Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99666
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙基揚zh_TW
dc.contributor.advisorChi-Yang Chaoen
dc.contributor.author婁家愷zh_TW
dc.contributor.authorChia-Kai Louen
dc.date.accessioned2025-09-17T16:18:50Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citationLiu, G.-F. Sulfonated Chitosan-Titanate Crosslinking Film for Surface Modification of Si@G and SiOx Anodes of Lithium-Ion Batteries. National Taiwan University, 2023.
Wang, H.-L. Improving Propylene Carbonate Tolerance for Natural Graphite Anode via artificial SEI of Functionalized Sulfonated Chitosan. National Taiwan University, 2024.
Chang, H., Wu, Y. R., Han, X., & Yi, T. F. (2021). Recent developments in advanced anode materials for lithium-ion batteries. Energy Materials, 1(1), N-A.
Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. nature, 414(6861), 359-367.
Nishi, Y. (2001). The development of lithium ion secondary batteries. The Chemical Record, 1(5), 406-413.
Chen, Z., & Bresser, D. (2020). Sustainable Energy & Fuels.
Chombo, P. V., & Laoonual, Y. (2020). A review of safety strategies of a Li-ion battery. Journal of Power Sources, 478, 228649.
Cheng, H., Shapter, J. G., Li, Y., & Gao, G. (2021). Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry, 57, 451-468.
Nishi, Y. (2001). Lithium ion secondary batteries; past 10 years and the future. Journal of Power Sources, 100(1-2), 101-106.
Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., ... & Li, B. (2021). A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry, 59, 83-99.
Gulzar, U., De Angelis, F., Zaccaria, R. P., & Capiglia, C. (2016). Recent Advances in Textile Based Energy Storage Devices. World, 2, 7.
Kim, J., Park, K., Woo, H., Gil, B., Park, Y. S., Kim, I. S., & Park, B. (2019). Selective removal of nanopores by triphenylphosphine treatment on the natural graphite anode. Electrochimica Acta, 326, 134993.
Kurzweil, P. (2015). Lithium battery energy storage: State of the art including lithium–air and lithium–sulfur systems. Electrochemical energy storage for renewable sources and grid balancing, 269-307.
Kurzweil, P., & Brandt, K. (2019). Overview of rechargeable lithium battery systems. In Electrochemical Power Sources: Fundamentals, Systems, and Applications (pp. 47-82). Elsevier.
Xing, B., Zhang, C., Cao, Y., Huang, G., Liu, Q., Zhang, C., ... & Yu, J. (2018). Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries. Fuel processing technology, 172, 162-171.
Holland, A. (2023, August 28). The evolving landscape of graphite anodes in Li Ion batteries. IDTechEx. Retrieved August 3, 2025, from https://www.idtechex.com/en/research-article/the-evolving-landscape-of-graphite-anodes-in-li-ion-batteries/29784.
Liao, X., Ding, Z., & Yin, Z. (2020). Excellent performance of a modified graphite anode for lithium-ion battery application. Ionics, 26(11), 5367-5373.
Yoshio, M., Wang, H., & Fukuda, K. (2003). Spherical carbon‐coated natural graphite as a lithium‐ion battery‐anode material. Angewandte chemie international edition, 42(35), 4203-4206.
Park, T. H., Yeo, J. S., Seo, M. H., Miyawaki, J., Mochida, I., & Yoon, S. H. (2013). Enhancing the rate performance of graphite anodes through addition of natural graphite/carbon nanofibers in lithium-ion batteries. Electrochimica Acta, 93, 236-240.
Shen, K., Cao, X., Huang, Z. H., Shen, W., & Kang, F. (2021). Microstructure and thermal expansion behavior of natural microcrystalline graphite. Carbon, 177, 90-96.
Zhao, L., Ding, B., Qin, X. Y., Wang, Z., Lv, W., He, Y. B., ... & Kang, F. (2022). Revisiting the roles of natural graphite in ongoing lithium‐ion batteries. Advanced Materials, 34(18), 2106704.
Chung, D. D. L. (2002). Review graphite. Journal of materials science, 37(8), 1475-1489.
Bernal, J. D. (1924). The structure of graphite. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 106(740), 749-773.
Lipson, H., & Stokes, A. R. (1942). A new structure of carbon. Nature, 149(3777), 328-328.
Brodd, R. J., Kozawa, A., & Yoshio, M. (2009). Lithium-Ion Batteries: Science and Technologies. Springer.
Shi, H., Barker, J., Saidi, M. Y., & Koksbang, R. (1996). Structure and lithium intercalation properties of synthetic and natural graphite. Journal of the Electrochemical Society, 143(11), 3466.
Pierson, H. O. (1993). Handbook of Carbon, graphite. Diamond and Fullerenes, 45.
Nakajima, T., Mabuchi, A., & Hagiwara, R. (1988). A new structure model of graphite oxide. Carbon, 26(3), 357-361.
Kita, Y., Watanabe, N., & Fujii, Y. (1979). Chemical composition and crystal structure of graphite fluoride. Journal of the American Chemical Society, 101(14), 3832-3841.
Hofmann, U., & Rüdorff, W. (1938). The formation of salts from graphite by strong acids. Transactions of the Faraday Society, 34, 1017-1021.
Rüdorff, W., & Hofmann, U. (1938). Über Graphitsalze. Zeitschrift für Anorganische und Allgemeine Chemie, 238(1), 1–50.
Sole, C., Drewett, N. E., & Hardwick, L. J. (2014). In situ Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday discussions, 172, 223-237.
Daumas, N., & Herold, A. (1969). Relations between phase concept and reaction mechanics in graphite insertion compounds. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C, 268(5), 373.
Axdal, S. A., & Chung, D. D. L. (1987). A theory for the kinetics of intercalation of graphite. Carbon, 25(3), 377-389.
Kirczenow, G. (1985). Kinetics of stage ordering and stage transitions. Physical review letters, 55(25), 2810.
Thomas, J. M., Millward, G. R., Schlögl, R. F., & Boehm, H. P. (1980). Direct imaging of a graphite intercalate: evidence of interpenetration of ‘stages’ in graphite: ferric chloride. Materials Research Bulletin, 15(5), 671-676.
R. Levi-Setti, G. Crow, Y. L. Wang, N. W. Parker, R. Mittleman and D. M. Hwang, Phys. Rev. Lett., 1985, 54, 2615–2618.
Levi-Setti, R., Crow, G., Wang, Y. L., Parker, N. W., Mittleman, R., & Hwang, D. M. (1985). High-resolution scanning-ion-microprobe study of graphite and its intercalation compounds. Physical review letters, 54(24), 2615.
Bresser, D., Paillard, E., & Passerini, S. (2015). Lithium-ion batteries (LIBs) for medium-and large-scale energy storage:: current cell materials and components. In Advances in batteries for medium and large-scale energy storage (pp. 125-211). Woodhead Publishing.
McKinnon, W. R., & Haering, R. R. (1983). Modern aspects of electrochemistry. New York, 15, 235.
Song, X. Y., Kinoshita, K., & Tran, T. D. (1996). Microstructural characterization of lithiated graphite. Journal of The Electrochemical Society, 143(6), L120.
Yazami, R., & Touzain, P. (1983). A reversible graphite-lithium negative electrode for electrochemical generators. Journal of Power Sources, 9(3), 365-371.
Dahn, J. R. (1991). Phase diagram of Li x C 6. Physical Review B, 44(17), 9170.
Levi, M. D., & Aurbach, D. (1997). The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling. Journal of Electroanalytical Chemistry, 421(1-2), 79-88.
Peled, E. (1979). The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of The Electrochemical Society, 126(12), 2047.
Peled, E., Golodnitsky, D., & Ardel, G. (1997). Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. Journal of the Electrochemical Society, 144(8), L208.
Aurbach, D., Markovsky, B., Levi, M. D., Levi, E., Schechter, A., Moshkovich, M., & Cohen, Y. (1999). New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. Journal of power sources, 81, 95-111.
Winter, M. (2009). The solid electrolyte interphase–the most important and the least understood solid electrolyte in rechargeable Li batteries. Zeitschrift für physikalische Chemie, 223(10-11), 1395-1406.
Verma, P., Maire, P., & Novák, P. (2010). A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 55(22), 6332-6341.
Goodenough, J. B., & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chemistry of materials, 22(3), 587-603.
Vetter, J., Novák, P., Wagner, M. R., Veit, C., Möller, K. C., Besenhard, J. O., ... & Hammouche, A. (2005). Ageing mechanisms in lithium-ion batteries. Journal of power sources, 147(1-2), 269-281.
Andersen, H. L., Djuandhi, L., Mittal, U., & Sharma, N. (2021). Strategies for the analysis of graphite electrode function. Advanced Energy Materials, 11(48), 2102693.
Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 104(10), 4303-4418.
Kalhoff, J., Eshetu, G. G., Bresser, D., & Passerini, S. (2015). Safer electrolytes for lithium‐ion batteries: state of the art and perspectives. ChemSusChem, 8(13), 2154-2175.
Jiang, J., & Dahn, J. R. (2004). Effects of solvents and salts on the thermal stability of LiC6. Electrochimica Acta, 49(26), 4599-4604.
Nishi, Y. (2001). Lithium ion secondary batteries; past 10 years and the future. Journal of Power Sources, 100(1-2), 101-106.
Winter, M. (1998). J. 0. Besenhard, ME Spahr and P. Novak. Adv. Mater, 10, 725-763.
Bresser, D., & Passerini, S. (2018). Energy Storage Applications. Power Engineering: Advances and Challenges Part B: Electrical Power, 111.
Xing, L., Zheng, X., Schroeder, M., Alvarado, J., von Wald Cresce, A., Xu, K., ... & Li, W. (2018). Deciphering the ethylene carbonate–propylene carbonate mystery in Li-ion batteries. Accounts of chemical research, 51(2), 282-289.
Eshetu, G. G., Grugeon, S., Laruelle, S., Boyanov, S., Lecocq, A., Bertrand, J. P., & Marlair, G. (2013). In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries. Physical chemistry chemical physics, 15(23), 9145-9155.
Arai, J. (2003). Nonflammable methyl nonafluorobutyl ether for electrolyte used in lithium secondary batteries. Journal of the Electrochemical Society, 150(2), A219.
Besenhard, J. O., Winter, M., Yang, J., & Biberacher, W. (1995). Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources, 54(2), 228-231.
Xu, K. (2007). “Charge-transfer” process at graphite/electrolyte interface and the solvation sheath structure of Li+ in nonaqueous electrolytes. Journal of the electrochemical society, 154(3), A162.
Xu, K., Lam, Y., Zhang, S. S., Jow, T. R., & Curtis, T. B. (2007). Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. The Journal of Physical Chemistry C, 111(20), 7411-7421.
Xu, K. (2009). Whether EC and PC differ in interphasial chemistry on graphitic anode and how. Journal of The Electrochemical Society, 156(9), A751.
von Wald Cresce, A., Borodin, O., & Xu, K. (2012). Correlating Li+ solvation sheath structure with interphasial chemistry on graphite. The Journal of Physical Chemistry C, 116(50), 26111-26117.
Wu, Y., Zhang, J., Liu, J., Sheng, L., Zhang, B., Wang, L., ... & He, X. (2024). Boosting reversible charging of Li-ion batteries at low temperatures by a synergy of propylene carbonate-based electrolyte and defective graphite. Nano Research, 17(3), 1491-1499.
Tasaki, K., Kanda, K., Kobayashi, T., Nakamura, S., & Ue, M. (2006). Theoretical studies on the reductive decompositions of solvents and additives for lithium-ion batteries near lithium anodes. Journal of the Electrochemical Society, 153(12), A2192.
Flandrois, S., & Simon, B. (1999). Carbon materials for lithium-ion rechargeable batteries. Carbon, 37(2), 165-180.
Fedorov, R. G., Maletti, S., Heubner, C., Michaelis, A., & Ein‐Eli, Y. (2021). Molecular engineering approaches to fabricate artificial solid‐electrolyte interphases on anodes for Li‐ion batteries: a critical review. Advanced Energy Materials, 11(26), 2101173.
Wang, A., Tu, Y., Wang, S., Zhang, H., Yu, F., Chen, Y., & Li, D. (2022). A PEGylated chitosan as gel polymer electrolyte for lithium ion batteries. Polymers, 14(21), 4552.
Xu, D., Jin, J., Chen, C., & Wen, Z. (2018). From nature to energy storage: A novel sustainable 3D cross-linked chitosan–PEGGE-based gel polymer electrolyte with excellent lithium-ion transport properties for lithium batteries. ACS applied materials & interfaces, 10(44), 38526-38537.
Abdollahifar, M., Vinograd, A., Lu, C. Y., Chang, S. J., Müller, J., Frankenstein, L., ... & Wu, N. L. (2022). Enabling Long-Cycling Life of Si-on-Graphite Composite Anodes via Fabrication of a Multifunctional Polymeric Artificial Solid–Electrolyte Interphase Protective Layer. ACS Applied Materials & Interfaces, 14(34), 38824-38834.
Du, R., Bao, T., Kong, D., Zhang, Q., & Jia, X. (2024). Cyclodextrins‐Based Polyrotaxanes: From Functional Polymers to Applications in Electronics and Energy Storage Materials. ChemPlusChem, 89(7), e202300706.
Mayumi, K., & Ito, K. (2010). Structure and dynamics of polyrotaxane and slide-ring materials. Polymer, 51(4), 959-967.
Harada, A., Takashima, Y., & Yamaguchi, H. (2009). Cyclodextrin-based supramolecular polymers. Chemical Society Reviews, 38(4), 875-882.
Liu, Z., Ye, L., Xi, J., Wang, J., & Feng, Z. G. (2021). Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Progress in Polymer Science, 118, 101408.
Yi, M. B., Lee, T. H., Lee, S. J., Kim, J. S., & Kim, H. J. (2022). Topologically designed cross-linking network for stretchable and recoverable pressure-sensitive adhesives with exceptional softness. Materials Today Chemistry, 26, 101141.
Liu, X., Luo, X., Chen, J., Yang, Z., Liu, Y., Bai, R., ... & Zhong, W. (2025). Efficient and robust intrinsically stretchable organic solar cells via mechanically interlocked oligomer integration. Journal of Materials Chemistry A.
Lee, S., Inoue, Y., Kim, D., Reuveny, A., Kuribara, K., Yokota, T., ... & Someya, T. (2014). A strain-absorbing design for tissue–machine interfaces using a tunable adhesive gel. Nature communications, 5(1), 5898.
He, Y., Li, Y., Tong, Q., Zhang, J., Weng, J., & Zhu, M. (2021). Highly conductive and thermostable grafted polyrotaxane/ceramic hybrid polymer electrolyte for solid-state lithium-metal batteries. ACS Applied Materials & Interfaces, 13(35), 41593-41599.
Ding, P., Wu, L., Lin, Z., Lou, C., Tang, M., Guo, X., ... & Yu, H. (2023). Molecular self-assembled ether-based polyrotaxane solid electrolyte for lithium metal batteries. Journal of the American Chemical Society, 145(3), 1548-1556.
Seo, J., Lee, G. H., Hur, J., Sung, M. C., Seo, J. H., & Kim, D. W. (2021). Mechanically interlocked polymer electrolyte with built‐in fast molecular shuttles for all‐solid‐state lithium batteries. Advanced Energy Materials, 11(44), 2102583.
Liu, G., Yuan, Q., Hollett, G., Zhao, W., Kang, Y., & Wu, J. (2018). Cyclodextrin-based host–guest supramolecular hydrogel and its application in biomedical fields. Polymer Chemistry, 9(25), 3436-3449.
Wang, Y., Dong, J., Jin, J., & Jia, Y. G. (2021). Polyrotaxane Crosslinked Self‐Healing Hydrogels for Switchable Bioadhesion. Macromolecular Chemistry and Physics, 222(8), 2000461.
Collins, C. J., Mondjinou, Y., Loren, B., Torregrosa-Allen, S., Simmons, C. J., Elzey, B. D., ... & Thompson, D. (2016). Influence of molecular structure on the in vivo performance of flexible rod polyrotaxanes. Biomacromolecules, 17(9), 2777-2786.
Du, R., Bao, T., Zhu, T., Zhang, J., Huang, X., Jin, Q., ... & Jia, X. (2023). A low‐hysteresis and highly stretchable ionogel enabled by well dispersed slidable cross‐linker for rapid human‐machine interaction. Advanced Functional Materials, 33(30), 2212888.
Choi, S., Kwon, T. W., Coskun, A., & Choi, J. W. (2017). Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science, 357(6348), 279-283.
Cai, Y., Liu, C., Yu, Z., Ma, W., Jin, Q., Du, R., ... & Jia, X. (2023). Slidable and Highly Ionic Conductive Polymer Binder for High‐Performance Si Anodes in Lithium‐Ion Batteries. Advanced Science, 10(6), 2205590.
Seo, J., Lee, G. H., Hur, J., Sung, M. C., Seo, J. H., & Kim, D. W. (2021). Mechanically interlocked polymer electrolyte with built‐in fast molecular shuttles for all‐solid‐state lithium batteries. Advanced Energy Materials, 11(44), 2102583.
Rwei, S. P., & Lien, C. C. (2014). Synthesis and viscoelastic characterization of sulfonated chitosan solutions. Colloid and Polymer Science, 292(4), 785-795.
Choi, W., Shin, H. C., Kim, J. M., Choi, J. Y., & Yoon, W. S. (2020). Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology, 11(1), 1-13.
Herstedt, M., Andersson, A. M., Rensmo, H., Siegbahn, H., & Edström, K. (2004). Characterisation of the SEI formed on natural graphite in PC-based electrolytes. Electrochimica Acta, 49(27), 4939-4947.
Xu, K. (2009). Whether EC and PC differ in interphasial chemistry on graphitic anode and how. Journal of The Electrochemical Society, 156(9), A751.
Chen, Y. C., Ouyang, C. Y., Song, L. J., & Sun, Z. L. (2011). Electrical and lithium ion dynamics in three main components of solid electrolyte interphase from density functional theory study. The Journal of Physical Chemistry C, 115(14), 7044-7049.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99666-
dc.description.abstract大多數鋰離子電池 ( LIBs ) 採用石墨作為負極材料,因其具有較高的安全性。然而石墨負極仍然有些缺點需要改進,例如較低的理論電容量、快速充電性能不佳、低溫表現不佳以及在高倍率充放電下容易產生鋰枝晶。LIB低溫表現不佳的原因與電解液的組成有關,目前商用電池電解液主要為鋰鹽溶解在高介電常數的ethylene carbonate ( EC ) 和 ethyl methyl carbonate ( EMC )中,這些溶劑的熔點高於室溫,在低溫環境下會結晶使電解液傳導度大幅下降導致電池效能的下降。在電解液中導入低熔點的propylene carbonate ( PC )作為共溶劑以提升鋰離子電池在低溫下的性能是一常見的策略。但 PC 會在充放電的過程中會嵌入天然石墨 ( natural graphite, NG ) 層間,將 NG 的結構破壞而讓電容量與循環壽命下降。為了解決這些問題,在本研究中,我們製備了含有氮位磺酸化幾丁聚醣 ( N-sulfonated chitosan, N-SCS ) 與聚輪烷 (polyrotaxane, PR )的聚合物人工固態電解質介面層 (artificial solid electrolyte interphase, A-SEI ),透過簡單的溶劑揮發製程使其包覆於天然石墨 ( NG ) 表面形成A-SEI@NG來提升循環穩定性與安全性。N-SCS 具有良好的剛性,提供較高的機械強度,並透過其中的磺酸根基團實現鋰離子的單離子導體特性。同時,PR的滑環特性賦予 A-SEI 額外的柔韌性與延展性,使其能在充放電過程中承受負極體積變化,並維持結構完整性。透過適當的交聯處理,我們希望此 A-SEI 形成一種互穿網路結構,並展現出 N-SCS 與 PR 的優點。
我們系統化改變A-SEI中N-SCS與PR的組成與PR的套環數以調控A-SEI的性質,在以不含PC的電解液組成的電池在室溫進行0.5C/0.5C充放電循環時,Li//LE//NG 電池充放電循環到大約 200 圈即開始衰退,而 Li//LE//A-SEI@NG 電池則都可以維持更長的圈數,最高達到 240 圈。在含PC的電解液組成的電池,其0.5C / 0.5C 循環時,Li//LE//NG 電池在大約 160 圈時即開始衰退,而 Li//LE//A-SEI@NG 電池則最高維持到 200 圈。透過交流阻抗分析、SEM形貌觀察、XRD結構分析和XPS成分分析,了解A-SEI提升電池效能循環穩定性的原因。
zh_TW
dc.description.abstractMost lithium-ion batteries ( LIBs ) employ graphite as the anode material due to its relatively high safety under normal operating conditions. However, graphite anode still has several challenges, such as a low theoretical capacity, poor fast-charging performance, unsatisfactory low-temperature behavior, and the formation of lithium dendrites under high-rate charging. In addition, the commercial electrolytes used in LIBs are primarily composed of ethylene carbonate ( EC ) and ethyl methyl carbonate ( EMC ), both of which have melting points above room temperature, resulting in poor performance under low-temperature conditions.
To address this issue, propylene carbonate ( PC ) can be introduced into the electrolyte, leveraging its low melting point to improve LIB performance at low temperatures. However, a drawback of PC is its tendency to co-intercalate into natural graphite ( NG ) during charge / discharge process, disrupting the layered graphite structure and ultimately leading to anode disintegration.
To solve these problems, previous studies have proposed constructing an artificial solid electrolyte interface ( A-SEI ) on the graphite surface as an effective strategy to improve cycling stability and safety. In this study, we develop a polymer A-SEI composed of nitrogen-sulfonated chitosan ( NSCS ) and polyrotaxane ( PR ), which is applied onto the NG surface via a simple solution casting process. NSCS provides good rigidity and mechanical strength, and its sulfonate groups offer single-ion conductivity for lithium ions. Meanwhile, the sliding-ring structure of PR imparts additional flexibility and ductility to the A-SEI, allowing it to accommodate volume changes during charge / discharge process and maintain structural integrity. Through appropriate crosslinking reaction, we aim to form an interpenetrating polymer network that combines the advantages of both NSCS and PR.
In electrochemical testing with EC-series electrolytes under 0.5C / 0.5C cycling, Li//LE//NG cell began to degrade after approximately 200 cycles, whereas Li//LE//A-SEI@NG cells maintained a longer cycle life. Similarly, in PC-series electrolytes, Li//LE//NG cell began to degrade after approximately 125 cycles under 0.5C / 0.5C cycling, while Li//LE//A-SEI@NG cells showed longer cycle life. Further characterizations including electrochemical impedance spectroscopy ( EIS ), scanning electron microscopy ( SEM ), X-ray diffraction ( XRD ), and X-ray photoelectron spectroscopy ( XPS ) were conducted to investigate the differences between NG and A-SEI@NG anodes after cycling, and to explore the underlying mechanisms.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:18:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:18:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
目次 vi
圖次 x
表次 xiv
第一章 緒論 1
1.1研究動機 1
1.2研究目的與架構 2
第二章 文獻回顧 6
2.1鋰離子二次電池 6
2.1.1 鋰離子電池工作原理 7
2.1.2 石墨負極 8
2.1.3 石墨嵌鋰機制 11
2.2 固態電解質介面層 ( SEI ) 13
2.3 碳酸酯類電解質 15
2.3.1 碳酸乙烯酯與碳酸丙烯酯生成的 SEI 17
2.3.2 碳酸丙烯酯在低溫充放的優勢 21
2.4 人工固態電解質介面層 ( A-SEI ) 22
2.4.1 幾丁聚醣在鋰電池的應用 24
2.4.2 聚輪烷在鋰電池應用 27
第三章 實驗步驟與原理 31
3.1 實驗使用之藥品與材料 31
3.2 實驗使用之儀器 34
3.3 材料製備 36
3.3.1 N-Sulfonated Chitosan ( NSCS ) 之合成 36
3.3.2 Polyrotaxane (PR) 之合成 37
3.3.3 交聯膜材的製備 39
3.3.4 天然石墨的改質 ( A-SEI ) 40
3.3.5 負極塗佈及漿料置備 41
3.3.6 組裝 CR2032 電池 42
3.4 材料分析 43
3.4.1 化學結構之鑑定 43
3.4.2 熱重分析 44
3.4.3 膜材機械強度分析 44
3.4.4 膜材溶解度測試 44
3.4.5 薄膜傳導度量測 45
3.4.6 半電池充放電循環穩定性測試 45
3.4.7 極片表面及截面的形貌分析 46
3.4.8 負極材料之元素與鍵結分析 46
3.4.9 電化學阻抗頻譜 ( EIS ) 分析 47
第四章 結果與討論 48
4.1 氮位磺酸化幾丁聚醣 ( NSCS ) 的合成 48
4.2 聚輪烷 ( PR ) 的合成 50
4.3 NSCS-PR-GA 獨立膜性質 56
4.3.1 NSCS-PR-GA 獨立膜於水中的溶解度 57
4.3.2 NSCS-PR-GA 獨立膜於電解質中的溶解度 58
4.3.3 NSCS-PR-GA 獨立膜的熱性質分析 59
4.3.4 NSCS-PR-GA 獨立膜的機械性質分析 60
4.3.5 NSCS-PR-GA 獨立膜的阻抗分析 63
4.4 A-SEI 改質天然石墨 ( NG ) 負極的電化學性能表現 63
4.4.1 EC-series 的充放電循環表現 63
4.4.2 PC-series 的充放電循環表現 67
4.4.3 有無 A-SEI 之天然石墨負極之形貌組成分析 71
4.4.3.1 EC-series 之 SEM top view 71
4.4.3.2 PC-series 之 SEM top view 74
4.4.3.3 EC / PC-series 之 SEM side view 77
4.4.3.4 EC/PC-series 石墨負極充放電循環前後之 XRD 分析 79
4.4.3.5 EC-series 石墨負極充放電循環後之 XPS 分析 83
4.4.3.6 PC-series 石墨負極充放電循環後之 XPS 分析 86
第五章 結論 89
第六章 未來展望 90
參考文獻 91
附錄 102
-
dc.language.isozh_TW-
dc.subject鋰離子電池zh_TW
dc.subject人工固態電解質介面層zh_TW
dc.subject互穿聚合物網路zh_TW
dc.subject磺酸化幾丁聚醣zh_TW
dc.subject聚輪烷zh_TW
dc.subject碳酸丙烯酯zh_TW
dc.subjectinterpenetrating polymer networken
dc.subjectlithium-ion batteriesen
dc.subjectpropylene carbonateen
dc.subjectpolyrotaxaneen
dc.subjectsulfonated chitosanen
dc.subjectartificial solid electrolyte interface ( A-SEI )en
dc.title利用磺酸化幾丁聚醣及聚輪烷高分子網路結構形成人工固態電解質介面層以提高天然石墨負極之效能zh_TW
dc.titlePolymer Network Comprised of Sulfonated Chitosan and Polyrotaxane and the Application in Artificial SEI for LIB Anodeen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳乃立;葉哲寧zh_TW
dc.contributor.oralexamcommitteeNae-Lih Wu;Che-Ning Yehen
dc.subject.keyword鋰離子電池,人工固態電解質介面層,互穿聚合物網路,磺酸化幾丁聚醣,聚輪烷,碳酸丙烯酯,zh_TW
dc.subject.keywordlithium-ion batteries,artificial solid electrolyte interface ( A-SEI ),interpenetrating polymer network,sulfonated chitosan,polyrotaxane,propylene carbonate,en
dc.relation.page103-
dc.identifier.doi10.6342/NTU202503948-
dc.rights.note未授權-
dc.date.accepted2025-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
8.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved