Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99663
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇德徵zh_TW
dc.contributor.advisorTe-Cheng Suen
dc.contributor.author張芳誠zh_TW
dc.contributor.authorFang-Cheng Changen
dc.date.accessioned2025-09-17T16:18:15Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citation[1] E.A. Starke Jr, J.T. Staley, Application of modern aluminum alloys to aircraft, Progress in aerospace sciences 32(2-3) (1996) 131-172.
[2] E.L. Rooy, Introduction to Aluminum and Aluminum Alloys, in: A.S.M.H. Committee (Ed.) Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, 1990, p. 0.
[3] W. Chrominski, M. Lewandowska, Precipitation strengthening of Al-Mg-Si alloy subjected to multiple accumulative roll bonding combined with a heat treatment, Materials & Design 219 (2022) 110813.
[4] D. Ashkenazi, How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives, Technological Forecasting and Social Change 143 (2019) 101-113.
[5] R.S. Long, E. Boettcher, D. Crawford, Current and Future Uses of Aluminum in the Automotive Industry, JOM 69(12) (2017) 2635-2639.
[6] Alloying: Understanding the Basics, ASM International, 2001.
[7] J.M. Runge, A Brief History of Aluminum and Its Alloys, in: J.M. Runge (Ed.), The Metallurgy of Anodizing Aluminum: Connecting Science to Practice, Springer International Publishing, Cham, 2018, pp. 1-63.
[8] J.C. Benedyk, International temper designation systems for wrought aluminum alloys, Light metal age 67 (2010) 3-6.
[9] J.G. Kaufman, Introduction to aluminum alloys and tempers, ASM international2000.
[10] J.R. Davis, Asm Specialty Handbook: Aluminum & Aluminum Alloys, ASM international1993.
[11] T. Dorin, A. Vahid, J. Lamb, Chapter 11 - Aluminium Lithium Alloys, in: R.N. Lumley (Ed.), Fundamentals of Aluminium Metallurgy, Woodhead Publishing2018, pp. 387-438.
[12] A. Abd El-Aty, Y. Xu, X. Guo, S.H. Zhang, Y. Ma, D. Chen, Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review, J Adv Res 10 (2018) 49-67.
[13] E.A. Starke, Historical Development and Present Status of Aluminum–Lithium Alloys, Aluminum-lithium Alloys2014, pp. 3-26.
[14] W. Cassada, G. Shiflet, E. Starke, The effect of plastic deformation on Al 2 CuLi (T 1) precipitation, Metallurgical Transactions A 22 (1991) 299-306.
[15] B. Gable, A. Zhu, A. Csontos, E. Starke Jr, The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al–Li–Cu–X alloy, Journal of Light Metals 1(1) (2001) 1-14.
[16] R.J. Rioja, J. Liu, The evolution of Al-Li base products for aerospace and space applications, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 43(9) (2012) 3325-3337.
[17] P. Lequeu, K. Smith, A. Daniélou, Aluminum-copper-lithium alloy 2050 developed for medium to thick plate, Journal of materials engineering and performance 19 (2010) 841-847.
[18] G. Preston, The diffraction of X-rays by age-hardening aluminium copper alloys, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 167(931) (1938) 526-538.
[19] A. Guinier, Structure of age-hardened aluminium-copper alloys, Nature 142(3595) (1938) 569-570.
[20] R. Nicholson, J. Nutting, Direct observation of the strain field produced by coherent precipitated particles in an age-hardened alloy, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 3(29) (1958) 531-535.
[21] L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L.R. Wallenberg, GP-zones in Al–Zn–Mg alloys and their role in artificial aging, Acta Mater. 49(17) (2001) 3443-3451.
[22] R.A. Herring, F.W. Gayle, J.R. Pickens, High-resolution electron microscopy study of a high-copper variant of weldalite 049 and a high-strength AI-Cu-Ag-Mg-Zr alloy, Journal of Materials Science 28(1) (1993) 69-73.
[23] C. Dwyer, M. Weyland, L.-Y. Chang, B. Muddle, Combined electron beam imaging and ab initio modeling of T1 precipitates in Al–Li–Cu alloys, Applied Physics Letters 98(20) (2011).
[24] H. Hardy, J. Silcock, The phase sections at 500 and 350 C of aluminium-rich aluminium-copper-lithium alloys, J. Inst. Metals 84 (1956).
[25] T.-F. Chung, Y.-L. Yang, C.-N. Hsiao, W.-C. Li, B.-M. Huang, C.-S. Tsao, Z. Shi, J. Lin, P.E. Fischione, T. Ohmura, J.-R. Yang, Morphological evolution of GP zones and nanometer-sized precipitates in the AA2050 aluminium alloy, International Journal of Lightweight Materials and Manufacture 1(3) (2018) 142-156.
[26] S. Wang, X. Yang, J. Wang, C. Zhang, C. Xue, Identifying the crystal structure of T1 precipitates in Al-Li-Cu alloys by ab initio calculations and HAADF-STEM imaging, Journal of Materials Science & Technology 133 (2023) 41-57.
[27] P. Donnadieu, Y. Shao, F. De Geuser, G. Botton, S. Lazar, M. Cheynet, M. De Boissieu, A. Deschamps, Atomic structure of T1 precipitates in Al–Li–Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering, Acta Mater. 59(2) (2011) 462-472.
[28] S. Van Smaalen, A. Meetsma, J.L. De Boer, P.M. Bronsveld, Refinement of the crystal structure of hexagonal Al2CuLi, Journal of Solid State Chemistry 85(2) (1990) 293-298.
[29] J. Howe, J. Lee, A. Vasudevan, Structure and deformation behavior of T 1 precipitate plates in an Al-2Li-1 Cu alloy, Metallurgical Transactions A 19 (1988) 2911-2920.
[30] J. Huang, A. Ardell, Crystal structure and stability of T 1, precipitates in aged Al–Li–Cu alloys, Materials Science and Technology 3(3) (1987) 176-188.
[31] X. Zhao, J. Ding, D. Xiao, L. Huang, W. Liu, Atomic-scale investigation on the evolution of T1 precipitates in an aged Al-Cu-Li-Mg-Ag alloy, Journal of Materials Science & Technology 209 (2025) 139-148.
[32] K. Kim, B.-C. Zhou, C. Wolverton, First-principles study of crystal structure and stability of T1 precipitates in Al-Li-Cu alloys, Acta Mater. 145 (2018) 337-346.
[33] E. Gumbmann, W. Lefebvre, F. De Geuser, C. Sigli, A. Deschamps, The effect of minor solute additions on the precipitation path of an AlCuLi alloy, Acta Mater. 115 (2016) 104-114.
[34] B.M. Gable, M. Pana, G.J. Shiflet, E.J. Starke, The role of trace additions on the T1 coarsening behavior in Al-Li-Cu-X alloys, Materials Science Forum, Trans Tech Publ, 2002, pp. 699-704.
[35] M. Murayama, K. Hono, Role of Ag and Mg on precipitation of T1 phase in an Al-Cu-Li-Mg-Ag alloy, Scripta Materialia 44(4) (2001) 701-706.
[36] J. Silcock, The structural ageing characteristics of Al-Cu-Mg alloys with copper-magnesium weight ratios of 7-1 and 2.2-1, Journal of the Institute of Metals 89(6) (1961) 203-210.
[37] 鍾采甫, AA7050 (Al-Zn-Mg) 和 AA2050 (Al-Cu-Li) 鋁合金原子級析出物之演化, 材料科學與工程學研究所, 國立臺灣大學, 台北市, 2019, p. 239.
[38] X. Zhao, W. Liu, D. Xiao, Y. Ma, L. Huang, Y. Tang, A critical review: Crystal structure, evolution and interaction mechanism with dislocations of nano precipitates in Al-Li alloys, Materials & Design 217 (2022) 110629.
[39] A.K. Vasudévan, R.D. Doherty, Grain boundary ductile fracture in precipitation hardened aluminum alloys, Acta Metallurgica 35(6) (1987) 1193-1219.
[40] S. Duan, C. Wu, Z. Gao, L. Cha, T. Fan, J. Chen, Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys, Acta Mater. 129 (2017) 352-360.
[41] Z. Chen, S. Li, Reinterpretation of precipitation behavior in an aged AlMgCu alloy, Journal of Materials Science 49 (2014) 7659-7668.
[42] H. Djaaboube, D. Thabet-Khireddine, TEM diffraction study of Al2CuMg (S′/S) precipitation in an Al–Li–Cu–Mg(Zr) alloy, Philosophical Magazine 92(15) (2012) 1876-1889.
[43] Z. Gao, J.Z. Liu, J.H. Chen, S.Y. Duan, Z.R. Liu, W.Q. Ming, C.L. Wu, Formation mechanism of precipitate T1 in AlCuLi alloys, Journal of Alloys and Compounds 624 (2015) 22-26.
[44] V. Araullo-Peters, B. Gault, F.d. Geuser, A. Deschamps, J.M. Cairney, Microstructural evolution during ageing of Al–Cu–Li–x alloys, Acta Mater. 66 (2014) 199-208.
[45] 寿. 鈴木, 幹. 菅野, 信. 林, Al-4%Cu-1%Li合金の時効現象に及ぼすカドミウム添加の影響, 軽金属 32(2) (1982) 88-94.
[46] Y. Deng, J. Bai, X. Wu, G. Huang, L. Cao, L. Huang, Investigation on formation mechanism of T1 precipitate in an Al-Cu-Li alloy, Journal of Alloys and Compounds 723 (2017) 661-666.
[47] S. Dash, D. Li, X. Zeng, D. Li, D. Chen, On the origin of deformation mechanisms in a heterostructured aluminum alloy via slip trace and lattice rotation analyses, Materials Science and Engineering: A 867 (2023) 144723.
[48] T. Gladman, Precipitation hardening in metals, Materials science and technology 15(1) (1999) 30-36.
[49] Symposium on Internal Stresses in Metals and Alloys, Nature 164(4164) (1949) 296-296.
[50] A.J. Ardell, Precipitation hardening, Metallurgical Transactions A 16(12) (1985) 2131-2165.
[51] T. Dorin, A. Deschamps, F. De Geuser, C. Sigli, Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al–Cu–Li alloy, Acta Mater. 75 (2014) 134-146.
[52] T. Dorin, F. De Geuser, W. Lefebvre, C. Sigli, A. Deschamps, Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al–Cu–Li alloy, Materials Science and Engineering: A 605 (2014) 119-126.
[53] B. Rodgers, P. Prangnell, Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al–Cu–Li alloy AA2195, Acta Mater. 108 (2016) 55-67.
[54] S.-x. Deng, J.-f. Li, L. Wang, Y.-y. Chen, Z.-w. Xiang, P.-c. Ma, Y.-l. Chen, D.-y. Liu, Strengthening mechanism of T8-aged Al−Cu−Li alloy with increased pre-deformation, Transactions of Nonferrous Metals Society of China 34(10) (2024) 3151-3169.
[55] K. Kumar, S. Brown, J.R. Pickens, Effect of a prior stretch on the aging response of an Al-Cu-Li-Ag-Mg-Zr alloy, Evaluation of the Microstructure of Al-Cu-Li-Ag-Mg Weldalite (tm) Alloys, Part 4 (1991).
[56] S.-X. Deng, J.-F. Li, H. Ning, D.-D. Lu, G.-J. Zeng, Z.-Z. Liu, H. Xiang, J.-R. Que, D.-Y. Liu, Effect of Zr addition on the microstructure evolution and mechanical properties of extruded Al-Cu-Li-Mn alloys, Materials Characterization 202 (2023) 113011.
[57] X. Xu, G. Wu, L. Zhang, X. Tong, X. Zhang, J. Sun, L. Li, X. Xiong, Effects of heat treatment and pre-stretching on the mechanical properties and microstructure evolution of extruded 2050 Al–Cu–Li alloy, Materials Science and Engineering: A 845 (2022) 143236.
[58] L. Donati, A. Segatori, M. El Mehtedi, L. Tomesani, Grain evolution analysis and experimental validation in the extrusion of 6XXX alloys by use of a lagrangian FE code, International Journal of Plasticity 46 (2013) 70-81.
[59] X. Xu, G. Wu, X. Tong, L. Zhang, C. Wang, F. Qi, X. Zeng, Y. Guo, Achieving superior strength-ductility balance by tailoring dislocation density and shearable GP zone of extruded Al-Cu-Li alloy, International Journal of Plasticity 182 (2024) 104135.
[60] W. Zhang, R. Su, G. Li, Y. Qu, Effect of pre-aging process on microstructure and properties of 7075-T8 aluminium alloy, Journal of Alloys and Compounds 960 (2023) 170953.
[61] S. Cui, C. Zhang, M. Liu, L. Chen, G. Zhao, Precipitation behavior of an Al–Cu–Li–X alloy and competing relationships among precipitates at different aging temperatures, Materials Science and Engineering: A 814 (2021) 141125.
[62] X.-M. Wang, W.-Z. Shao, J.-T. Jiang, G.-A. Li, X.-Y. Wang, L. Zhen, Quantitative analysis of the influences of pre-treatments on the microstructure evolution and mechanical properties during artificial ageing of an Al–Cu–Li–Mg–Ag alloy, Materials Science and Engineering: A 782 (2020) 139253.
[63] D.B. Williams, C.B. Carter, D.B. Williams, C.B. Carter, The transmission electron microscope, Springer2009.
[64] H. Wang, L. Liu, J. Wang, C. Li, J. Hou, K. Zheng, The Development of iDPC-STEM and Its Application in Electron Beam Sensitive Materials, Molecules 27(12) (2022) 3829.
[65] I. Lazic, E.G. Bosch, S. Lazar, Integrated differential phase contrast (iDPC) STEM, Acta Cryst 73 (2017) C117-C118.
[66] D.X. Xinyue Zhao, Lanping Huang*, Wensheng Liu**, Atomic-scale investigation on the evolution of T1 precipitates in an aged Al-CuLi-Mg-Ag alloy by iDPC-STEM technique, SSRN (2024).
[67] J.R. Pickens, F.H. Heubaum, L.S. Kramer, Ultra-high-strength, forgeable Al/1bCu/1bLi/1bAg/1bMg alloy, Scripta Metallurgica et Materialia 24(3) (1990) 457-462.
[68] E. Gumbmann, F. De Geuser, C. Sigli, A. Deschamps, Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy, Acta Mater. 133 (2017) 172-185.
[69] G. Itoh, Q. Cui, M. Kanno, Effects of a small addition of magnesium and silver on the precipitation of T1 phase in an Al 4% Cu 1.1% Li 0.2% Zr alloy, Materials Science and Engineering: A 211(1-2) (1996) 128-137.
[70] B.-P. Huang, Z.-Q. Zheng, Independent and combined roles of trace Mg and Ag additions in properties precipitation process and precipitation kinetics of Al–Cu–Li–(Mg)–(Ag)–Zr–Ti alloys, Acta Mater. 46(12) (1998) 4381-4393.
[71] Y. Ning, L. Ding, S. Liu, F.J. Ehlers, Q. Yang, Y. Weng, K. Zhang, C. Wang, Z. Jia, Mutually separated, branched segregation behavior of Mg and Ag elements in the T1 precipitates of Al-Cu-Li alloys, Scripta Materialia 252 (2024) 116270.
[72] S.J. Kang, T.-H. Kim, C.-W. Yang, J.I. Lee, E.S. Park, T.W. Noh, M. Kim, Atomic structure and growth mechanism of T1 precipitate in Al–Cu–Li–Mg–Ag alloy, Scripta Materialia 109 (2015) 68-71.
[73] V. Araullo-Peters, B. Gault, F. De Geuser, A. Deschamps, J.M. Cairney, Microstructural evolution during ageing of Al–Cu–Li–x alloys, Acta Mater. 66 (2014) 199-208.
[74] B. Xie, L. Huang, J. Xu, H. Su, H. Zhang, Y. Xu, J. Li, Y. Wang, Effect of the aging process and pre-deformation on the precipitated phase and mechanical properties of 2195 Al–Li alloy, Materials Science and Engineering: A 832 (2022) 142394.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99663-
dc.description.abstract本研究所使用的AA2050(Al-Cu-Li)合金,隸屬於 2xxx系列,由於鋰(Li)元素的添加,使其具有高強度且輕量化的特性,在航空航太領域備受重視。為了獲得與工業原材料相當的機械性能,本研究重點探討預時效(Pre-aging)的有無對材料機械性質及微結構的影響。預時效的主要目標是在材料內部初步生成高密度的 GP區,這些區域能夠有效耗散差排滑移所產生的能量,進而減少預應變過程中的局部應力集中,使差排分佈更加均勻。因此,這種機制有助於促進 T1與θ’的析出均勻化,提升材料的強度,同時改善其延性。隨後透過拉伸試驗與穿透式電子顯微鏡(TEM)分析,比較不同熱處理條件下析出物的形貌與分佈,最終探討析出物與機械性質之間的關聯。
當材料經過預應變處理(未經預時效)後,在穿透式電子顯微鏡的明場像(BF)及高角度環形暗場影像(HAADF)中,可以觀察到靠近晶界處易形成大面積的T1析出物空乏區(PFA)。此外,由於差排易發生糾纏,使得T1析出物傾向聚集,最終形成類似次晶界(sub-grain boundary)的形貌。這種析出物分布不均的現象嚴重限制了材料的降伏強度與延性。當額外施加2h@120°C的預時效後,由於減緩了晶界附近預應變所導致的差排糾纏,延展性明顯提升。然而,降伏強度並未有顯著變化。透TEM觀察發現,這是因為能顯著提升強度的 θ'析出物仍處於早期的GP(θ’) 階段,其對差排移動的阻礙效果仍然有限。當預應變從 5%提高至8%(CPT8%),由於更高的差排密度,促進了θ'析出物的成核與成長,提升析出強化效果,使材料的降伏強度大幅提升。
本研究透過雙球差校正穿透式電子顯微鏡(Spectra 300),在原子尺度下觀察 GP(T1)--> T1'-->T1以及 GP(θ')-->θ'的析出物轉變機制,並進一步探討 T1與θ'之間的交互作用。研究結果間接證實,θ'對於T1在影響材料降伏強度方面具有更顯著的作用。
此外,透過EDS分析,對T1析出物進行定性與半定量分析,藉此解析各元素在析出物內的分佈。進一步探討 T1析出過程中關鍵合金元素的濃度變化,以揭示其在析出行為中的角色與影響。
最後,透過積分差分相位對比(iDPC)技術,實現了GP(T1)--> T1'-->T1中原子交換過程的可視化(鋁原子逐漸被鋰原子取代),進而揭示T1'相在GP(T1)向T1成長途徑中所扮演的關鍵角色。並且在較高指數的[112]Al晶軸下將T1析出物中的鋰原子清楚成像,為析出物的原子排列行為提供更進一步的驗證。
zh_TW
dc.description.abstractThe AA2050 (Al-Cu-Li) alloy used in this study belongs to the 2xxx series. Due to the addition of lithium (Li), it exhibits high strength and lightweight characteristics, making it highly valued in the aerospace industry. This research focuses on investigating the effects of pre-aging on the mechanical properties and microstructure of the alloy to achieve mechanical performance comparable to industrial-grade materials. The primary objective of pre-aging is to initially generate a high density of GP zones within the material. These zones effectively dissipate the energy generated by dislocation slip, reducing local stress concentration during pre-straining and promoting a more uniform dislocation distribution. Consequently, this mechanism facilitates the uniform precipitation of T1 and θ' phases, enhancing the material's strength while improving its ductility. The study further employs tensile testing and transmission electron microscopy (TEM) to compare the morphology and distribution of precipitates under different heat treatment conditions, ultimately exploring the relationship between precipitates and mechanical propertiesWhen the material undergoes pre-straining without pre-aging, bright-field (BF) and high-angle annular dark-field (HAADF) images obtained from TEM reveal that large precipitation-free areas (PFA) of T1 often form near grain boundaries.
Moreover, due to the tendency of dislocations to entangle, T1 precipitates are prone to clustering, eventually forming sub-grain boundary-like structures. This uneven distribution of precipitates severely limits the material's yield strength and ductility. However, when an additional 2 hours of pre-aging at 120°C is applied, the reduction in dislocation entanglement near grain boundaries during pre-straining significantly enhances ductility. Nonetheless, the yield strength shows no substantial improvement. TEM observations indicate that this is because the θ' precipitates, which significantly enhance strength, remain in the early GP(θ') stage, providing limited resistance to dislocation motion.
When the pre-strain level is increased from 5% to 8% (CPT8%), the higher dislocation density further promotes the nucleation and growth of θ' precipitates, enhancing the precipitation strengthening effect and significantly improving the material's yield strength.
This study employs a double-spherical aberration-corrected transmission electron microscope (Spectra 300) to observe the transformation mechanisms of GP(T1) -->T1'--> T1 and GP(θ') --> θ' at the atomic scale, further exploring the interaction between T1 and θ' precipitates. The results indirectly confirm that θ' exerts a more significant influence on yield strength compared to T1.
Additionally, through EDS analysis, the distribution of key elements within the T1 precipitates is qualitatively and semi-quantitatively analyzed, providing insights into the concentration changes of critical alloying elements during the T1 precipitation process, thus revealing their roles and effects in the precipitation behavior.
Finally, using the integrated differential phase contrast (iDPC) technique, the atomic exchange process within GP(T1) --> T1' --> T1 is visualized, showing the gradual replacement of aluminum atoms by lithium atoms. This visualization reveals the critical role of the T1' phase in the growth pathway from GP(T1) to T1. Moreover, the IDPC-STEM imaging at the higher-index [112]Al crystal axis successfully visualizes lithium atoms within T1 precipitates, providing further evidence of atomic arrangement behavior in precipitates.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:18:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:18:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 iii
ABSTRACT v
目次 viii
圖次 xii
表次 xvii
第1章 緒論 1
第2章 文獻回顧 3
2.1 鋁合金種類及介紹 3
2.2 鋁鋰合金與2xxx系鋁合金 5
2.2.1 鋁鋰合金的發展與應用 5
2.2.2 析出相的種類與特徵 8
2.2.3 T1析出物的成核與成長與成長機制 19
2.3 析出物與差排的交互作用行為 23
2.3.1 鋁合金的差排滑移系統 23
2.3.2 鋁合金的析出硬化 24
2.3.3 T1, θ'析出物的剪切機制 26
2.4 鋁合金的熱處理製程 31
2.4.1 預應變尖峰時效(PA20) 31
2.4.2 預時效+預應變尖峰時效(CPT) 33
2.5 其他原子尺度觀察技術與應用 36
2.5.1 STEM-iDPC成像原理 36
2.5.2 積分微分相位對比技術(iDPC)於鋰原子的觀察 40
2.5.3 銀鎂原子於T1析出物的偏析行為 41
第3章 材料與研究方法 43
3.1 材料的成分與化學組成 43
3.2 熱處理製程 43
3.3 試樣製備 44
3.4 機械性質分析方法 44
3.4.1 硬度試驗 44
3.4.2 拉伸試驗 45
3.5 穿透式電子顯微結構分析方法 46
第4章 結果與討論 47
4.1 機械性質分析 47
4.1.1 硬度試驗 47
4.1.2 拉伸試驗 49
4.2 預應變時效處理(PA20) 51
4.2.1 預應變時效處理的正面影響 51
4.2.2 預應變時效處理的負面影響 52
4.2.3 T1析出物之間的交互作用 56
4.3 綜合預時效/預應變時效處理(CPT) 59
4.3.1 預時效對析出結果的影響 59
4.3.2 預時效與預應變5%條件下的顯微結構分析(CPT5%) 61
4.3.3 預時效與預應變8%條件下的顯微結構分析(CPT8%) 65
4.4 應變能5%-->8%的熱力學與析出動力學 68
4.5 粗大顆粒的EDS二維成分影像分析 69
4.6 T1析出物尺寸量測 71
4.7 實驗總結 72
第5章 原子尺度下的T1, θ'析出物觀察 74
5.1 GP(T1) --> T1' --> T1的原位(in-situ)相變 74
5.1.1 晶軸[110]Al下的GP(T1) --> T1' --> T1 74
5.1.2 晶軸[112]Al下的GP(T1) --> T1' --> T1 77
5.2 GP(θ') --> θ'的原位(in-situ)相變 78
5.3 T1和θ'的交互作用 79
5.4 原子尺度下T1析出物的銀鎂偏析現象 81
5.5 T1析出物的IDPC-STEM成像 90
第6章 結論 92
第7章 未來規劃 94
參考文獻 96
-
dc.language.isozh_TW-
dc.subjectAA2050鋁合金zh_TW
dc.subjectT1析出物zh_TW
dc.subjectθ'析出物zh_TW
dc.subject穿透式電子顯微鏡(TEM)zh_TW
dc.subject預時效處理zh_TW
dc.subjectEDS 二維成分影像分析zh_TW
dc.subjectaging treatmenten
dc.subjectT1 precipitatesen
dc.subjectθ'precipitatesen
dc.subjecttransmission electron microscopy(TEM)en
dc.subjectEDS mappingen
dc.subjectAA2050 (Al-Cu-Li) aluminum alloyen
dc.title結合預時效與預應變處理對Al-Cu-Li合金的影響及T1 析出物的銀鎂偏析現象zh_TW
dc.titleEffect of Combined Pre-Treatments on Al-Cu-Li Alloy and Distribution of Ag and Mg in T1 Precipitateen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor楊哲人zh_TW
dc.contributor.coadvisorJer-Ren Yangen
dc.contributor.oralexamcommittee陳志遠;王涵聖;鍾采甫zh_TW
dc.contributor.oralexamcommitteeChih-Yuan Chen;Han-Sheng Wang;Tsai-Fu Chungen
dc.subject.keywordAA2050鋁合金,T1析出物,θ'析出物,穿透式電子顯微鏡(TEM),預時效處理,EDS 二維成分影像分析,zh_TW
dc.subject.keywordAA2050 (Al-Cu-Li) aluminum alloy,T1 precipitates,θ' precipitates,transmission electron microscopy(TEM),aging treatment,EDS mapping,en
dc.relation.page101-
dc.identifier.doi10.6342/NTU202503394-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2030-08-04-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
12.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved