is when you enter on the lower level and turn right at the

crossing.

The 1-smoothing is when you enter on the upper level and turn right at the

crossing.

Figure 3:

Now, for a given n crossing knot we can get a n-dimensional cube with

vertices {0, 1}n, projected by the “shifted height” to the interger points on

[−n−, n+]. And the edges of the cube are marked in the natural manner by

n-letter strings of 0’s, 1’s and precisely one ?. The ? denote the coordinate

which changes from 0 to 1 along a given edge.

Vertices: Each vertex of the cubes carries a smoothing of K (the given

labeled oriented knot diagram)– a planar diagram obtained by replacing ev-

ery crossing in the given diagram of K with either a “0-smoothing” or a

“1-smoothing”.
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Figure 4: n-cube

Shifted height: If a vertex ζ is labeled by a sequence (ζi) in the alphabet

{0, 1}, then its height k =
∑
ζi and the ”shifted height” is k − n−.

Edges: Each edge of the cube is labeled by a cobordism between the

smoothing on the tail of that edge and the smoothing on its head– an ori-

ented two dimensional surfaces embedded in R2 × [0, 1] whose boundary lies

entirely in R2× 0, 1 and whose “top” boundary is the “tail” smoothing and

whose “bottom” boundary is the “head” smoothing. Specifically, to get the

cobordism for an edge ξ ∈ {0, 1, ?}n for which ξj = ? we remove a disk

neighborhood of the crossing j from the smoothing ξ(0) ≡ ξ |?=0 of K, cross

with [0,1], and the empty cylindrical slot around the missing crossing with a

saddle cobordism (Figure 5).

Figure 5: Saddle cobordism
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Sign: We give a sign on each edge. If an edge ξ is labeled by a sequence

(ξi) in the alphabet {0, 1, ?} and if ξj = ?, then the sign on the edge ξ is

(−1)
∑

i<j ξj .

Now, we will define a new category which plays an important role in this

new intepretation for Khovanov’s homology.

Definition 2.5. The Cob3(B) (or Cob3(∅)) is a category whose objects

are smoothings with boundary B (or ∅) and whose morphisms are the 2-

dimensional cobordisms between such smoothings, regarded up to boundary-

preserving isotopies. The composition of morphisms is given by placing one

cobordism atop the other.

(We will use the notation Cob3 as a generic reference either to Cob3(B) or

to Cob3(∅).) There is a picture describing the morphism and the objects in

Cob3.

Figure 6: A morphism between two smoothings
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The Cob3
/l is a qoutient of Cob3 by adding some relations in the morphisms

of Cob3. They are the following three relations:

• Sphere∼0.

• Torus∼2.

• 4Tu-relation can be described by following picture.

Figure 7: 4Tu-relation

Remark 2.6. In fact, we can think of the Cob3
/l as an additive category

by extending every set of morphisms Mor(O,O′) to also allow of fromal

Z-linear combinations of “original” morphisms and by extending the compo-

sition maps in the nature bilinear manner.

Note that an additive category is a category in which the sets of mor-

phisms are Abelian groups and the composition maps are bilinear in the

obvious sense.

Definition 2.7. Given an additive category C, we can define another additive

category Mat(C):

• The objects of Mat(C) are formal sums(possibly empty)
n⊕
i=1

Oi of ob-

jects Oi of C.

• If O =
n⊕
i=1

Oi and O′ =
n⊕
i=1

O′i, then a morphism F : O′ → O in

Mat(C) will be an m×n matrix F = (Fij) of morphism Fij : O′j → Oi.
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• Compositions of morphisms in Mat(C) are defined by a rule modeled

on matrix multiplication, but with compositions in C replacing the

multiplication of scalars,((Fij) ◦ (Gjk)) ≡
∑
j

Fij ◦Gjk.

Note that It is convenient to represent objects of Mat((C)) by column

vectors. The following picture is an example of Mat(Cob3
/l)

Figure 8: Mat(Cob3
/l)

Definition 2.8. Given an additive category C, we define Kom(C) to be

the category of complexes over C, whose objects are chains of finite length

... → Ωr−1 →dr−1

Ωr →dr Ωr+1 → ... for which the composition dr ◦ dr−1

is 0 for all r, and whose morphism F = (F r) satisfy the commutativity

(F r+1 ◦ dr = dr ◦ F r). The composition is defined via (F ◦G)r ≡ F r ◦Gr.

Note that we also can define what is “Two morphisms in Kom(C) are

homotopic.”, “A chain map is a homotopy equivalence.”, and “Two chain

complexes are equivalent.”.

Now, we can define the Khovanov’s bracket [ ] which is a function from

the tangle diagram to the category of Kom(Mat(Cob3
/l)). For a given tangle

diagram T , we can interpret the n-cube (n-dimensional cube of smoothings)

as a chain complex denoted [T ] by thinking of all smoothings as objects

in Cob3
/l and of all cobordisms as the morphism in Cob3

/l. We set the r’s

chian space [T ]k of the complex [T ] to be the direct sum of those smoothings
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whose shifted height is k (which is an object in Mat(Cob3
/l)) and to sum

those cobordisms from the smoothings at height-(k− 1) to those at height-k

in the cube to get the differential (which is a morphism in Mat(Cob3
/l)).

(i.e., [T ] =→ [T ]−n− → [T ]−n−+1 → ...,→ [T ]n+−1 → [T ]n+)

This is an example of [T ].

Figure 9: Khovanov’s bracket of a tangle diagram

It is convenient to short Kob for Kob(Mat(Cob3
/l)) in the next subsection.
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2.2 Invariance

Before we begin this section, we must recall that two tangle diagrams are

equivalent iff one can be obtained by another via finite Reidemeister moves.

The main theorem which I will state in this section tells us that the Kho-

vanov’s bracket can be viewed as a tangle invariant. It means that we must

show that the Khovanov’s brackets of two equivalent tangle diagrams are two

homotopy equivalent chain complexes.

Notice that the homotopy equivalence here will be some 2-dim’l cobordisms,

for we are working in the category Kob (Kob(Mat(Cob3
/l))).

In this section, we first state the main theorem, and then write down four

lemmas to make the scheme of our proof clearer. We won’t carry out all the

proof of them, so if you want to get more details about the proof of these

lemmas, you can refer to the Bar-Natan’s paper [1]. I just rewrite his idea

and emphasize what will be used in the following sections.

Notation 2.9. We list some useful notations below:

• T 0(k) denote the collection of all k-ended unoriented tangle diagram.

• T 0(s) denote the collection of | s |-ended oriented tangle diagram whose

incoming/outgoing strands is specified by s.

(s is a sting of in(↑) and out (↓) symbols with a total lengh of | s |).

• T (k) denote the quotient of T 0(k) by three Reidemeister moves.

• T (s) denote the quotient of T 0(s) by three Reidemeister moves.
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• Kob(k)≡Kom(Mat(Cob3
l (Bk)))(Bk is k points on the boundary.)

• Kob/h≡Kob/(homotopy equivalent chain complexes)

Theorem 2.10. The Khovanov’s bracket [ ] can be thought of as a func-

tion from T to Kob/h. (i.e.It means if T1 and T2 are two equivalent tangle

diagrams, than [T1] and [T2] are homotopy equivalent.)

Our main strategy is first to construct homotopy equivalences between

three Reidemeister moves and then to reduce the global case to local case

which is just one of three Reidemeister moves.

In order to reduce the global case to the local case, he introduces the “planar

algebra” which will be defined later.

Lemma 2.11. The Khovanov’s bracket [ ] is invariance under three Reide-

meister moves.

For example:(we want to show these two chain complexes are homotopy

equivalent)

Figure 10: First type

Proof. We only verify the type1 case. The proof of the other cases can be

found in [1]. In the proof for type1 case, we can find how the relations:

Torus∼2 and 4Tu-relation work. In fact, they play an very important role
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in constructing homotopy equivalence.

We will construct the maps A, B, and H in the figure11 and then check

that it is a homotopy equivalence between them.

Figure 11: Search homotopy equivalence

The maps: A, B = B1 −B2 and H are:

Notice that the top of each can corresponds to the smoothing on the tail of

Figure 12: Maps: A, B and H

some arrow and the coefficient of H is negative one.
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First, we check that whether they are chain maps.

d◦A=0◦d is OK.

d◦(B1 −B2)=(d◦B1)− (d◦B2)= 0 = 0◦d.

The picture of the equality is like:

Figure 13: Both of them are the same manifold

Secondly, we check that they are a homotopy equivalence:

A◦(B1 −B2)=A◦B1-A◦B2.

Since we have the relation Torus ∼2

and A◦B2=Id,

so we have A ◦ (B1 −B2)= 2 · Id-Id=Id.

For the case of B ◦ A we use 4Tu-relation on this holed 2-corbordism.

Figure 14: How 4Tu-relation works here
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Then we obtain the equality:

B1◦A−B2◦A− Id=H◦d.

Hence we get a homotopy equivalence for first Reidemeister move.

Note: We will use the relations: Sphere= 2 and 4Tu-relation to construct

the homotopy equivalence for second Reidemeister move. And the homotopy

equivalence for third Reidemeister move can be obtain from the second Rei-

demeister move directly by some technique.
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Definition 2.12. A d-input planar arc diagram D is a big “output” disk

with d “input” discs removed, along with a collection of disjoint embedded

oriented arcs that are either closed or begin and end on the boundary. The

input discs are numbered 1 through d, and there is a base point(*) marked

on each input disc and the output disc.

(Similarly, we can define the unoriented planar arc diagram by forgetting the

orientation of arcs.)

Figure 15: Planar arc diagram

Definition 2.13. A planar algebra is a collection of sets (P(k))(orP(s))

which has these properties:

(1)We can define an operation D : P(k1) × P(k2) × ... × P(kd) → P(k) for

each d-input planar arc diagram D.

(2)The operation defined for the identity diagram must be identity.

Figure 16: Identity planar arc diagram
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(3)The associative law: If Di is the result of placing D′ into the i-th hole

of D, then as operations,Di = D ◦ (I × ...×D′)× ...× I.

Figure 17: Associative law

For example the tangle diagram space T 0 is a planar algebra.

Figure 18: Tangle diagram space

I list some planar algebras we will use here:

1. Oriented planar algebra

• T 0(s)

• T (s)

2. Unriented planar algebra

• Obj(Cob3
/l)

• Mor(Cob3
/l)

• Obj(Mat(Cob3
/l))

• Mor(Mat(Cob3
/l))

We note that every unoriented planar algebra can be regarded as an

oriented one by setting P(s) ≡ P(| s |).
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Lemma 2.14. The collection of the objects in Kob(s) is a planar algebra.

Proof. Given a planar diagram D which has n-input discs and an output

disc.

We can define a function D:×nKob → Kob by the following way: (like ten-

sor). Let Ωi =(Ωr
i ) denote the n chain complexes for i = 1, ..., n. Then we

define:

Ω ≡ D(Ω1,Ω2, ...,Ωn)

Ωr ≡
⊕

r=r1+...+rn

D(Ωr1
1 ,Ω

r2
2 , ...,Ω

rn
n )

d |D(Ω
r1
1 ,Ω

r2
2 ,...,Ωrn

n )≡
i=n∑
i=1

(−1)Σj<irj D(IΩ
r1
1
, ..., di, ..., IΩrn

n
)

Lemma 2.15. We list some properties of such planar algebra.:

• D(I, ..., Fi, ..., I) induce a function,D(Ω1, ...,Ωia, ...,Ωn)→ D(Ω1, ...,Ωib, ...,Ωn)

as Fi:Ωia → Ωib

• D(I, ..., F, ..., I) ◦D(I, ..., G, ..., I)=D(I, ..., F ◦G, ..., I)

• If F1 + ...+ Fn = G1 + ...+Gm by some of the relations in Cob3
/l

thenD(I, ..., F1, ..., I)+, ...,+D(I, ..., Fn, ..., I) = D(I, ..., G1, ..., I)+, ...,+D(I, ..., Gm, ..., I).

It can be shown by observing how the cobordism be put into a planar arc

diagram.

Lemma 2.16. The Khovanov’s bracket [ ] has such commutative law:

[D(T1, ..., Tn)] = D([T1], ..., [Tn])

Proof. We can consider the case: All T1, ..., Tn are single crossings. This is

true since it (D([T1], ..., [Tn])) just is the definition of Khovanov’s bracket. So

by associative law of planar algebra, It is still true for arbitrary tangles(T1, ..., Tn).
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Now, we can prove the main theorem:

Recall that we want to show that the Khovanov’s bracket is a function from

tangle space to Kob/h (Kob/homoyopy equivalence).

Proof. Suppose T1 and T2 are equivalent tangles in T 0. It means they differ

from each other by finite Reidemeister moves. So we can assume that their

difference is just one of these three Reidemeister moves. We can circle all its

crossing so that T1 = D(T, T 1, ..., T n), T2 = D(T ′, T 1, ..., T n) and T and T ′

is one of the three Reidemeister moves.

Since we have lemma 4,

so [T1] = [D(T, T 1, ..., T n)] = D([T ], [T 1], ..., [T n]).

By lemma 1, we have homotopy equivalence F between [T ] and [T ′].
By lemma 3, we can verify that D(F, I, ..., I) is still a homotopy equivalence

of D([T ], [T 1], ..., [T n]) and D([T ′], [T 1], ..., [T n]).

But we have D([T ′], [T 1], ..., [T n]) = [T2],

so [T1] ∼ [T2].

The following picture shows that how we circle those crossings:

Figure 19:

Remark 2.17. If we consider the case of knot, then the smoothings of them

will not have ends on the boundary. It means each smoothing is some cir-

cles in B2. So we can assign a graded vector space to each circle in each

18



smoothing, and a proper linear map to each edge of the cube, then we will

obtain a chain complex over the category of vector spaces. After shifting

artificially the degree of those graded vector spaces, we will get Khovanov’s

homology from the complex. Moreover, the homology group’s Eular charac-

teristic which is a polynomial is the Jones polynomial.

More details can be found in [1] and [2].
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3 Some basic definitions in 2-knots

In this section, we review some basic definitions about 2-knots. Since we

usually discuss 2-knots by their diagrams, so one of the points in this section

is to describe what the basic components of a 2-knot diagram are. The

other important terminology is the Roseman moves which is an analogy of

Reidemeister moves. Roseman moves, which has seven members, plays an

important role in defining a 2-knot invariant by 2-knot diagrams.

Definition 3.1. • A 2-knot is an embedding K:F → R4, where F is a

orientable closed surface. Sometimes we also consider the image K(F )

as the 2-knot.

• We say two 2-knots: k1 and k2 are ambient isotopic or have the same

knot type, if there exsists an isotopy H:R4 × I → R4

such that H(x, 0) = x and H(k1(a), 1) = k2(a), where a ∈ F and F is

a closed surface.

• We say a 2-knot is unknotting, if it is ambient isotopic to the standard

embedding in R3.

Remark 3.2. The definition of unknot is equivalent to that the image of

embedding is a boudary of some handlebodies in R4.

Since we want to introduce what a 2-knot diagram looks like in R3, which

is an analogy of classical knot diagram in R2, we first define the notion:

generic surface.

Definition 3.3. A smooth map f : K(a closed surface)→ R3 is generic

if and only if any point y ∈ f(K) has a 3-ball neighborhood N(y)

such that the pair (N(y), N(y)
⋂
f(K)) is diffeomorphic to either (B3, The

intersection of some coordinate planes)

or (B3, The cone on a figure eight).

The following picture can tell us what they look like.
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Figure 20: The local neighborhood of a generic surface

Remark 3.4. • The term ‘generic’ has the meaning of ‘stable’.

• In fact, we can use our understanding of generic map to prove the three

Reidemeister moves. It follows by changing the shape of these three

types of singularity a little.

Definition 3.5. A broken surface diagram is a diagram in R3 which is ob-

tained from a generic surface by:

1. Replace the intersection f(K)
⋂
N(y) with some other manifolds:

case1: If the intersection is the case of double points than we replace

it by three discs. It can be obtained by removing the neighborhood of

one of repeated lines.

case2: If the intersection is the case of tripe points than we replace it

by seven discs. It can be obtained by removing two lines from one of

these three planes and then removing a line from one of the remainder

two planes.

case3: If the intersection is the case of branch point than we replace it

by one discs. It can be obtained by removing the neighborhood of one

of repeated lines, but reserve the branch point.

Their pictures are listed below.
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Figure 21: Four kinds of the neighborhood of broken surface diagram

2. After we have finished modifing these neighborhoods, we still require

they are patched compatibly.

Notice that there is a generic surface cannot be converted into the broken

surface diagram because those neighborhoods can’t have a removing way to

be patched compatibly.

Now, we can present some basic theorems in the 2-knot theory, but we

will not prove them in detail.

Theorem 3.6. For any 2-knot, f : K → R4, we can find a vector v ∈ R4

and the projection πv, which projects R4 onto the plane whose normal vector

is v, such that the composition πv ◦ f is generic (or generic surface) and the

generic surface has a natural way to be converted into the broken surface

diagram.

Proof. We just indicate how to convert this generic surface which is the image

of πv ◦ f into a broken surface diagram: Since we have the direction v, so we

can define the height of this 2-knot. We remove a neighborhood of the curve

which is at the higher position among those curves whose image of πv ◦ f is

the same. Notice that we do this on the whole 2-knot in R4. We can find the

projection of the modified 2-manifold is a broken surface diagram for all of

those neighborhoods of its crossings are patched compatibly automatically.
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For more details and some pictures about the process, we refer to the

book [3] of Carter and Saito. We call the broken surface diagram of πv ◦ f a

digram of the 2-knot: f . We must also note this any broken surface diagram

can be a diagram of a 2-knot.

Theorem 3.7. There is a 1-1 correspondance between {the collection of

2-knots}�ambient isotopy and {the broken surface diagram}� Roseman

moves.

The complete pictures of seven Roseman moves can be found in the book

[3]. Here we only present some Roseman’s moves we may use later: first

type(bubble and saddle), second type(bubble and saddle).

Type1

Figure 22: Some of Roseman moves
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Type2

Figure 23: Some of Roseman moves

Proof. I sketch a possible process to show the theorem:

In fact, we already have a function h

from {the collection of 2-knots} � ambient isotopy

into {the broken surface diagram} � Roseman moves.

By understanding the generic map from a 3-manifold into the R4, we can

show that the projection of any ambient isotopy is a combination of some

Roseman moves. This show that h is well-defined. Since we can obtain a

2-knot from a broken surface diagram (refer to [3]), so the onto follows.

The 1 to 1 is due to each Roseman move can induce an isotopy between the

two knots whose diagrams are different from some of Roseman moves.
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4 Smooth 2-knot diagrams and Cob4

In this section, we want to imitate the method which is developed for clas-

sical knots in sec.1 and by using the method we try to construct a 2-knot

invariant. We divide this section into three subsections. In section 4.1, we

give some definitions about 0-smoothing, 1-smoothing, postive and negative

crossing and then describe the topology after smoothing those basic crossings

which are defined in sec.3. But there are some problems I still can’t solve or

explain in these definitions.

In the last two subsections, we introduce the category Cob4 which is an

analogy of Cob3 and we use the movie method to realize the morphisms in

Cob4.

In the following discussion, we only consider those 2-knots which are the

embedding of some orientable surfaces.

4.1 Preliminary

Definition 4.1. A labelled oriented 2-knot diagram is a 2-knot diagram

which satisfies the following conditions:

• It has an orientation on the surface.

• For each crossing, we have an orientation on it with some compatible

requirement. The compatibility involves the Roseman moves, but I

don’t realize it clearly yet.

• Each crossing has been numbered.
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There is an example of a labelled oriented 2-knot diagram. In fact, it is

unknot.

Figure 24: A labeled oriented 2-knot diagram

Definition 4.2. The positive and negative crossings in a 2-knot diagram can

be defined by following way: Let the orientation of the crossing is v and the

oreintation of the surface is [e1, e2].

At a crossing, we have two planes transverse.

Let the direction e1 of the two planes be the v and consider the orientation

[e2(under plane),e2(upper plane),v]. Then compare it with the standard ori-

entation in R3.

If they coincide then it is positive crossing. If not, it is negative crosssing.

Definition 4.3. 0-smoothing and 1-smoothing can be defined as following

way which doesn’t require giving an orientation on the surface. By the ori-

entation on the crossing, we can project the crossing to a plane and then

determine the smoothing type of the crossing as in the case of knot diagram.

The following picture tells us this process.
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Figure 25: 0-smoothing and 1-smoothing

Remark 4.4. There are some serious problems in these definitions: For

example can we have a natural way to give an orientation for those crossings.

And can the orientation be compatible between each Rossman moves which

will change the crossings in a 2-knot diagram.

It means I yet don’t know how to find a natural oreintation for each

crossing of a given 2-knot diagram. So we won’t give a precise definition

about the chain complex as the one in sec.2. And we directly begin to study

the category Cob4 and try to construct the homotopy equivalence between

each Roseman move.

We now give an example of the chian complex of a 2-knot diagram.

Figure 26: Chain complex for a 2-knot diagram
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4.2 The topology after smoothing

In classical knot diagrams, there is only one type of crossing. But in the

case of 2-knot diagrams, there are three types of crossing. In order to realize

its differential, we must realize the topology after smoothing those basic

crossings and the 3-cobordisms between two such smoothings. In classical

case, the differential is just a disc.

Note that in the case of triple point, there are three double curves in its

neighborhood. So there are not only two ways to smooth it as in other case.

Now we begin to study the topology after smoothing those basic crossings

.

• Double points:

Figure 27: Double point

• Branch points:

Figure 28: Branch points
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• Triple points:

It seems the case of triple point is more diffcult to realize, since it has

three double curves, and each of them has two ways to be smoothed.

So there are eight ways to smooth it. But the result is that there are

only two topological types among them. One is a disc, and the other

is three discs.

Figure 29: Triple point

Theorem 4.5. There is a process to smooth a triple point such that

the eight kinds of smoothing have only two topological typies as the

above picture.

Proof. First, we smooth the two double curves with fixing the triple

point:

Figure 30:

Secondly, observe that no matter how we smooth these two double

curves with fixing the triple point, we get the same topological space
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by reflecting one to the other. Hence we only have two choices to

smooth the remainder double curve, and we can conclude that there

are only two topological typies in these eight kinds of smoothing.

Figure 31:

Furthermore, like figure 32, The two possible ways to smooth the re-

mainder double curve can be describe as following way: One is to

smooth it along the red line, and the two cones will leave the middle

disc.(figure 32) So we will get three discs.

The other is to smooth it along another direction and we will get one

disc.

Figure 32: The topology of it
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Note that the two different manifolds are those indicated before the

theorem.

Remark 4.6. The differentials in the case of triple point are more

complicated than other two cases. We can observe that some of the

three double curves can be possibly joined together by some arcs out-

side the B3. So may have three different differentials at least: One

is smooth one double curve at a time, and the others are smooth two

double curves or three double curves at a time.

Here is an interesting phenomenon: Some of the 3-cobordisms between

two smoothings of a triple point can’t be embedded into R3; For ex-

ample smooth three double curves at a time.
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4.3 The movie method

To analogize Bar-Natan’s theory, we introduce the Cob4 which is an analogy

of Cob3. Its object is the surface (with boundary) in a 3-ball. Its morphism

is the 3-manifold (with boundary) embedded generically in B3 × I.

In order to describe the 3-manifold, we use the movie method.

To be clear we first apply this method to the 2-dimensional cobordisms

which are the morphisms in Cob3. It is an another way to describe the

2-cobordisms and it can be applied to the 3-cobordisms, too.

The main idea comes from the Morse theory [5]. It means we can use

the level sets and the critical points (must be discrete) to understand a 2-

dimensional cobordism.

Definition 4.7. We define these clips to be the 0-handle,1-handle and 2-

handle.

Figure 33: movie diagram

In figure 34, we describe a generic 2-cobordism as a moive.
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Figure 34: Movie diagram

Theorem 4.8. Any 2-cobordism embedded in R3 can be describe as a movie.

Proof. By Morse theory, we can find a height function which is a Morse

function as we restrict it on this 2-cobordism, so we can find its level set of

regular value is some 1-dimensional objects in R2. And the way to attach

those cells when we pass though a critical point are just these three types.

Now we use the similar way to understand the 3-cobordism in R4. It

means that we slice it into many slices in R3 so that we can draw. By ob-

serving the change between each slice, we can understand the 3-cobordism

in R4.

Definition 4.9. We define following clips to be attching cells in some certain

ways.

Figure 35: The basic short clips
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Theorem 4.10. All 3-manifolds embedded in R4 can be described by a movie

which is a combination of some clips described in definition 4.9.

Note that the description is not unique.

Proof. By Morse theory, we know a 3-manifold can be constructed by attach-

ing some cells as we pass through the critical points of some Morse function.

So to prove this theorem, it suffices to show that the ways to attach 1-cell

and 2-cell are just these two types described in definition 3. We now rule out

two other possibilities so that the attaching way are only these two typies.

1. The case in the lefthand side will imply that the non-orientable surface

can be embedded in R3. But by the Alexander duality, it is impossible.

Figure 36: Two impossible cases

2. The case in the righthand side can’t occur, since the boundary of the

band had nonzero linking number. So one of the two circles can’t be

bounded by a disc without intersecting the other circle.
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4.4 The category: Cob4

To let the discussion in section 4 be systematic, we introduce the category

Cob4 which is an analogy of the Cob3.

Definition 4.11. The object in Cob4 is some surfaces embedded in a 3-ball

with the intersection of the surfaces and the boundary of the 3-ball(B3) is

exactly the boundary of the surfaces.

Figure 37: Objects in Cob4

The morphism in Cob4 is a 3-dimensional cobordism embedded in B3× I
with the height function restricted on the 3-cobordism is a Morse function.

So we can use the Movie Method to realize this 3-cobordism.

Figure 38: Morphism in Cob4

Note that we consider the Cob4 as an additive category. It means we can

formally add two morphisms as those morphisms in Cob3.
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5 Homotopy equivalences

In this section, we present some homotopy equivalences for the first type

Roseman moves and some relations we require when we construct these ho-

motopy equivalences. But now there are still many problems we can’t solve

in constructing homotopy equivalence. In this section, we also summerize

them.

5.1 First type Roseman move (bubble)

Here we imitate the homotopy equivalence which Bar-Natan gives in the first

Reidemeister move and construct the homotopy equivalence for the first type

Roseman move (bubble). We require some relations which are an analogy of

the relations: Torus ∼ 2 and 4Tu-relation in the Cob3. They are S1×S2 ∼ 2

and New4Tu-relation:

Figure 39: S1 × S2 ∼ 2
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Figure 40: New4Tu-relation

Now we give a theorem concerning this type of Roseman move.

Theorem 5.1. If we add the relations S1×S2 ∼ 2 and New4Tu-relation into

the Morphisms of Cob4, then we can find the homotopy equivalence for the

first type Roseman move(bubble). It can be shown by following diagrams:

Figure 41: The chian homotopy equivalence
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Figure 42: The maps: A, B, h and d

Proof. First, we check that whether they are chain maps or not.

The equality d ◦B1− d ◦B2 = 0 is due to each of them are S2× S1\B3 with

its boundary S2 in the boundary of B3 × I. And (d = 0) ◦A = 0 is obvious.

Secondly, we want to show it is a homotopy equivalence: The equality A ◦
(B1−B2) = Id follows the relation S2×S1 ∼ 2. Since A◦B1 = A◦B2∪S2×S1

and A◦B2 = Id, so we have A◦(B1−B2) = 2Id−Id = Id. To check another

case (B1 − B2) ◦ A, we use the New4Tu-relation which is like the following

picture:
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Figure 43: The New4Tu-relation in this case

So we get (B1 −B2) ◦ A− Id = h ◦ d.

Finally, we can find the equality d ◦ h = −Id since the ball (bottom) in the

h fills the hole (top) in the d.

Hence we get a homotopy equivalence between them.

Remark 5.2. In the New4Tu-relation, there is only one way to attach the

S2-tube since the 3-cobordism is embedded in R4.
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5.2 First type Roseman move (saddle)

Figure 44: The first type Roseman move (saddle)

As the above picture, we encounter the first trouble which is that its

crossing (curve) meet the boundary of the B3. But it dosen’t happen in the

Reidemeister moves since each crossing (point) is enclosed in the boundary

of a 2-disk. It will lead to many problems which let constructing the chain

homotopy equivalence become more difficult. To study these problems sys-

tematically, we list some possible strategies and the difficulties we encounter.

We also present some results we have found in each strategy.

In fact, there is an another problem in this case. It is that we have two

choices to smooth the upper knot diagram in figure 44: One is smoothing

two arcs at the same time and the other is one arc each time. But to avoid

making the problem become too complicated, we first discuss the case which

we smooth them at the same time.

Following list contains three approachs we consider. We try to use them

to realize how we constuct the homotopy equivalence in the case (saddle).

1. Preserve boundary : It means we want to preserve the boundary of the

corresponding surfaces which is in ∂B3 when we construct homotopy

equivalence. It leads to two situations:
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(a) h = 0 (The chain homotopy equals zero.):

i. It won’t touch the extension problem that how we can extend

the local chian map to a global one.

ii. We can guess what kinds of relation we need in constructing

homotopy equivalence by observing the topological type of its

boundary.

iii. The difficulty will not be met now. But when we try to es-

tablish those new relations, we will find many obstructions.

(b) h 6= 0 (The chian homotopy doesn’t equal zero.):

i. This will encounter immediately the problem that we must

have some relations which involve the boundary, but we can’t

understand yet how to intepret this unusual phenomenon.

ii. The other problem is the extension of the chain homotopy.

Since we can’t determine what the manifold is outside the

B3, so we are not sure that whether the cobordism in the B3

can be extended outside the B3.

2. Admit changing boundary : The problems in this strategy is very similar

to those in the strategy1 (h 6= 0).

(a) The relation will involve boundary.

(b) The extension problem will arise.

(c) In this section, I will present a natural way to construct the ho-

motopy equivalence which admits changing boundary.

(d) If we permit changing boundary, then the definition of the mor-

phisms in Cob4 must be modified.

3. Classify the global cases : It means to construct the chain homotopy

equivalence for each given global case.
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(a) It seems that it is impossible to become a good way to solve this

problem completely, since there are too many global examples and

most of them are very complicated.

(b) The advantage of this strategy is that we can avoid that its cross-

ings meet the boundary of B3.

(c) It maybe can give us some possible chain homotopy equivalence

for the local case.

Now if we adopt the strategy 2, then we can have a natural way to find

a homotopy equivalence by using S1× first Reidemeister move.

Lemma 5.3. If we add two additional relations in the Cob4: S1×S1×S1 = 2

and S1 × 4Tu− relation which is like the following picture,

Figure 45: The S1 × 4Tu− relation

then we can have a homotopy equivalence between the following two knot

diagrams.

Figure 46: The two equivalent knot diagrams
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Proof. We will prove it by constructing homotopy equivalence in the following

diagram:

Figure 47: The chain complexes of them

The following picture describes what those maps are by movie method.

In fact, it is just S1× the homotopy equivalence in the first Reidemeister

move.

Figure 48: The homotopy equivalence
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Since the cobordisms here are just S1× those cobordisms in the first

Reidemeister move, so it is not difficult to check that they are chain maps:

d◦(B1−B2) = 0 and 0◦A = 0. To check it is a homotopy equivalence we use

S1×S1×S1 = 2 which leads (B1−B2)◦A = Id and use S1×4Tu−relation
which implies A ◦ (B1 −B2)− Id = h ◦ d.

And the inquality h ◦ d = −Id is due to that the solid torus in h will fill the

solid torus hole in d.

The following picture describes how we use the S1 × 4Tu-relation in this

case.

Figure 49: Apply S1 × 4Tu− relation to the case

On the other hand, the homotopy equivalence we construct in the section

4.1 gives us the following lemma.

Lemma 5.4. If we use the relations: S2 × S1 = 2 and New4Tu-relation on

Cob4, then there is a homotopy equivalence between the following two knot

diagrams.

Now, we combine the two homotopy equivalences, and take one piece

from each diagram. It is the region enclosed by the red bold rectangle. We
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Figure 50: The two equivalent knot diagrams

can see the figure 51. Then we can obtain the homotopy equivalence of the

first Roseman move (saddle), but the boundaries in these 3-cobordisms are

not fixed.

Figure 51: Cutting a piece of those surfaces

This can be stated as the following theorem.

Theorem 5.5. By adding some relations which involve boundary, we can

obtain the homotopy equivalence of the first Roseman move(saddle).

Remark 5.6. 1. The relations which are used in this theorem can be

gotten by observing how the cutting we did here effect the original re-

lations: S2×S1 = 2, S1×S1×S1 = 2 and the two kinds of 4Tu-relation.

Figure 52 describes two of them which are induced from the relations:

S2× S1 = 2 and S1× S1× S1 = 2. One is “Two solid tori” with their
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Figure 52: New relations in the theorem

boundaries in ∂(B3)×I and the other is “Torus×I” with its boundary

also in ∂(B3)× I. Those relations induced from the S1 × 4Tu-relation

and New4Tu-relation are not stated here since it is not easy to draw.

Note that all of its relations involve boundary of B3 × I, but I don’t

know how to explain this phenomenon yet.

2. If we restrict the 3-cobordisms on the boundary of B3 and remove one

point on the ∂B3 then it will become a 2-dim’l cobordisms in B2 × I
like a morphism in Cob3. For example the boundaries of B1 ◦ C and

B2 ◦ C are like the following picture.

Figure 53: The shape of boundary
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