請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99720完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂廷璋 | zh_TW |
| dc.contributor.advisor | Ting-Jang Lu | en |
| dc.contributor.author | 周容安 | zh_TW |
| dc.contributor.author | Jung-An Chou | en |
| dc.date.accessioned | 2025-09-17T16:28:42Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | 郭巧妤,糙米化學組成及其非消化水溶性多醣結構特徵。國立臺灣大學食品科技研究所學位論文 2017。
莊予瑄,以酵素轉換結合高效能液相層析串聯質譜法建立甘露聚醣之特徵結構分析平台。國立臺灣大學食品科技研究所學位論文 2020。 林稚傑,以石墨化碳液相層析串聯軌道阱質譜法探討非消化性寡醣之多樣性結構組成。國立臺灣大學食品科技研究所學位論文 2024。 Bacalzo, N. P., Jr.; Couture, G.; Chen, Y.; Castillo, J. J.; Phillips, K. M.; Fukagawa, N. K.; Lebrilla, C. B., Quantitative bottom-up glycomic analysis of polysaccharides in food matrices using liquid chromatography–tandem mass spectrometry. Analytical Chemistry 2023, 95, 1008-1015. Barnich, N.; Denizot, J.; Darfeuille-Michaud, A., E. coli-mediated gut inflammation in genetically predisposed Crohn's disease patients. Pathologie Biologie 2013, 61, e65-e69. Claye, S. S.; Idouraine, A.; Weber, C. W., Extraction and fractionation of insoluble fiber from five fiber sources. Food Chemistry 1996, 57, 305-310. Collins, H. M.; Burton, R. A.; Topping, D. L.; Liao, M. L.; Bacic, A.; Fincher, G. B., Variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: potential importance in human health and nutrition. Cereal Chemistry 2010, 87, 272-282. Corrigan, A.; Horgan, K.; Clipson, N.; Murphy, R. A., Effect of dietary supplementation with a Saccharomyces cerevisiae mannan oligosaccharide on the bacterial community structure of broiler cecal contents. Applied and Environmental Microbiology 2011, 77, 6653-6662. Couturier, M.; Haon, M.; Coutinho, P. M.; Henrissat, B.; Lesage-Meessen, L.; Berrin, J.-G., Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Applied and Environmental Microbiology 2011, 77, 237-246. Cunha, P. L. R.; Paula, R. C. M. d.; Feitosa, J. P. A., Purification of guar gum for biological applications. International journal of biological macromolecules 2007, 41, 324-331. Domon, B.; Costello, C. E., A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate Journal 1988, 5, 397-409. DuBois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F., Colorimetric method for determination of sugars and related substances. Analytical Chemistry 1956, 28, 350-356. Fincher, G. B.; Stone, B. A., CEREALS | Chemistry of Nonstarch Polysaccharides. In Encyclopedia of Grain Science, Wrigley, C., Ed. Elsevier: Oxford, 2004; pp 206-223. Gao, G.; Cao, J.; Mi, L.; Feng, D.; Deng, Q.; Sun, X.; Zhang, H.; Wang, Q.; Wang, J., BdPUL12 depolymerizes β-mannan-like glycans into mannooligosaccharides and mannose, which serve as carbon sources for Bacteroides dorei and gut probiotics. International journal of biological macromolecules 2021, 187, 664-674. Glitsø, L. V.; Bach Knudsen, K. E., Milling of whole grain rye to obtain fractions with different dietary fibre characteristics. Journal of Cereal Science 1999, 29, 89-97. Gómez, B.; Míguez, B.; Yáñez, R.; Alonso, J. L., Manufacture and properties of glucomannans and glucomannooligosaccharides derived from konjac and other sources. Journal of agricultural and food chemistry 2017, 65, 2019-2031. Härkönen, H.; Pessa, E.; Suortti, T.; Poutanen, K., Distribution and some properties of cell wall polysaccharides in rye milling fractions. Journal of Cereal Science 1997, 26, 95-104. Hogg, D.; Pell, G.; Dupree, P.; Goubet, F.; Martín-Orúe, S. M.; Armand, S.; Gilbert, H. J., The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochem J 2003, 371, 1027-43. Hogg, D.; Woo, E.-J.; Bolam, D. N.; McKie, V. A.; Gilbert, H. J.; Pickersgill, R. W., Crystal Structure of Mannanase 26A from Pseudomonas cellulosa and Analysis of Residues Involved in Substrate Binding*. Journal of Biological Chemistry 2001, 276, 31186-31192. Jin, H.; Liu, X.; Liu, H.-x., Biological function, regulatory mechanism, and clinical application of mannose in cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2023, 1878, 188970. Johansson, L.; Tuomainen, P.; Ylinen, M.; Ekholm, P.; Virkki, L., Structural analysis of water-soluble and -insoluble β-glucans of whole-grain oats and barley. Carbohydrate Polymers 2004, 58, 267-274. Kaczmarek, M.; Struszczyk-Swita, K.; Xingkang, L.; Szczesna-Antczak, M.; Daroch, M., Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Frontiers in Bioengineering and Biotechnology 2019, 7. Kaira, G. S.; Usharani, D.; Kapoor, M., Salt bridges are pivotal for the kinetic stability of GH26 endo-mannanase (ManB-1601). International journal of biological macromolecules 2019, 133, 1236-1241. Klyosov, A. A.; Dotsenko, G. S.; Hinz, S. W. A.; Sinitsyn, A. P., Structural features of β-(1→4)-d-galactomannans of plant origin as a probe for β-(1→4)-mannanase polymeric substrate specificity. Carbohydrate Research 2012, 352, 65-69. Kumar Suryawanshi, R.; Kango, N., Production of mannooligosaccharides from various mannans and evaluation of their prebiotic potential. Food Chemistry 2021, 334, 127428. Lai, V. M. F.; Lu, S.; He, W. H.; Chen, H. H., Non-starch polysaccharide compositions of rice grains with respect to rice variety and degree of milling. Food Chemistry 2007, 101, 1205-1210. Manthey, F. A.; Hareland, G. A.; Huseby, D. J., Soluble and insoluble dietary fiber content and composition in oat. Cereal Chemistry 1999, 76, 417-420. McCleary, B. V., Measurement of Dietary Fiber: Which AOAC Official Method of AnalysisSM to Use. Journal of AOAC INTERNATIONAL 2023, 106, 917-930. McCleary, B. V.; Matheson, N. K., Action patterns and substrate-binding requirements of β-d-mannanase with mannosaccharides and mannan-type polysaccharides. Carbohydrate Research 1983, 119, 191-219. Mirrafiei, A.; Jayedi, A.; Shab-Bidar, S., Total and different dietary fiber subtypes and the risk of all-cause, cardiovascular, and cancer mortality: a dose-response meta-analysis of prospective cohort studies. Food & Function 2023, 14, 10667-10680. Moreira, L. R.; Filho, E. X., An overview of mannan structure and mannan-degrading enzyme systems. Applied Microbiology and Biotechnology 2008, 79, 165-78. Oscarsson, M.; Andersson, R.; Salomonsson, A.-C.; Åman, P., Chemical composition of barley samples focusing on dietary fibre components. Journal of Cereal Science 1996, 24, 161-170. Pauly, M.; Keegstra, K., Cell‐wall carbohydrates and their modification as a resource for biofuels. The Plant Journal 2008, 54, 559-568. Pereira, L., Porous Graphitic Carbon as a Stationary Phase in HPLC: Theory and Applications. Journal of Liquid Chromatography & Related Technologies 2008, 31, 1687-1731. Pitkänen, L.; Tuomainen, P.; Mikkonen, K. S.; Tenkanen, M., The effect of galactose side units and mannan chain length on the macromolecular characteristics of galactomannans. Carbohydrate Polymers 2011, 86, 1230-1235. Ratcliffe, I.; Williams, P. A.; Viebke, C.; Meadows, J., Physicochemical characterization of konjac glucomannan. Biomacromolecules 2005, 6, 1977-1986. Reddy, S. K.; Bågenholm, V.; Pudlo, N. A.; Bouraoui, H.; Koropatkin, N. M.; Martens, E. C.; Stålbrand, H., A β-mannan utilization locus in Bacteroides ovatus involves a GH36 α-galactosidase active on galactomannans. Febs Letters 2016, 590, 2106-2118. Roubroeks, J.; Andersson, R.; Åman, P., Structural features of (1→ 3),(1→ 4)-β-D-glucan and arabinoxylan fractions isolated from rye bran. Carbohydrate Polymers 2000, 42, 3-11. Shao, Y.; Lin, A. H., Improvement in the quantification of reducing sugars by miniaturizing the Somogyi-Nelson assay using a microtiter plate. Food Chemistry 2018, 240, 898-903. Skjoedt, M.-O.; Palarasah, Y.; Rasmussen, K.; Vitved, L.; Salomonsen, J.; Kliem, A.; Hansen, S.; Koch, C.; Skjodt, K., Two mannose-binding lectin homologues and an MBL-associated serine protease are expressed in the gut epithelia of the urochordate species Ciona intestinalis. Developmental & Comparative Immunology 2010, 34, 59-68. Stephen, A., Other plant polysaccharides. In The polysaccharides, Elsevier: 1983; pp 97-193. Tailford, L. E.; Ducros, V. M.-A.; Flint, J. E.; Roberts, S. M.; Morland, C.; Zechel, D. L.; Smith, N.; Bjornvad, M. E.; Borchert, T. V.; Wilson, K. S., Understanding how diverse β-mannanases recognize heterogeneous substrates. Biochemistry 2009, 48, 7009-7018. Tester, R. F.; Al-Ghazzewi, F. H., Mannans and health, with a special focus on glucomannans. Food Research International 2013, 50, 384-391. Tingley, J. P.; Low, K. E.; Xing, X.; Abbott, D. W., Combined whole cell wall analysis and streamlined in silico carbohydrate-active enzyme discovery to improve biocatalytic conversion of agricultural crop residues. Biotechnology for Biofuels 2021, 14, 16. Torrecillas, S.; Makol, A.; Caballero, M. J.; Montero, D.; Robaina, L.; Real, F.; Sweetman, J.; Tort, L.; Izquierdo, M. S., Immune stimulation and improved infection resistance in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides. Fish & Shellfish Immunology 2007, 23, 969-81. Verhertbruggen, Y.; Falourd, X.; Sterner, M.; Guillon, F.; Girousse, C.; Foucat, L.; Le Gall, S.; Chateigner-Boutin, A.-L.; Saulnier, L., Challenging the putative structure of mannan in wheat (Triticum aestivum) endosperm. Carbohydrate Polymers 2019, 224, 115063. Wang, J.; Ke, S.; Strappe, P.; Ning, M.; Zhou, Z., Structurally orientated rheological and gut microbiota fermentation property of mannans polysaccharides and oligosaccharides. Foods 2023, 12, 4002. Yanyan, Y.; Shang, G.; Huiping, W.; Shan, C.; Lixin, M., Studies on the effect of konjac oligosaccharides on blood sugar and serum cholesterol in the diabetic mice. Journal of Hubei University (natural Science) 2001, 23, 277-279. Zhang, B.; Zhao, Q.; Guo, W.; Bao, W.; Wang, X., Association of whole grain intake with all-cause, cardiovascular, and cancer mortality: a systematic review and dose–response meta-analysis from prospective cohort studies. European Journal of Clinical Nutrition 2018, 72, 57-65. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99720 | - |
| dc.description.abstract | 全榖被重視與推廣,因其有對人體健康有益處的豐富營養素,如膳食纖維、礦物質、維生素B、維生素E與植化素。而膳食纖維可分為非水溶與水溶性膳食纖維。水溶性膳食纖維可做為益生質被腸道菌相利用,本研究使用台灣產不同品種稻米、不同品種薏仁、小麥、大麥、燕麥、黑麥為原料,分析不同品種、不同穀物中水溶性膳食纖維的組成差異。單醣組成分析顯示大麥與燕麥主要由混合型鍵結β-D-葡聚醣組成;而黑麥除了β-D-葡聚醣外還有阿拉伯木聚醣;在小麥、稻米、薏仁當中單醣組成較為豐富,像是小麥富含阿拉伯木聚醣;稻米與薏仁則是富含甘露聚醣,與些許果膠多醣及阿拉伯木聚醣。糙米與糙薏仁之水溶性膳食纖維主要組成-甘露聚醣,具有免疫調節潛力,為了解其甘露聚醣結構特徵,會利用內切甘露聚醣酶將不同穀物來源甘露聚醣水解出保有主鏈、側鏈不同醣組成的寡醣,以液相層析串聯軌道阱質譜 (LC-Orbitrap-MS/MS)進行結構解析,鑑別主鏈與側鏈的鍵結與官能基修飾資訊。使用內切甘露聚醣酶水解已知結構特徵之甘露聚醣,獲得具有不同結構特徵之甘露寡醣譜型,可建立辨別樣品中甘露聚醣結構特徵之分析平台。糙米與薏仁水溶性膳食纖維當中約有40~50% 甘露聚醣,是主要的組成。糙米中甘露聚醣型態為帶有葡萄糖基取代的葡甘露聚醣及半乳糖側支修飾的半乳甘露聚醣;薏仁則是混合型的葡半乳甘露聚醣。小麥與黑麥水溶性膳食纖維當中約有4% 甘露聚醣。小麥中甘露聚醣型態為帶有葡萄糖基取代的葡甘露聚醣及半乳糖側支修飾的半乳甘露聚醣;黑麥則是混合型的葡半乳甘露聚醣。本研究有助於穀物尤其是糙米與薏仁的水溶性多醣組成有更深入的了解。 | zh_TW |
| dc.description.abstract | Dietary fiber is a nutrient that decreases total mortality, cardiovascular mortality, cancer mortality, and Type 2 diabetes mellitus incidence in whole grains. The soluble dietary fibers (SDF) have higher fermentability compared to insoluble dietary fibers (IDF). The fermentability and prebiotic efficiency have been reported to be related to the molecular characteristics, including solubility, monosaccharide composition, linkage pattern, and the content and position of substituent groups of polysaccharides, the major components of SDF. To understand the profile difference of SDFs from different cereals, including barley, oat, rye, wheat, rice, and adlay. Our results indicated that barley and oat are rich in mixed-linked β-D-glucans that contain glucose 81~85% in SDF. In addition to β-D-glucans, rye also contained a substantial amount of arabinoxylans. The polysaccharide compositions in SDFs of wheat, rice, and adlay were found to be more diverse. SDF of wheat was rich in arabinoxylans, and SDF from rice and adlay are rich in mannans and pectins in addition to arabinoxylans. The mannans from cereals have been less studied. Therefore, we have developed an endo-mannanase-assisted HPLC-MS/MS method to reveal the characteristics of the molecules. The methodology of the developed approach was the conversion of mannans into mannooligosaccharides (MOS) and analyzing glycosidic linkage patterns of MOS by using an HPLC-MS/MS. Brown rice and adlay contain water-soluble dietary fiber in which mannans are the major component, comprising 40–50%. In brown rice, the mannans are primarily glucomannans substituted with glucose residues and galactomannans with galactose side chains, while adlay contains predominantly mixed-type galactoglucomannans. In contrast, wheat and rye contain about 4% mannans within their water-soluble dietary fiber. Wheat mannans are mainly glucomannans with glucose substitutions and galactomannans with galactose side chains, whereas those in rye are chiefly mixed-type galactoglucomannans. The results of the study facilitate our understanding of the composition profile of Taiwanese rice and adlay cultivars. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:28:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:28:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 iv 圖次 x 表次 xii 附錄 xv 第一章、 前言 1 第二章、 文獻回顧 2 2.1 穀物中膳食纖維組成 2 2.1.1 非水溶性膳食纖維 2 2.1.1.1 稻米 2 2.1.1.2 薏仁 3 2.1.1.3 小麥 3 2.1.1.4 黑麥 3 2.1.1.5 大麥 3 2.1.1.6 燕麥 3 2.1.2 水溶性膳食纖維 4 2.1.2.1 稻米 4 2.1.2.2 薏仁 4 2.1.2.3 小麥 4 2.1.2.4 黑麥 5 2.1.2.5 大麥 5 2.1.2.6 燕麥 5 2.2 甘露聚醣 (Mannans) 5 2.2.1 直線型甘露聚醣 (Linear mannan) 6 2.2.2 葡甘露聚醣 (Glucomannan) 6 2.2.3 半乳甘露聚醣 (Galactomannan) 7 2.2.4 半乳葡萄甘露聚醣 (Galactoglucomannan) 7 2.3 不同醣基與側支基團修飾之甘露寡醣的生理活性 8 2.3.1 葡萄糖醣基取代 8 2.3.2 半乳糖醣基取代 8 2.3.3 乙醯基修飾 9 2.3.4 其他生理活性 9 2.4 各式來源之內切甘露糖苷酶 (Endo-β-mannanase) 9 2.4.1 GH5 family甘露聚醣內切酶水解特性 10 2.4.2 GH26 family甘露聚醣內切酶水解特性 10 2.4.3 相同菌種來源不同GH family 內切酶水解特異性 12 2.5 甘露寡醣結構解析 13 2.5.1 高效液相層析串聯質譜法 13 2.5.1.1 石墨化碳液相層析 13 2.5.1.2 寡醣碎片離子命名方式 14 2.5.1.3 寡醣碎片離子分析方法 17 第三章、 實驗目的與研究架構 18 第四章、 實驗材料及方法 19 4.1 實驗材料 19 4.1.1 甘露聚醣相關材料 19 4.1.1.1 精製刺槐豆膠 (Locust bean gum) 19 4.1.1.2 蒟蒻精粉 (Konjac gum) 19 4.1.1.3 關華豆膠 (Guar gum) 19 4.1.1.4 甘露寡醣粉 (Mannooligosaccharides) 19 4.1.1.5 象牙堅果來源直線型甘露聚醣 (Linear mannan from Ivory nut) 19 4.1.2 穀物樣品 19 4.1.2.1 糙米 (Brown rice) 19 4.1.2.2 發芽糙米 20 4.1.2.3 白米 (Polished rice) 20 4.1.2.4 薏仁 (Adlay) 20 4.1.2.5 小麥 (wheat) 20 4.1.2.6 大麥 (Barley) 21 4.1.2.7 燕麥 (Oat) 21 4.1.2.8 黑麥 (Rye) 21 4.2 試藥與儀器設備 21 4.2.1 化學藥劑與試劑 21 4.2.2 標準品 22 4.2.3 酵素 22 4.2.4 儀器設備 23 4.2.5 樣品製備方式 24 4.2.5.1 穀物不可消化可溶性多醣製備 24 4.2.6 酵素水解反應 25 4.2.6.1 酵素水解反應曲線測定 25 4.2.6.2 酵素水解轉換 25 4.3 分析方法 26 4.3.1 總醣含量測定 (Phenol-sulfuric acid method) 26 4.3.2 還原醣含量測定 (Somogyi-Nelson method in microplate) 26 4.3.3 以高效能液相陰離子交換層析進行單醣組成測定 27 4.3.3.1 甲醇解 27 4.3.3.2 TFA酸水解 27 4.3.3.3 中性醣分析條件 27 4.3.3.4 酸性醣分析條件 27 4.3.4 以液相石墨化碳管柱層析串聯質譜儀進行甘露寡醣結構解析 28 4.3.4.1 質譜儀游離化效率品質管制 28 4.3.4.2 層析及質譜條件設定 29 第五章、 結果與討論 31 5.1 穀物膳食纖維之聚醣組成 31 5.1.1 不同品種稻米非消化性多醣之醣組成 31 5.1.1.1 糙米與精白米總膳食纖維含量 31 5.1.1.2 白米與糙米水溶性膳食纖維之單醣組成 32 5.1.1.3 發芽與未發芽糙米水溶性膳食纖維之單醣組成 34 5.1.1.4 不同品種水溶性膳食纖維之單醣組成 36 5.1.2 不同品種薏仁非消化水溶性多醣之單醣組成 38 5.1.3 小麥、黑麥非消化水溶性多醣之單醣組成 40 5.1.4 大麥、燕麥非消化水溶性多醣之單醣組成 42 5.1.5 不同穀物單醣組成比較 44 5.2 甘露聚醣之特徵結構分析平台建立 45 5.2.1.1 蒟蒻膠、刺槐豆膠、關華豆膠、葫蘆巴膠多醣之單醣組成 45 5.2.2 各式來源甘露聚醣之結構組成比較 48 5.2.3 各式甘露聚醣經endo-β-(1,4)-mannanase之酵素轉換率 48 5.2.3.1 葡甘露聚醣 (蒟蒻膠)經endo-β-(1,4)-mannanase之酵素轉換 48 5.2.3.2 不同半乳糖側支比例半乳甘露聚醣 (刺槐豆膠、關華豆膠、葫蘆巴膠)經endo-β-(1,4)-mannanase之酵素轉換 49 5.2.4 不同菌種來源之endo-β-(1,4)-mannanase之酵素轉換率 50 5.2.5 預測可經endo-(1,4)-β-mannanase酵素轉換所得之甘露寡醣型態 51 5.2.6 甘露寡醣斷裂模式分析 54 5.2.6.1 各式來源甘露寡醣之結構組成比較 55 5.2.6.2 比較各式甘露寡醣二醣異構物的結構輪廓 56 5.2.6.3 比較各式甘露寡醣三醣異構物的結構輪廓 56 5.2.6.4 比較各式甘露寡醣四醣異構物的結構輪廓 57 5.2.6.5 比較各式甘露寡醣五醣異構物的結構輪廓 59 5.2.6.6 不同來源內切甘露聚醣酶水解特異性 60 5.2.6.7 比較不同比例半乳糖側支半乳甘露寡醣結構輪廓差異 62 5.3 穀物中甘露寡醣之結構解析 101 5.3.1 稻米中甘露寡醣之結構解析 101 5.3.1.1 稻米甘露寡醣二醣異構物的結構輪廓 101 5.3.1.2 稻米甘露寡醣三醣異構物的結構輪廓 101 5.3.1.3 稻米甘露寡醣四醣異構物的結構輪廓 102 5.3.1.4 稻米甘露寡醣五醣異構物的結構輪廓 102 5.3.1.5 稻米甘露寡醣六醣異構物的結構輪廓 102 5.3.1.6 稻米甘露聚醣推測模型 103 5.3.2 薏仁中甘露寡醣之結構解析 107 5.3.2.1 薏仁甘露寡醣二醣異構物的結構輪廓 107 5.3.2.2 薏仁甘露寡醣三醣異構物的結構輪廓 107 5.3.2.3 薏仁甘露寡醣四醣異構物的結構輪廓 107 5.3.2.4 薏仁甘露寡醣五醣異構物的結構輪廓 108 5.3.2.5 薏仁甘露聚醣推測模型 108 5.3.3 小麥中甘露寡醣之結構解析 112 5.3.3.1 小麥甘露寡醣二醣異構物的結構輪廓 112 5.3.3.2 小麥甘露寡醣三醣異構物的結構輪廓 112 5.3.3.3 小麥甘露聚醣推測模型 112 5.3.4 黑麥中甘露寡醣之結構解析 115 5.3.4.1 黑麥甘露寡醣二醣異構物的結構輪廓 115 5.3.4.2 黑麥甘露寡醣三醣異構物的結構輪廓 115 5.3.4.3 黑麥甘露聚醣推測模型 115 第六章、 結論 118 第七章、 參考文獻 120 第八章、 附錄 125 8.1 各式甘露聚醣之二次質譜圖與結構斷裂碎片離子示意圖 125 8.1.1 甘露寡醣標準品結構解析 125 8.1.2 MOS-IN-An26之二醣、三醣異構物結構解析 130 8.1.3 MOS-IN-Cj26之二醣、三醣異構物結構解析 132 8.1.4 MOS-IN-Cj5之三醣、四醣、五醣、六醣異構物結構解析 134 8.1.5 MOS-KG-An26之二醣異構物結構解析 138 8.1.6 MOS-KG-An26之三醣異構物結構解析 140 8.1.7 MOS-KG-An26之四醣異構物結構解析 143 8.1.8 MOS-KG-An26之五醣異構物結構解析 146 8.1.9 MOS-LBG-An26之二醣異構物結構解析 148 8.1.10 MOS-LBG-An26之三醣異構物結構解析 149 8.1.11 MOS-LBG-An26之四醣異構物結構解析 150 8.1.12 MOS-LBG-An26之五醣異構物結構解析 151 8.1.13 MOS-GG-An26之二醣異構物結構解析 154 8.1.14 MOS-GG-An26之三醣異構物結構解析 156 8.1.15 MOS-GG-An26之四醣異構物結構解析 159 8.1.16 MOS-GG-An26之五醣異構物結構解析 160 8.1.17 MOS-FG-An26之二醣異構物結構解析 163 8.1.18 MOS-FG-An26之三醣異構物結構解析 165 8.1.19 MOS-FG-An26之四醣異構物結構解析 168 8.1.20 MOS-FG-An26之五醣異構物結構解析 170 8.1.21 MOS-TN11-An26之二醣異構物結構解析 172 8.1.22 MOS-TN11-An26之三醣異構物結構解析 176 8.1.23 MOS-TN11-An26之四醣異構物結構解析 177 8.1.24 MOS-TN11-An26之五醣異構物結構解析 178 8.1.25 MOS-TN11-An26之六醣異構物結構解析 179 8.1.26 MOS-JTTC1-An26之二醣異構物結構解析 180 8.1.27 MOS-JTTC1-An26之三醣異構物結構解析 181 8.1.28 MOS-JTTC1-An26之四醣異構物結構解析 182 8.1.29 MOS-JTTC1-An26之五醣異構物結構解析 185 8.1.30 MOS-WT-An26之二醣異構物結構解析 186 8.1.31 MOS-WT-An26之三醣異構物結構解析 187 8.1.32 MOS-RYE-An26之二醣異構物結構解析 189 8.1.33 MOS-RYE-An26之三醣異構物結構解析 190 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 全榖 | zh_TW |
| dc.subject | 甘露聚醣 | zh_TW |
| dc.subject | 甘露寡醣 | zh_TW |
| dc.subject | 益生質 | zh_TW |
| dc.subject | 石墨化碳超高效液相層析串聯質譜 | zh_TW |
| dc.subject | mannan-oligosaccharide (MOS) | en |
| dc.subject | cereal | en |
| dc.subject | PGC HPLC-MS/MS | en |
| dc.subject | prebiotic | en |
| dc.subject | mannan | en |
| dc.title | 全榖物膳食纖維之聚醣多樣性研究 | zh_TW |
| dc.title | Profile Diversity of Whole Grain Dietary Fibers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝淑貞;陳明煦;林華宗;許瑞瑱 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Chen Hsieh;Ming-Hsu Chen;Hua-Tsung Lin;Jui-Cheng Hsu | en |
| dc.subject.keyword | 全榖,甘露聚醣,甘露寡醣,益生質,石墨化碳超高效液相層析串聯質譜, | zh_TW |
| dc.subject.keyword | cereal,mannan,mannan-oligosaccharide (MOS),prebiotic,PGC HPLC-MS/MS, | en |
| dc.relation.page | 202 | - |
| dc.identifier.doi | 10.6342/NTU202503423 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2030-08-01 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-08-01 | 12.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
