Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99764
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王弘毅zh_TW
dc.contributor.advisorHurng-Yi Wangen
dc.contributor.author阮仲豪zh_TW
dc.contributor.authorChung-Hao Juanen
dc.date.accessioned2025-09-17T16:36:52Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-18-
dc.identifier.citationAninta, S. G., Drinkwater, R., Carmagnini, A., Deere, N. J., Priyono, D. S., Andayani, N., Winarni, N. L., Supriatna, J., Fumagalli, M., & Larson, G. (2025). The importance of small-island populations for the long-term survival of endangered large-bodied insular mammals. Proceedings of the National Academy of Sciences, 122(26), e2422690122.
Aziz, S. A., Clements, G. R., McConkey, K. R., Sritongchuay, T., Pathil, S., Abu Yazid, M. N. H., Campos‐Arceiz, A., Forget, P. M., & Bumrungsri, S. (2017). Pollination by the locally endangered island flying fox (Pteropus hypomelanus) enhances fruit production of the economically important durian (Durio zibethinus). Ecology and Evolution, 7(21), 8670-8684.
Brown, V. A., Brooke, A., Fordyce, J. A., & McCracken, G. F. (2011). Genetic analysis of populations of the threatened bat Pteropus mariannus. Conservation Genetics, 12(4), 933-941.
Carroll, E. L., Bruford, M. W., DeWoody, J. A., Leroy, G., Strand, A., Waits, L., & Wang, J. (2018). Genetic and genomic monitoring with minimally invasive sampling methods. Evol Appl, 11(7), 1094-1119. https://doi.org/10.1111/eva.12600
Chen, S. F., Shen, T. J., Lee, H. C., Wu, H. W., Zeng, W. T., Lu, D. J., & Lin, H. C. (2017). Preference of an insular flying fox for seed figs enhances seed dispersal of a dioecious species. Biotropica, 49(4), 511-520.
Chen, S. F. (2022). Conservation status of the flying fox population on the Gueshan Island (4/4). Forestry Bureau, Council of Agrilculture. Taipei, Taiwan.
Chen, S. F., Juan, C. H., Rossiter, S. J., Kinjo, T., Fukui, D., Kawai, K., Tsang, S. M., Veluz, M. J., Sakurai, H., Lin, H. C., Jang-Liaw, N. H., Osawa, K., Ko, W. Y., & Izawa, M. (2021). Population genetic structure of the insular Ryukyu flying fox Pteropus dasymallus. Biotropica, 53(2), 548-559. https://doi.org/https://doi.org/10.1111/btp.12897
Cheng, H. C., C. W. Hsu, Y. H. Lin, S. W. Chang, and L. W. ChangChien. (2024). The Red List of Terrestrial Mammals of Taiwan, 2024. Taiwan Biodiversity Research Institute and Forestry and Nature Conservation Agency, Ministry of Agriculture. Taiwan.
Clement, M., Snell, Q., Walker, P., Posada, D., & Crandall, K. (2002). TCS: estimating gene genealogies. Parallel and Distributed Processing Symposium, International,
Cornuet, J. M., & Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144(4), 2001-2014.
Cosentino, B. J., Phillips, C. A., Schooley, R. L., Lowe, W. H., & Douglas, M. R. (2012). Linking extinction–colonization dynamics to genetic structure in a salamander metapopulation. Proceedings of the Royal Society B: Biological Sciences, 279(1733), 1575-1582.
Cox, P. A., Elmqvist, T., Pierson, E. D., & Rainey, W. E. (1991). Flying foxes as strong interactors in South Pacific island ecosystems: a conservation hypothesis. Conservation biology, 5(4), 448-454.
Ebenhard, T. (1991). Colonization in metapopulations: a review of theory and observations. Biological Journal of the Linnean Society, 42(1-2), 105-121.
Eby, P. (1991). Seasonal movements of grey-headed flying-foxes, Pteropus poliocephalus (Chiroptera: Pteropodidae), from two maternity camps in northern New South Wales. Wildlife Research, 18(5), 547-559.
Echenique-Díaz, L. M., Yokoyama, J., Takahashi, O., & Kawata, M. (2009). Genetic structure of island populations of the endangered bat Hipposideros turpis turpis: implications for conservation. Population Ecology, 51(1), 153-160.
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611-2620.
Excoffier, L., & Lischer, H. E. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular ecology resources, 10(3), 564-567.
Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164(4), 1567-1587.
Florens, F., Baider, C., Marday, V., Martin, G., Zmanay, Z., Oleksy, R., Krivek, G., Vincenot, C., Strasberg, D., & Kingston, T. (2017). Disproportionately large ecological role of a recently mass-culled flying fox in native forests of an oceanic island. Journal for nature conservation, 40, 85-93.
Frankham, R. (1996). Relationship of Genetic Variation to Population Size in Wildlife. Conservation biology, 10(6), 1500-1508. https://doi.org/https://doi.org/10.1046/j.1523-1739.1996.10061500.x
Frankham, R. (1998). Inbreeding and Extinction: Island Populations. Conservation biology, 12(3), 665-675. https://doi.org/https://doi.org/10.1111/j.1523-1739.1998.96456.x
Frankham, R. (2010). Where are we in conservation genetics and where do we need to go? Conservation Genetics, 11(2), 661-663.
Frick, W. F., Kingston, T., & Flanders, J. (2020). A review of the major threats and challenges to global bat conservation. Annals of the new York Academy of Sciences, 1469(1), 5-25.
Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147(2), 915-925.
Gaston, K. J. (2009). Geographic range limits: achieving synthesis. Proceedings of the Royal Society B: Biological Sciences, 276(1661), 1395-1406.
Goudet, J. (2003). FSTAT (version 2.9.4), a program (for Windows 95 and above) to estimate and test population genetics parameters. Department of Ecology & Evolution, Lausanne University, Switzerland, 53.
Hanski, I. (1998). Metapopulation dynamics. Nature, 396(6706), 41-49.
Hanski, I. A., & Gaggiotti, O. E. (2004). Ecology, genetics and evolution of metapopulations. Academic Press.
Harrison, S., & Hastings, A. (1996). Genetic and evolutionary consequences of metapopulation structure. Trends in Ecology & Evolution, 11(4), 180-183.
Harrison, S., & Taylor, A. D. (1997). Empirical evidence for metapopulation dynamics. Metapopulation biology, 27-42.
Hastings, A. (1993). Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology, 74(5), 1362-1372.
Hastings, A., & Harrison, S. (1994). Metapopulation dynamics and genetics. Annual review of Ecology and Systematics, 167-188.
Heaney, L., Balete, D., Dolar, L., & Ong, P. (1998). A Synopsis of the Mammalian Fauna of the Philippine Islands. Fieldiana Zoology, 88, 1-61.
Hirao, T., Kubota, Y., & Murakami, M. (2015). Geographical patterns of butterfly species diversity in the subtropical Ryukyu Islands: The importance of a unidirectional filter between two source islands. Journal of Biogeography, 42(8), 1418-1430.
IUCN. (2025). The IUCN Red List of Threatened Species. Version 2025-1. https://www.iucnredlist.org. Accessed on July 2025.
Jones, K. E., Mickleburgh, S. P., Sechrest, W., Walsh, A. L., Fleming, T., & Racey, P. (2009). Global overview of the conservation of island bats: importance, challenges and opportunities. Island Bats: Evolution, Ecology, and Conservation., 496-530.
Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol, 16(5), 1099-1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
Kingston, T., Florens, F. V., & Vincenot, C. E. (2023). Large Old World Fruit Bats on the Brink of Extinction: Causes and Consequences. Annual Review of Ecology, Evolution, and Systematics, 54, 237-257.
Kingston, T., Florens, F.B.V., Oleksy, R., Ruhomaun, K. & Tatayah, V. (2018). Pteropus niger. The IUCN Red List of Threatened Species 2018: e.T18743A86475525. https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T18743A86475525.en. Accessed on 25 August 2025.
Kobayashi, S., Denda, T., Liao, C. C., Lin, Y. H., Liu, W. T., & Izawa, M. (2018). Comparison of visitors and pollinators of Mucuna macrocarpa between urban and forest environments. Mammal Study, 43(4), 219-228.
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour, 15(5), 1179-1191. https://doi.org/10.1111/1755-0998.12387
Kubisch, A., Holt, R. D., Poethke, H.-J., & Fronhofer, E. A. (2014). Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. Oikos, 123(1), 5-22. https://doi.org/https://doi.org/10.1111/j.1600-0706.2013.00706.x
Kubota, Y., Shiono, T., & Kusumoto, B. (2015). Role of climate and geohistorical factors in driving plant richness patterns and endemicity on the east Asian continental islands. Ecography, 38(6), 639-648.
Leigh, J. W., & Bryant, D. (2015). popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116. https://doi.org/https://doi.org/10.1111/2041-210X.12410
Li, W., Zhang, Q., Wang, Z., & Liu, X. (2025). Three-quarters of species’ ranges have not been covered by protected areas in global borders. Nature Communications, 16(1), 2608. https://doi.org/10.1038/s41467-025-57212-y
Li, Y. L., & Liu, J. X. (2018). StructureSelector: A web‐based software to select and visualize the optimal number of clusters using multiple methods. Molecular ecology resources, 18(1), 176-177.
Lin, K. P., Chaw, S. M., Lo, Y. H., Kinjo, T., Tung, C. Y., Cheng, H. C., Liu, Q., Satta, Y., Izawa, M., & Chen, S. F. (2021a). Genetic differentiation and demographic trajectory of the insular Formosan and Orii’s flying foxes. Journal of Heredity, 112(2), 192-203.
Lin, L. K., & Pei, K. J. C. (1999). On the current status of field population of Formosan flying fox (Pteropus dasymallus formosus). Endemic species research, 1, 12-19.
Lin, S. M., Li, T. W., Liou, C. H., Amarga, A. K. S., Cabras, A., & Tseng, H. Y. (2021b). Eggs survive through avian guts—a possible mechanism for transoceanic dispersal of flightless weevils. Ecology and Evolution, 11(12), 7132-7137.
Liu, J., Yong, D. L., Choi, C. Y., & Gibson, L. (2020). Transboundary frontiers: an emerging priority for biodiversity conservation. Trends in Ecology & Evolution, 35(8), 679-690.
López-Bao, J. V., Fleurke, F., Chapron, G., & Trouwborst, A. (2018). Legal obligations regarding populations on the verge of extinction in Europe: Conservation, Restoration, Recolonization, Reintroduction. Biological Conservation, 227, 319-325.
Luikart, G., & Cornuet, J.-M. (1998). Empirical Evaluation of a Test for Identifying Recently Bottlenecked Populations from Allele Frequency Data. Conservation biology, 12(1), 228-237. http://www.jstor.org/stable/2387479
Luikart, G., Allendorf, F., Cornuet, J., & Sherwin, W. (1998). Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity, 89(3), 238-247.
Luikart, G., Sherwin, W., Steele, B., & Allendorf, F. (1998). Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Molecular Ecology, 7(8), 963-974.
Marcelli, M., & Fusillo, R. (2009). Assessing range re-expansion and recolonization of human-impacted landscapes by threatened species: a case study of the otter (Lutra lutra) in Italy. Biodiversity and conservation, 18(11), 2941-2959.
Mason, N., Ward, M., Watson, J. E., Venter, O., & Runting, R. K. (2020). Global opportunities and challenges for transboundary conservation. Nature ecology & evolution, 4(5), 694-701.
Matsumoto, T., Kimura, M., Nakamura, A., & Aoki, M. (1996). Detailed bathymetric features of Tokara and Kerama Gaps in the Ryukyu Arc. Journal of Geography (Chigaku Zasshi), 105(3), 286-296.
McConkey, K. R., & Drake, D. R. (2006). Flying foxes cease to function as seed dispersers long before they become rare. Ecology, 87(2), 271-276.
McConkey, K. R., & Drake, D. R. (2015). Low redundancy in seed dispersal within an island frugivore community. AoB Plants, 7, plv088.
Meade, J., Martin, J. M., & Welbergen, J. A. (2021). Fast food in the city? Nomadic flying-foxes commute less and hang around for longer in urban areas. Behavioral Ecology, 32(6), 1151-1162.
Ministry of the Environment. (2020). Red List 2020 Threatened Wildlife of Japan, Mammalia. Available at https://www.env.go.jp/content/900515981.pdf
Mickleburgh, S. P., Hutson, A. M., & Racey, P. A. (1992). Old World fruit bats. An action plan for their conservation. Gland, Switzerland: IUCN, 263.
Mickleburgh, S. P., Hutson, A. M., & Racey, P. A. (2002). A review of the global conservation status of bats. Oryx, 36(1), 18-34.
Molinari, J. (2023). A bare-bones scheme to choose between the species, subspecies, and ‘evolutionarily significant unit’categories in taxonomy and conservation. Journal for nature conservation, 72, 126335.
Nakamoto, A. (2017). Temporal changes in distributional range of the Ryukyu flying fox in the Ryukyu Archipelago, Japan. Mammalian Science, 57, 267-284. https://doi.org/10.11238/mammalianscience.57.267
Nakamoto, A., Itabe, S., Sato, A., Kinjo, K., & Izawa, M. (2011a). Geographical distribution pattern and interisland movements of Orii’s flying fox in Okinawa Islands, the Ryukyu Archipelago, Japan. Population Ecology, 53(1), 241-252.
Nakamoto, A., Kinjo, K., & Izawa, M. (2012). Ranging patterns and habitat use of a solitary flying fox (Pteropus dasymallus) on Okinawa-jima Island, Japan. Acta Chiropterologica, 14(2), 387-399.
Nakamoto, A., Sato, A., Kinjo, K., & Izawa, M. (2011b). Population growth of Orii's flying fox, Pteropus dasymallus inopinatus, on Okinawa-jima Island. Japanese Journal of Conservation Ecology, 16(1), 45-53.
Nikaido, M., Harada, M., Cao, Y., Hasegawa, M., & Okada, N. (2000). Monophyletic origin of the order chiroptera and its phylogenetic position among mammalia, as inferred from the complete sequence of the mitochondrial DNA of a Japanese megabat, the Ryukyu flying fox (Pteropus dasymallus). J Mol Evol, 51(4), 318-328. https://doi.org/10.1007/s002390010094
Okada, A., Suzuki, H., Inaba, M., Horikoshi, K., & Shindo, J. (2014). Genetic structure and cryptic genealogy of the Bonin flying fox Pteropus pselaphon revealed by mitochondrial DNA and microsatellite markers. Acta Chiropterologica, 16(1), 15-26.
Ortiz-Baez, A. S., Rose, K., Lang, B. J., Hall, J., & Holmes, E. C. (2025). Limited diversity of bat-associated RNA viruses in endangered and geographically isolated Christmas Island flying foxes. One Health, 20, 101060. https://doi.org/10.1016/j.onehlt.2025.101060
Osozawa, S., Kanai, K., Fukuda, H., & Wakabayashi, J. (2021). Phylogeography of Ryukyu insular cicadas: Extensive vicariance by island isolation vs accidental dispersal by super typhoon. PLoS One, 16(5), e0244342.
Ota, H. (1998). Geographic patterns of endemism and speciation in amphibians and reptiles of the Ryukyu Archipelago, Japan, with special reference to their paleogeographical implications. Researches on Population Ecology, 40(2), 189-204.
Ota, H. (2000). The current geographic faunal pattern of reptiles and amphibians of the Ryukyu Archipelago and adjacent regions. Tropics 10: 51–62. In.
Pannell, J. R. (2003). Coalescence in a metapopulation with recurrent local extinction and recolonization. Evolution, 57(5), 949-961.
Peakall, R., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288-295.
Piry, S., Luikart, G., & Cornuet, J. M. (1999). Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. Journal of Heredity, 90(4), 502-503.
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959.
Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution, 43(1), 223-225.
Richter, H., & Cumming, G. (2006). Food availability and annual migration of the straw‐colored fruit bat (Eidolon helvum). Journal of Zoology, 268(1), 35-44.
Rienzo, A. D., Peterson, A. C., Garza, J. C., Valdes, A. M., Slatkin, M., & Freimer, N. B. (1994). Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences, 91(8), 3166-3170. https://doi.org/doi:10.1073/pnas.91.8.3166
Ritland, K. (1996). Estimators for pairwise relatedness and individual inbreeding coefficients. Genetics Research, 67(2), 175-185.
Roberts, B. J., Catterall, C. P., Eby, P., & Kanowski, J. (2012). Long-distance and frequent movements of the flying-fox Pteropus poliocephalus: implications for management.
Robinson, J. A., Brown, C., Kim, B. Y., Lohmueller, K. E., & Wayne, R. K. (2018). Purging of strongly deleterious mutations explains long-term persistence and absence of inbreeding depression in island foxes. Current Biology, 28(21), 3487-3494. e3484.
Rodriguez‐Ramilo, S. T., & Wang, J. (2012). The effect of close relatives on unsupervised Bayesian clustering algorithms in population genetic structure analysis. Molecular ecology resources, 12(5), 873-884.
Rousset, F. (2008). genepop’007: a complete re‐implementation of the genepop software for Windows and Linux. Molecular ecology resources, 8(1), 103-106.
Saitoh, T., Kaji, K., Izawa, M., & Yamada, F. (2015). Conservation and management of terrestrial mammals in Japan: its organizational system and practices. Therya, 6(1), 139-153.
Sawada, A., Iwasaki, T., & Takagi, M. (2019). Fine-scale spatial genetic structure in the Minami-daito Island population of the Ryukyu scops owl Otus elegans. Journal of Zoology, 307(3), 159-166. https://doi.org/10.1111/jzo.12634
Scheben, A., McKeown, A., Walsh, T., Westcott, D. A., Metcalfe, S. S., Vanderduys, E. P., & Webber, B. L. (2025). Extreme mobility creates contrasting patterns of panmixia, isolation-by-distance and hybridization in four flying-fox species (Pteropus). bioRxiv, 2025.2004. 2006.647431.
Shimada, M., & Ishihama, F. (2000). Asynchronization of local population dynamics and persistence of a metapopulation: a lesson from an endangered composite plant, Aster kantoensis. Population Ecology, 42(1), 63-72.
Smith, M. M., Gilbert, J. H., Olson, E. R., Scribner, K. T., Van Deelen, T. R., Van Stappen, J. F., Williams, B. W., Woodford, J. E., & Pauli, J. N. (2021). A recovery network leads to the natural recolonization of an archipelago and a potential trailing edge refuge. Ecological Applications, 31(7), e02416.
Smith, P., & McManus, P. (2024). Geographies of Coexistence: negotiating urban space with the Grey-Headed Flying-Fox. Australian Geographer, 55(1), 95-114.
Smouse, R. P. P., & Peakall, R. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537-2539.
Tait, J., Perotto-Baldivieso, H. L., McKeown, A., & Westcott, D. A. (2014). Are flying-foxes coming to town? Urbanisation of the spectacled flying-fox (Pteropus conspicillatus) in Australia. PLoS One, 9(10), e109810.
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595.
Taki, Y., Vincenot, C. E., Sato, Y., & Inoue-Murayama, M. (2021). Genetic diversity and population structure in the Ryukyu flying fox inferred from remote sampling in the Yaeyama archipelago. PLoS One, 16(3), e0248672.
Thornton, D. H., Wirsing, A. J., Lopez‐Gonzalez, C., Squires, J. R., Fisher, S., Larsen, K. W., Peatt, A., Scrafford, M. A., Moen, R. A., & Scully, A. E. (2018). Asymmetric cross‐border protection of peripheral transboundary species. Conservation Letters, 11(3), e12430.
Todd, C. M., Westcott, D. A., Rose, K., Martin, J. M., & Welbergen, J. A. (2018). Slow growth and delayed maturation in a Critically Endangered insular flying fox (Pteropus natalis). Journal of Mammalogy, 99(6), 1510-1521.
Toyama, C., Kobayashi, S., Denda, T., Nakamoto, A., & Izawa, M. (2012). Feeding behavior of the Orii's flying-fox, Pteropus dasymallus inopinatus, on Mucuna macrocarpa and related explosive opening of petals, on Okinawajima Island in the Ryukyu Archipelago, Japan. Mammal Study, 37(3), 205-212.
Tsang, S. M., Wiantoro, S., Veluz, M. J., Sugita, N., Nguyen, Y. L., Simmons, N. B., & Lohman, D. J. (2020). Dispersal out of Wallacea spurs diversification of Pteropus flying foxes, the world’s largest bats (Mammalia: Chiroptera). Journal of Biogeography, 47(2), 527-537. https://doi.org/10.1111/jbi.13750
Tseng, H. Y., Huang, W. S., Jeng, M. L., Villanueva, R. J. T., Nuneza, O. M., & Lin, C. P. (2018). Complex inter‐island colonization and peripatric founder speciation promote diversification of flightless Pachyrhynchus weevils in the Taiwan–Luzon volcanic belt. Journal of Biogeography, 45(1), 89-100.
Veron, S., Mouchet, M., Govaerts, R., Haevermans, T., & Pellens, R. (2019). Vulnerability to climate change of islands worldwide and its impact on the tree of life. Scientific Reports, 9(1), 14471. https://doi.org/10.1038/s41598-019-51107-x
Vincenot, C. E., Florens, F. V., & Kingston, T. (2017). Can we protect island flying foxes? Science, 355(6332), 1368-1370.
Voigt, C. C., & Kingston, T. (2016). Bats in the Anthropocene: conservation of bats in a changing world. Springer Nature.
Wahlund, S. (1928). Zusammensetzung von Populationen und Korrelationserscheinungen vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas, 11(1), 65-106.
Walker, F. M., Williamson, C. H. D., Sanchez, D. E., Sobek, C. J., & Chambers, C. L. (2016). Species From Feces: Order-Wide Identification of Chiroptera From Guano and Other Non-Invasive Genetic Samples. PLoS One, 11(9), e0162342. https://doi.org/10.1371/journal.pone.0162342
Wang, Y. H., Hsiao, Y. W., Lee, K. H., Tseng, H. Y., Lin, Y. P., Komaki, S., & Lin, S. M. (2017). Acoustic differentiation and behavioral response reveals cryptic species within Buergeria treefrogs (Anura, Rhacophoridae) from Taiwan. PLoS One, 12(9), e0184005.
Watanabe, N., Arai, K., Otsubo, M., Toda, M., Tominaga, A., Chiyonobu, S., Sato, T., Ikeda, T., Takahashi, A., & Ota, H. (2023). Geological history of the land area between Okinawa Jima and Miyako Jima of the Ryukyu Islands, Japan, and its phylogeographical significance for the terrestrial organisms of these and adjacent islands. Progress in Earth and Planetary Science, 10(1), 40.
Welbergen, J. A., Meade, J., Field, H. E., Edson, D., McMichael, L., Shoo, L. P., Praszczalek, J., Smith, C., & Martin, J. M. (2020). Extreme mobility of the world’s largest flying mammals creates key challenges for management and conservation. BMC Biology, 18(1), 101. https://doi.org/10.1186/s12915-020-00829-w
Whittaker, R., Fernández-Palacios, J., Matthews, T., Borregaard, M., & Triantis, K. (2017). Island Biogeography: taking the long view of nature’s laboratories. Science 357: eaam8326. In.
Wilson, G. A., & Rannala, B. (2003). Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 163(3), 1177-1191.
Wu, H. W., Lu, D. J., Lin, C. L., Cheng, H. C., Juan, C. H., Shen, T. J., Lin, H. C., & Chen, S. F. (2022). Population and conservation status of the flying fox Pteropus dasymallus in Taiwan. Zoological Studies, 61.
Yamada, F., & Izawa, M. (2025). A historical review of studies and conservation practices for terrestrial mammals in the central and southern Ryukyu Archipelago in Japan. Mammal Study, 50(2), 109-141.
Yang, S. F., Komaki, S., Brown, R. M., & Lin, S. M. (2018). Riding the Kuroshio Current: Stepping stone dispersal of the Okinawa tree lizard across the East Asian Island Arc. Journal of Biogeography, 45(1), 37-50.
Zhivotovsky, L. A. (2015). Relationships between Wright’s FST and FIS statistics in a context of Wahlund effect. Journal of Heredity, 106(3), 306-309.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99764-
dc.description.abstract次族群之間反覆發生的拓殖及滅絕事件,形塑了一個物種的地理分布及遺傳結構,並反映了其生活史的特徵。當這樣關聯族群(metapopulation)之動態發生於人為干擾的環境並橫跨多個國界時,其各族群的成長趨勢及生存威脅往往不盡相同,故具備跨越國界的整合性保育思維及視野,便顯得至關重要,尤其是對於分布廣泛並多棲息於脆弱島嶼生態系的受脅物種,例如舊世界的大型果蝠──主要為狐蝠屬(Pteropus spp.)的物種成員。臺灣狐蝠 (Pteropus dasymallus formosus) 為臺灣特有亞種,原分布於綠島,惟因大量獵捕及棲地劣化而一度瀕臨滅絕。近年來,於臺灣境內的龜山島及本島的花蓮市區發現新建立之居留族群,數量穩定上升。本研究中,第一部分的目的即旨在建立及優化非侵入式 (食渣為主) 的採樣方法,以提升調查效率並減少對該保育類物種的干擾,亦評估該方法學應用於長期族群監測的可行性。隨後,我們使用微衛星及粒線體 (D-loop) 基因座,檢驗臺灣狐蝠與鄰近亞種—八重山狐蝠 (P. d. yayeyamae) 的遺傳多樣性、遺傳結構及近代的族群數量變遷,以釐清兩亞種的基因交流及分化狀況。
結果顯示,非侵入式樣本為一穩定且可靠的DNA監測來源,尤其葉渣和排遺的個體鑑定成功率可達至少五成,有效提升履及不易或罕見個體出沒之樣點調查效率。遺傳分析揭示了亞種之間顯著存在遺傳分化,惟臺灣與八重山族群仍為亞種成對比較中,最為接近的一對組合,其中以與那國島為最獨立的遺傳組成、龜山島則展現了次遺傳結構並擁有最多樣的祖系來源。檢視臺灣境內的基因交流,並無個體在三處居留族群中被重複鑑定,然而遺傳結構及單倍型網絡圖仍間接顯示了基因流的存在。族群動態分析並無觀察到亞種或島嶼存在瓶頸效應,而八重山特別可見族群擴張的跡象。考量臺灣族群中,明顯存在來自八重山島嶼不對等的基因流及潛在移入者,顯示現今臺灣主要族群的來源,很可能來自八重山亞種的近代移入個體。有鑑於臺灣及八重山的頻繁基因交流,目前於島嶼間觀測到的顯著分化應是來自近代的奠基者效應 (founder effect) ,而非長時間的演化隔離,故除了遺傳及族群動態明顯獨立的與那國島應視為獨立單元外,臺灣及八重山境內的其餘諸島,皆應整合為單一的保育單位進行監測管理。綜合而言,考量該物種的廣泛分布、跨洋及跨島播遷的高度潛力,保育策略應同時兼顧島嶼棲地及海岸廊道的串聯。
zh_TW
dc.description.abstractRecurring colonization and extinction events among subpopulations shape a species’ geographical range and genetic structure, and also reflect its life-history traits. A cross-border perspective is critical for conservation when metapopulation dynamics are influenced by human-altered environments or extend across national borders, where populations face differing trends and levels of threat—particularly for wide-ranging, threatened taxa inhabiting fragile insular ecosystems, such as large old world fruit bats, namely, flying foxes (primarily Pteropus spp.). The Formosan flying fox (Pteropus dasymallus formosus) is the endemic subspecies in Taiwan and one of the five subspecies of the Ryukyu flying fox. The population was once abundant on Lyudao (Green Island) but has nearly gone extinct due to intensive hunting and severe habitat loss. In contrast, the recently discovered populations on Gueishan Island (Turtle Island) and in Hualien City have been steadily increasing. In the first part of this study, to maximize monitoring efficiency while minimizing disturbance to this protected species, we developed and validated an optimized methodology using non-invasive samples, primarily fruit pellets, and evaluated its utility for long-term monitoring. We then employed microsatellite loci and a mitochondrial marker (D-loop) to examine the genetic diversity, genetic structure, and recent demographic changes of P. d. formosus across different populations, as well as its genetic differentiation from P. d. yayeyamae.
Non-invasive samples proved to be a reliable and stable source of DNA, with a notably high individual identification success rate (nearly 50%) from leaf pellets and feces. This substantially increased sampling success, particularly at sites with rare sightings or limited accessibility. Significant differentiation was observed among subspecies, with the closest pairwise relationship found between the populations in Taiwan and Yaeyama. Notably, the population on Yonaguni-jima exhibited the most distinct genetic composition, in contrast to the Gueishan Island population, which displayed substructure and possessed the greatest lineage diversity. No individual was recorded in more than one of the three populations in Taiwan; however, the genetic structure and haplotype network still provided indirect evidence of gene flow. No genetic bottleneck was detected among subspecies and islands; however, a notable sign of population expansion revealed in Yaeyema. The presence of asymmetric gene flow and putative migrants from neighboring islands suggests that the newly discovered populations in Taiwan most likely originated from Yaeyama over past few generations. Considering the recurrent gene flow between Taiwan and Yaeyama, the significant genetic differentiation among the islands is probably the result of founder effects rather than long-term evolutionary isolation. Therefore, we suggest that most of the islands between Taiwan and Yaeyama should be treated as a single management unit, with the exception of the Yonaguni-jima, which exhibits clear genetic and demographic independence. Given the species' broad distribution and high potential for oceanic dispersal among islands, conservation strategies should prioritize the protection of insular and coastal corridor habitats.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:36:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:36:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書 I
謝誌 II
Abstract VI
摘要 VIII
Table of Contents X
List of Figures XI
List of Tables XII
List of Appendices XIII
Introduction 1
Materials and methods 7
Sample collection and field survey 7
DNA extraction and PCR 8
PCR amplification of nuclear and mitochondrial markers 9
Sex determination by PCR 11
Genetic diversity 12
Population structure 14
Recent demographic history 15
Migration 16
Results 17
Methodological evaluation 17
Genetic diversity 17
Population structure 18
Recent demographic history 21
Migration 22
Discussion 22
Methodological evaluation 22
Genetic diversity and structure 24
Demography and migration 27
Biogeographical and conservation implications 29
Conclusion 32
References 34
-
dc.language.isoen-
dc.subject島嶼生物地理學zh_TW
dc.subject關聯族群zh_TW
dc.subject跨洋播遷zh_TW
dc.subject族群結構zh_TW
dc.subject琉球狐蝠zh_TW
dc.subject跨國界保育zh_TW
dc.subject非侵入式採樣zh_TW
dc.subjectoceanic dispersalen
dc.subjectnon-invasive samplingen
dc.subjecttransboundary conservationen
dc.subjectPteropus dasymallusen
dc.subjectpopulation structureen
dc.subjectIsland biogeographyen
dc.subjectmetapopulationen
dc.title臺灣狐蝠與八重山狐蝠之遺傳結構zh_TW
dc.titleThe Genetic Structure of the Formosan and Yaeyama Flying Foxesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor陳湘繁zh_TW
dc.contributor.coadvisorShiang-Fan Chenen
dc.contributor.oralexamcommittee林思民;郭浩志zh_TW
dc.contributor.oralexamcommitteeSi-Min Lin;Hao-Chih Kuoen
dc.subject.keyword島嶼生物地理學,關聯族群,跨洋播遷,族群結構,琉球狐蝠,跨國界保育,非侵入式採樣,zh_TW
dc.subject.keywordIsland biogeography,metapopulation,oceanic dispersal,population structure,Pteropus dasymallus,transboundary conservation,non-invasive sampling,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202503738-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-18-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
dc.date.embargo-lift2025-09-18-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved