Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99713
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇德徵zh_TW
dc.contributor.advisorTe-Cheng Suen
dc.contributor.author陸子柔zh_TW
dc.contributor.authorTzu-Jou Luen
dc.date.accessioned2025-09-17T16:27:27Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation1.Francis, R. and G. Byrne, Duplex stainless steels—alloys for the 21st century. Metals, 2021. 11(5): p. 836.
2.Nilsson, J.O., Super duplex stainless steels. Materials Science and Technology, 1992. 8(8): p. 685-700.
3.Gunn, R., Duplex stainless steels: microstructure, properties and applications. 1997: Woodhead publishing.
4.Patra, S., et al., Characteristics and manufacturability of duplex stainless steel: a review. Transactions of the Indian Institute of Metals, 2021. 74(5): p. 1089-1098.
5.Josefsson, B., J.-O. Nilsson, and A. Wilson, Phase transformations in duplex steels and the relation between continuous cooling and isothermal heat treatment. Duplex Stainless Steels'91., 1991. 1: p. 67-78.
6.Biezma, M.V., et al., Non-destructive techniques for the detection of sigma phase in duplex stainless steel: A comprehensive review. Engineering Failure Analysis, 2021. 122.
7.Wang, R., Precipitation of sigma phase in duplex stainless steel and recent development on its detection by electrochemical potentiokinetic reactivation: A review. Corrosion Communications, 2021. 2: p. 41-54.
8.Nenno, S., M. Tagaya, and Z. Nishiyama, Orientation Relationships between Gamma (f.c.c.) and Sigma Phases in an Iron-Chromium-Nickel Alloy. Transactions of the Japan Institute of Metals, 1962. 3(2): p. 82-93.
9.Chen, T.H. and J.R. Yang, Effects of solution treatment and continuous cooling on σ-phase precipitation in a 2205 duplex stainless steel. Materials Science and Engineering: A, 2001. 311(1): p. 28-41.
10.Weiss, B. and R. Stickler, Phase instabilities during high temperature exposure of 316 austenitic stainless steel. Metallurgical and Materials Transactions B, 1972. 3: p. 851-866.
11.Li, J.-S., et al., Thermal cycling induced stress–assisted sigma phase formation in super duplex stainless steel. Materials & Design, 2019. 182: p. 108003.
12.Tavares, S., et al., Investigation of Chromium Nitride Precipitation in UNS S39274 Stainless Steel. Journal of Materials Engineering and Performance, 2024. 33(13): p. 6686-6692.
13.Knyazeva, M. and M. Pohl, Duplex Steels. Part II: Carbides and Nitrides. Metallography, Microstructure, and Analysis, 2013. 2(5): p. 343-351.
14.Skiba, O., et al., A proper assessment of TEM diffraction patterns originating from CrN nitrides in a ferritic matrix. Materials Characterization, 2018. 144: p. 671-677.
15.Zhang, D., et al., Additive manufacturing of duplex stainless steels-a critical review. Journal of Manufacturing Processes, 2022. 73: p. 496-517.
16.Atamert, S. and J. King, Elemental partitioning and microstructural development in duplex stainless steel weld metal. Acta metallurgica et materialia, 1991. 39(3): p. 273-285.
17.Charles, J., The duplex stainless steels: materials to meet your needs. Duplex Stainless Steel'91, 1991. 1: p. 3-48.
18.Alvarez-Armas, I., Duplex stainless steels: brief history and some recent alloys. Recent Patents on Mechanical Engineering, 2008. 1(1): p. 51-57.
19.Charles, J., Duplex Stainless Steels‐a Review after DSS ‘07 held in Grado. steel research international, 2008. 79(6): p. 455-465.
20.Liljas, M., et al., Development of a lean duplex stainless steel. steel research international, 2008. 79(6): p. 466-473.
21.Foct, J., et al., Nitrogen alloying of duplex stainless steels. Duplex Stainless Steels'91., 1991. 1: p. 49-65.
22.Weber, L. and P. Uggowitzer, Partitioning of chromium and molybdenum in super duplex stainless steels with respect to nitrogen and nickel content. Materials Science and Engineering: A, 1998. 242(1-2): p. 222-229.
23.Pohl, M., O. Storz, and T. Glogowski, Effect of intermetallic precipitations on the properties of duplex stainless steel. Materials Characterization, 2007. 58(1): p. 65-71.
24.Chan, K.W. and S.C. Tjong, Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels. Materials, 2014. 7(7): p. 5268-5304.
25.Weng, K., H. Chen, and J. Yang, The low-temperature aging embrittlement in a 2205 duplex stainless steel. Materials Science and Engineering: A, 2004. 379(1-2): p. 119-132.
26.Maurya, A.K., C. Pandey, and R. Chhibber, Dissimilar welding of duplex stainless steel with Ni alloys: A review. International Journal of Pressure Vessels and Piping, 2021. 192.
27.Nilsson, J. and A. Wilson, Influence of isothermal phase transformations on toughness and pitting corrosion of super duplex stainless steel SAF 2507. Materials Science and Technology, 1993. 9(7): p. 545-554.
28.Llorca-Isern, N., et al., Identification of sigma and chi phases in duplex stainless steels. Materials Characterization, 2016. 112: p. 20-29.
29.Ramirez, A.J., J.C. Lippold, and S.D. Brandi, The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2003. 34A(8): p. 1575-1597.
30.Chen, T., K. Weng, and J. Yang, The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel. Materials Science and Engineering: A, 2002. 338(1-2): p. 259-270.
31.Nilsson, J.-O., et al., Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper. Metallurgical and Materials Transactions A, 1996. 27: p. 2196-2208.
32.Redjaimia, A., G. Metauer, and M. Gantois, Decomposition of Delta Ferrite in an Fe--22 Cr--5 Ni--3 Mo--0. 03 C Duplex Stainless Steel. A Morphological and Structural Study. Duplex Stainless Steels'91., 1991. 1: p. 119-126.
33.Lee, T.-H., S.-J. Kim, and Y.-C. Jung, Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900 C. Metallurgical and Materials Transactions A, 2000. 31(7): p. 1713-1723.
34.Sousa, R., et al., On the precipitation of sigma and chi phases in a cast super duplex stainless steel. Metallurgical and Materials Transactions A, 2019. 50: p. 4758-4778.
35.Chun, E.J., et al., Precipitation of sigma and chi phases in δ-ferrite of Type 316FR weld metals. Materials characterization, 2013. 86: p. 152-166.
36.Ramirez, A.J., S.D. Brandi, and J.C. Lippold, Secondary austenite and chromium nitride precipitation in simulated heat affected zones of duplex stainless steels. Science and Technology of Welding and Joining, 2004. 9(4): p. 301-313.
37.Pettersson, N., R.F.A. Pettersson, and S. Wessman, Precipitation of Chromium Nitrides in the Super Duplex Stainless Steel 2507. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2015. 46A(3): p. 1062-1072.
38.Holländer Pettersson, N., et al., Formation of chromium nitride and intragranular austenite in a super duplex stainless steel. Metallurgical and Materials Transactions A, 2019. 50: p. 5594-5601.
39.Liao, J., Nitride precipitation in weld HAZs of a duplex stainless steel. ISIJ international, 2001. 41(5): p. 460-467.
40.Maetz, J.Y., et al., M23C6 carbides and Cr2N nitrides in aged duplex stainless steel: A SEM, TEM and FIB tomography investigation. Micron, 2016. 84: p. 43-53.
41.Zhou, J., et al., High-resolution electron microscopy observations of continuous precipitates with Pitsch-Schrader orientation relationship in an Mg–Al based alloy and interpretation with the O-lattice theory. Micron, 2009. 40(8): p. 906-910.
42.Kobayashi, S., K. Nakai, and Y. Ohmori, Decomposition Processes of δ-Ferrite during Continuous Heating in a 25Cr–7Ni–0.14 N Stainless Steel. ISIJ international, 2000. 40(8): p. 802-808.
43.Ohmori, Y., et al., Mechanism of Widmanstätten austenite formation in a δ/γ duplex phase stainless steel. ISIJ international, 1995. 35(8): p. 969-975.
44.Carter, D.B.W.C.B., Transmission electron microscopy A textbook for materials science. 2009.
45.Biswas, K., S. Sivakumar, and N. Gurao, Electron Microscopy in Science and Engineering. 2022: Springer.
46.Schwartz, A., Electron Backscatter Diffraction in Materials Science. 2009, Springer.
47.Ben, F. and P. Olubambi, Thermo-Calc determination of phase diagram and thermodynamic properties of Ni-Al binary system. Materials Today: Proceedings, 2024. 105: p. 259-267.
48.Ben, F. and P.A. Olubambi, Phase and properties prediction of Al–Ag binary system using thermo-calc. MRS Advances, 2023. 8(10): p. 577-582.
49.Ikhmayies, S.J., Thermo-Calc Determination of Phase Diagram of Si-B Binary System. JOM, 2021. 73(1): p. 253-259.
50.Andersson, J.-O., et al., Thermo-Calc & DICTRA, computational tools for materials science. Calphad, 2002. 26(2): p. 273-312.
51.Schaffnit, P., et al., A Scheil–Gulliver model dedicated to the solidification of steel. Calphad, 2015. 48: p. 184-188.
52.de Farias Azevedo, C.R., et al., An overview of the recurrent failures of duplex stainless steels. Engineering Failure Analysis, 2019. 97: p. 161-188.
53.Krauss, G., Solidification, segregation, and banding in carbon and alloy steels. Metallurgical and materials transactions B, 2003. 34(6): p. 781-792.
54.Knyazeva, M. and M. Pohl, Duplex steels: part I: genesis, formation, structure. Metallography, Microstructure, and Analysis, 2013. 2: p. 113-121.
55.Vicente, A., et al., Study of the Distribution of Cr, Mo, Ni and N in δ Ferrite and Austenite in Duplex Stainless Steels. Saudi Journal of Engineering and Technology, 2020. 5: p. 156-162.
56.Osório, W.R., et al., Secondary dendrite arm spacing and solute redistribution effects on the corrosion resistance of Al–10wt% Sn and Al–20wt% Zn alloys. Materials Science and Engineering: A, 2006. 420(1): p. 179-186.
57.Nolze, G., Euler angles and crystal symmetry. Crystal research and technology, 2015. 50(2): p. 188-201.
58.Melcher, A., et al., Conversion of EBSD data by a quaternion based algorithm to be used for grain structure simulations. Technische Mechanik-European Journal of Engineering Mechanics, 2010. 30(4): p. 401-413.
59.Britton, T.B., et al., Tutorial: Crystal orientations and EBSD—Or which way is up? Materials Characterization, 2016. 117: p. 113-126.
60.Wright, S.I., Orientation Texture, in Encyclopedia of Condensed Matter Physics, F. Bassani, G.L. Liedl, and P. Wyder, Editors. 2005, Elsevier: Oxford. p. 221-233.
61.Mangan, M. and G. Shiflet, The Pitsch-Petch orientation relationship in ferrous pearlite at small undercooling. Metallurgical and Materials Transactions A, 1999. 30: p. 2767-2781.
62.Howell, P.R., The pearlite reaction in steels mechanisms and crystallography: Part I. From HC Sorby to RF Mehl. Materials characterization, 1998. 40(4-5): p. 227-260.
63.Chen, C.Y., H.W. Yen, and J.R. Yang, Sympathetic nucleation of austenite in a Fe-22Cr-5Ni duplex stainless steel. Scripta Materialia, 2007. 56(8): p. 673-676.
64.Locquet, J.-N., et al., Complete TEM investigation of a nitrided layer for a Cr alloy steel. Microscopy Microanalysis Microstructures, 1997. 8(4-5): p. 335-352.
65.Sennour, M., C. Jacq, and C. Esnouf, Mechanical and microstructural investigations of nitrided Fe-Cr layers. Journal of materials science, 2004. 39: p. 4533-4541.
66.Sennour, M., P.-H. Jouneau, and C. Esnouf, TEM and EBSD investigation of continuous and discontinuous precipitation of CrN in nitrided pure Fe-Cr alloys. Journal of materials science, 2004. 39(14): p. 4521-4531.
67.Yen, H., et al., Orientation relationship transition of nanometre sized interphase precipitated TiC carbides in Ti bearing steel. Materials Science and Technology, 2010. 26(4): p. 421-430.
68.Yen, H.-W., C.-Y. Huang, and J.-R. Yang, Characterization of interphase-precipitated nanometer-sized carbides in a Ti–Mo-bearing steel. Scripta Materialia, 2009. 61(6): p. 616-619.
69.Hsiao, T.-J., et al., Effect of Cu Additions on the Evolution of Eta-prime Precipitates in Aged AA 7075 Al–Zn–Mg–Cu Alloys. Metals, 2022. 12(12): p. 2120.
70.Tai, C.-L., et al., The effect of minor addition of Mn in AA7075 Al–Zn–Mg–Cu aluminum alloys on microstructural evolution and mechanical properties in warm forming and paint baking processes. International Journal of Lightweight Materials and Manufacture, 2023. 6(4): p. 521-533.
71.Chung, T.-F., et al., Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy. Acta Materialia, 2018. 149: p. 377-387.
72.Weatherly, G. and R. Nicholson, An electron microscope investigation of the interfacial structure of semi-coherent precipitates. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 1968. 17(148): p. 801-831.
73.Smallman, R.E. and A.H.W. Ngan, Chapter 10 - Surfaces, Grain Boundaries and Interfaces, in Modern Physical Metallurgy (Eighth Edition), R.E. Smallman and A.H.W. Ngan, Editors. 2014, Butterworth-Heinemann: Oxford. p. 415-442.
74.Romanov, A., T. Wagner, and M. Rühle, Coherent to incoherent transition in mismatched interfaces. Scripta Materialia, 1998. 38(6): p. 869-875.
75.Dholabhai, P.P. and B.P. Uberuaga, Beyond coherent oxide heterostructures: atomic‐scale structure of misfit dislocations. Advanced Theory and Simulations, 2019. 2(9): p. 1900078.
76.Ryan, N., W. Soffa, and R. Crawford, Orientation and habit plane relationships for carbide and nitride precipitates in molybdenum. Metallography, 1968. 1(2): p. 195-220.
77.Leo, P.H. and M. Schwartz, The energy of semicoherent interfaces. Journal of the Mechanics and Physics of Solids, 2000. 48(12): p. 2539-2557.
78.Chen, X., et al., Effect of dynamic evolution of misfit dislocation pattern on dislocation nucleation and shear sliding at semi-coherent bimetal interfaces. Acta Materialia, 2018. 143: p. 107-120.
79.Van der Merwe, J.H., Misfit dislocation generation in epitaxial layers. Critical Reviews in Solid State and Material Sciences, 1991. 17(3): p. 187-209.
80.Korte, C., et al., Ionic conductivity and activation energy for oxygen ion transport in superlattices—the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3. Physical Chemistry Chemical Physics, 2008. 10(31): p. 4623-4635.
81.Horvath, W., et al., Influence of thermal cycling on the microstructure of a ferritic-austenitic duplex stainless steel. Materials Characterization, 1995. 34(4): p. 277-285.
82.Moridi, A., et al., Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations. International Journal of Solids and Structures, 2013. 50(22-23): p. 3562-3569.
83.Basha, D.A., et al., Microstructure study of a severely plastically deformed Mg-Zn-Y alloy by application of low angle annular dark field diffraction contrast imaging. Science and Technology of Advanced Materials, 2016. 17(1): p. 115-127.
84.Hull, D. and D.J. Bacon, Chapter 3 - Movement of Dislocations, in Introduction to Dislocations (Fifth Edition), D. Hull and D.J. Bacon, Editors. 2011, Butterworth-Heinemann: Oxford. p. 43-62.
85.Hull, D. and D.J. Bacon, Chapter 2 - Observation of Dislocations, in Introduction to Dislocations (Fifth Edition), D. Hull and D.J. Bacon, Editors. 2011, Butterworth-Heinemann: Oxford. p. 21-41.
86.Scattergood, R. and D. Bacon, The Orowan mechanism in anisotropic crystals. Philosophical Magazine, 1975. 31(1): p. 179-198.
87.Li, Y., et al., The evolution of dislocation loop and its interaction with pre-existing dislocation in He+-irradiated molybdenum: in-situ TEM observation and molecular dynamics simulation. Acta Materialia, 2020. 201: p. 462-476.
88.Redjaïmia, A., et al., Morphology, crystallography and defects of the intermetallic χ-phase precipitated in a duplex (δ+ γ) stainless steel. Journal of materials science, 2004. 39(7): p. 2371-2386.
89.Escriba, D., et al., Chi-phase precipitation in a duplex stainless steel. Materials Characterization, 2009. 60(11): p. 1214-1219.
90.Nakajima, K., M. Apel, and I. Steinbach, The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: A multi-phase field study. Acta Materialia, 2006. 54(14): p. 3665-3672.
91.Sato, Y.S. and H. Kokawa, Preferential precipitation site of sigma phase in duplex stainless steel weld metal. Scripta Materialia, 1999. 40(6): p. 659-663.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99713-
dc.description.abstract本實驗所使用的材料為 ER2594 ( Fe-25Cr-8Ni-4Mo, wt.%) 超級雙相不鏽鋼,其具有優異的機械強度與抗腐蝕性能,因此被廣泛應用於沿海石化工業中。然而,為提升抗點蝕能力所添加的高含量鉻、鉬、鎢、氮等元素,易在熱處理與加工過程中形成二次析出物,導致材料性質劣化,甚至產生裂紋。。其中,σ相對性質影響最劇烈,為避免 σ 相析出,深入了解其生成與演化機制至關重要。因此,本研究透過原材(鑄錠)、均質化處理及恆溫相變熱處理等不同階段,探討σ相的生成與演化行為。
本研究在鑄錠的晶相觀察中,於三個不同區域(中心、0.5倍半徑、表面)取樣進行顯微組織的觀察,然而後續關於方位關係的分析以及熱處理,則聚焦於 0.5半徑位置來進行後續分析。均質化熱處理是使用高溫爐在 1250 °C 持溫 24 小時後水淬,以消除二次析出物;恆溫相變熱處理則是使用熱膨脹儀進行精準控溫與控時。所使用的分析方法包括OM、SEM-BSE、SEM-EBSD、IPF、Pole figure、TEM,針對析出物的成分、結構與和基地之間的方位關係進行分析。
在鑄錠結構中,透過晶相觀察可發現中心的最後凝固區域有大量σ相析出,利用Thermo-Cal模擬凝固流程以及液相在不同溫度下的成分變化可知在最後凝固區域由於鉻、鉬元素的偏析,所以有利於σ相析出。透過EBSD-phase mapping可知,σ 相與 γ₂ 是由肥粒鐵相分解而來;後續透過IPF以及Pole figure進行 δ、σ、γ₂ 三相之間的方位關係分析,發現 σ 相的析出機制可分成兩種:(1)以先生成的δ/γ2相界為成核點生長;(2)共析反應(δσ+γ2),利用機制(1) δ/γ2呈現K-S或N-W的方位關係,而機制(2)中δ/γ2不具有K-S或N-W的方位關係來進行區分。
在均質化水淬快速冷卻後原本預期為完美雙相結構,但在TEM觀察中發現肥粒鐵相中會有細小的CrN析出,和基地具有B-N的方位關係且具有3種不同變體。此外,由於析出物和基地之間的晶格不匹配所產生失配差排,所以也有觀察到析出物附近有大量差排產生。
在恆溫相變中聚焦在σ相鼻端溫度不同持溫時間來觀察,發現χ相會先於σ相生長並逐漸轉換成σ相,且在持溫10分鐘時觀察到σ相是以共析反應生成,然而,持溫20分鐘時由於大量γ2生成,所以σ相主要是以δ/γ2相界為成核點生
zh_TW
dc.description.abstractSuper duplex stainless steel ER2594 (Fe-25Cr-8Ni-4Mo, wt.%) possesses excellent mechanical strength and corrosion resistance. Owing to these superior properties, it is widely used in coastal petrochemical industries. However, to enhance pitting resistance, high amounts of chromium, molybdenum, tungsten, and nitrogen are added, which tend to promote the formation of secondary precipitates during heat treatment and processing. These precipitates can deteriorate the material properties and even lead to crack formation. Among them, the σ phase has the most detrimental effect. To prevent σ phase formation, a thorough understanding of its formation and evolution mechanisms is essential. Therefore, this study investigates the formation and evolution behavior of the σ phase through analyses conducted at three stages, including the as-cast ingot structure, homogenized structure, and isothermal heat treatment.
In this study, samples were taken from three different regions of the ingot—center, half-radius, and surface—for optical microscopy (OM) analysis. However, subsequent analyses of orientation relationships and heat treatment effects focused on the half-radius region. Homogenization was conducted in a high-temperature furnace at 1250 °C for 24 h, followed by water quenching to eliminate secondary precipitates. The characterization techniques employed include optical microscopy (OM), scanning electron microscopy with backscattered electrons (SEM-BSE), electron backscatter diffraction (SEM-EBSD), inverse pole figure (IPF) mapping, pole figure analysis, and transmission electron microscopy (TEM).
In the ingot structure, a significant amount of σ phase was observed in the center region of the ingot, which corresponds to the final solidification zone. Thermo-Calc simulations of the solidification sequence and compositional variations of the liquid phase at different temperatures indicated that segregation of chromium and molybdenum in the final solidification zone promotes σ phase precipitation. EBSD phase mapping revealed that both the σ phase and γ₂ phase originated from the decomposition of the δ-ferrite phase. Further analysis using IPF maps and pole figures showed that the orientation relationships among δ, σ, and γ₂ phases suggest two distinct precipitation mechanisms for the σ phase: (i) nucleation and growth at the δ/γ₂ interface, and (ii) eutectoid reaction (δ → σ + γ₂). In the former case, the orientation relationship between δ and γ₂ follows the Kurdjumov–Sachs (K–S) or Nishiyama–Wasserman (N–W) relationship. In the latter case, the orientation relationship between δ and γ₂ does not follow the K–S or N–W relationship.
After homogenization and water quenching, a fully duplex microstructure was expected; however, TEM observations revealed fine CrN precipitates within the ferrite matrix, exhibiting a Baker–Nutting (B–N) orientation relationship, with three CrN variants identified. In addition, significant dislocation density was observed around the precipitates due to lattice mismatch with the matrix.
During isothermal transformation, the study focused on various holding times near the nose temperature for σ-phase formation. It was observed that χ phase formed prior to the σ phase and gradually transformed into σ phase. After 10 minutes of holding, the σ phase was primarily formed via eutectoid reaction, whereas after 20 minutes, due to substantial formation of γ₂, the σ phase predominantly nucleated and grew at δ/γ₂ interfaces.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:27:27Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:27:27Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目次 v
圖次 viii
表次 xii
第一章 緒論 1
第二章 文獻回顧 3
2.1 雙相不鏽鋼發展 3
2.2 雙相不鏽鋼合金設計 7
2.2.1 肥粒鐵穩定元素(Ferrite Stabilizer) 7
2.2.2 沃斯田鐵穩定元素(Austenite Stabilizer) 8
2.2.3 元素分配(Element Partitioning) 9
2.3 雙相不鏽鋼顯微組織變化 18
2.3.1 顯微組織與熱處理設計 18
2.3.2 肥粒鐵相與二次析出物關聯 19
2.4 雙相不鏽鋼常見二次析出相 21
2.4.1 σ相 23
2.4.2 χ相 24
2.4.3 氮化物(CrN, Cr2N) 25
2.4.4 二次沃斯田鐵相(Secondary gamma, γ2) 26
2.4.5 其他二次析出物 27
第三章 研究方法 31
3.1 實驗流程與架構 31
3.1.1 實驗材料 31
3.1.2 熱處理設計 32
3.1.3 實驗架構 33
3.2 實驗儀器與試片製備 33
3.2.1 熱膨脹儀(Dilatometer, DIL) 33
3.2.2 光學顯微鏡(Optical Microscope, OM) 34
3.2.3 掃描式電子顯微鏡(Scanning electron microscope, SEM) 34
3.2.4 場發射電子微探儀(Electron Probe Microanalyzer, EPMA) 37
3.2.5 電子背向散射繞射(Electron Backscattered Diffraction, EBSD) 37
3.2.6 穿透式電子顯微鏡(TEM) 40
3.2.7 模擬軟體_Thermo-Calc 40
第四章 結果與討論_鑄錠結構 41
4.1 簡介 41
4.2 實驗結果與討論 41
4.2.1 σ相晶相觀察以及凝固流程Thermo-Calc.模擬分析 41
4.2.2 鑄錠組織方位關係分析 44
4.2.3 鑄錠組織σ相析出演化機制 46
4.3 結論 48
第五章 結果與討論_均質化結構 65
5.1 簡介 65
5.2 實驗結果與討論 65
5.2.1 氮化物析出物分析 65
5.2.2 CrN和肥粒鐵相晶格匹配(lattice mismatch) 68
5.2.3 析出物介面與失配插排(misfit dislocation) 69
5.3 實驗結果與討論 72
第六章 結果與討論_恆溫相變顯微結構演化 89
6.1 簡介 89
6.2 實驗結果與討論 90
6.2.1 恆溫相變各項析出物區分與演化分析 90
6.2.2 恆溫相變方位關係分析 92
6.2.3 恆溫相變σ相析出演化機制 93
6.3 結論 95
第七章 結論與未來工作 114
7.1 結論 114
7.2 未來工作 116
參考文獻 117
-
dc.language.isozh_TW-
dc.subject均質化zh_TW
dc.subjectCrNzh_TW
dc.subject鑄錠zh_TW
dc.subjectσ相zh_TW
dc.subject恆溫相變zh_TW
dc.subjectγ₂zh_TW
dc.subjectIngot structureen
dc.subjectσ phaseen
dc.subjectIsothermal transformationen
dc.subjectCrNen
dc.subjectγ₂en
dc.subjectHomogenized structureen
dc.titleER2594 超級雙相不鏽鋼之顯微組織演化特性研究zh_TW
dc.titleCharacteristics of microstructural evolution in ER2594 super duplex stainless steelen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor楊哲人zh_TW
dc.contributor.coadvisorJer-Ren Yangen
dc.contributor.oralexamcommittee陳志遠;王涵聖;鍾采甫zh_TW
dc.contributor.oralexamcommitteeChih-Yuan Chen;Han-Shen Wang;Tsai-Fu Chungen
dc.subject.keyword鑄錠,均質化,恆溫相變,σ相,γ₂,CrN,zh_TW
dc.subject.keywordIngot structure,Homogenized structure,Isothermal transformation,σ phase,γ₂,CrN,en
dc.relation.page121-
dc.identifier.doi10.6342/NTU202503184-
dc.rights.note未授權-
dc.date.accepted2025-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
17.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved