Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99659
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙基揚zh_TW
dc.contributor.advisorChi-Yang Chaoen
dc.contributor.author徐慈敏zh_TW
dc.contributor.authorTzu-Min Hsuen
dc.date.accessioned2025-09-17T16:17:32Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation(1) Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q.; Liaw, B. Y.; Liu, P.; Manthiram, A. Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy 2019, 4 (3), 180-186.
(2) Peng, Z.; Song, J.; Huai, L.; Jia, H.; Xiao, B.; Zou, L.; Zhu, G.; Martinez, A.; Roy, S.; Murugesan, V. Enhanced stability of Li metal anodes by synergetic control of nucleation and the solid electrolyte interphase. Advanced Energy Materials 2019, 9 (42), 1901764.
(3) Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. nature 2001, 414 (6861), 359-367.
(4) Van Noorden, R. A better battery. Nature 2014, 507 (7490), 26.
(5) Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 1976, 192 (4244), 1126-1127.
(6) Ren, W.; Zheng, Y.; Cui, Z.; Tao, Y.; Li, B.; Wang, W. Recent progress of functional separators in dendrite inhibition for lithium metal batteries. Energy Storage Materials 2021, 35, 157-168.
(7) Xu, R.; Cheng, X.-B.; Yan, C.; Zhang, X.-Q.; Xiao, Y.; Zhao, C.-Z.; Huang, J.-Q.; Zhang, Q. Artificial interphases for highly stable lithium metal anode. Matter 2019, 1 (2), 317-344.
(8) Zhou, Y.; Su, M.; Yu, X.; Zhang, Y.; Wang, J.-G.; Ren, X.; Cao, R.; Xu, W.; Baer, D. R.; Du, Y. Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery. Nature nanotechnology 2020, 15 (3), 224-230.
(9) Wang, S. H.; Yin, Y. X.; Zuo, T. T.; Dong, W.; Li, J. Y.; Shi, J. L.; Zhang, C. H.; Li, N. W.; Li, C. J.; Guo, Y. G. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Advanced Materials 2017, 29 (40), 1703729.
(10) Liu, D.-H.; Bai, Z.; Li, M.; Yu, A.; Luo, D.; Liu, W.; Yang, L.; Lu, J.; Amine, K.; Chen, Z. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews 2020, 49 (15), 5407-5445.
(11) Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology 2017, 12 (3), 194-206.
(12) Xiong, S.; Xie, K.; Diao, Y.; Hong, X. Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries. Journal of power sources 2014, 246, 840-845.
(13) Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature communications 2013, 4 (1), 1481.
(14) Bates, J.; Dudney, N.; Gruzalski, G.; Zuhr, R.; Choudhury, A.; Luck, C.; Robertson, J. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. Journal of power sources 1993, 43 (1-3), 103-110.
(15) Lin, C.-F.; Qi, Y.; Gregorczyk, K.; Lee, S. B.; Rubloff, G. W. Nanoscale protection layers to mitigate degradation in high-energy electrochemical energy storage systems. Accounts of Chemical Research 2018, 51 (1), 97-106.
(16) Cao, J.; Deng, L.; Wang, X.; Li, W.; Xie, Y.; Zhang, J.; Cheng, S. Stable lithium metal anode achieved by in situ grown CuO nanowire arrays on Cu foam. Energy & Fuels 2020, 34 (6), 7684-7691.
(17) Liu, Y.; Liu, Q.; Xin, L.; Liu, Y.; Yang, F.; Stach, E. A.; Xie, J. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nature Energy 2017, 2 (7), 1-10.
(18) Zhang, C.; Huang, Z.; Lv, W.; Yun, Q.; Kang, F.; Yang, Q.-H. Carbon enables the practical use of lithium metal in a battery. Carbon 2017, 123, 744-755.
(19) Xiang, J.; Zhao, Y.; Yuan, L.; Chen, C.; Shen, Y.; Hu, F.; Hao, Z.; Liu, J.; Xu, B.; Huang, Y. A strategy of selective and dendrite-free lithium deposition for lithium batteries. Nano Energy 2017, 42, 262-268.
(20) Jin, C.; Sheng, O.; Luo, J.; Yuan, H.; Fang, C.; Zhang, W.; Huang, H.; Gan, Y.; Xia, Y.; Liang, C. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 2017, 37, 177-186.
(21) Kang, D.; Xiao, M.; Lemmon, J. P. Artificial Solid‐Electrolyte Interphase for Lithium Metal Batteries. Batteries & Supercaps 2021, 4 (3), 445-455.
(22) Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced materials 2016, 28 (9), 1853-1858.
(23) Ding, F.; Xu, W.; Chen, X.; Zhang, J.; Engelhard, M. H.; Zhang, Y.; Johnson, B. R.; Crum, J. V.; Blake, T. A.; Liu, X. Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. Journal of The Electrochemical Society 2013, 160 (10), A1894.
(24) Lu, Y.; Das, S. K.; Moganty, S. S.; Archer, L. A. Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Advanced Materials (Deerfield Beach, Fla.) 2012, 24 (32), 4430-4435.
(25) Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chemical reviews 2014, 114 (23), 11503-11618.
(26) Zheng, J.; Engelhard, M. H.; Mei, D.; Jiao, S.; Polzin, B. J.; Zhang, J.-G.; Xu, W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nature Energy 2017, 2 (3), 1-8.
(27) Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Advanced Functional Materials 2017, 27 (10), 1605989.
(28) Li, N. W.; Yin, Y. X.; Li, J. Y.; Zhang, C. H.; Guo, Y. G. Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping. Advanced Science 2016, 4 (2), 1600400.
(29) Sarkar, S.; Thangadurai, V. Critical current densities for high-performance all-solid-state Li-metal batteries: fundamentals, mechanisms, interfaces, materials, and applications. ACS Energy Letters 2022, 7 (4), 1492-1527.
(30) Sheng, O.; Jin, C.; Ding, X.; Liu, T.; Wan, Y.; Liu, Y.; Nai, J.; Wang, Y.; Liu, C.; Tao, X. A decade of progress on solid‐state electrolytes for secondary batteries: advances and contributions. Advanced Functional Materials 2021, 31 (27), 2100891.
(31) Fergus, J. W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. Journal of Power Sources 2010, 195 (15), 4554-4569.
(32) Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nature materials 2019, 18 (12), 1278-1291.
(33) He, X.; Zhu, Y.; Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nature communications 2017, 8 (1), 15893.
(34) Fenton, D. Complex of alkali metal ions with poly (ethylene oxide). polymer 1973, 14, 589.
(35) Xue, Z.; He, D.; Xie, X. Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (38), 19218-19253.
(36) An, Y.; Han, X.; Liu, Y.; Azhar, A.; Na, J.; Nanjundan, A. K.; Wang, S.; Yu, J.; Yamauchi, Y. Progress in solid polymer electrolytes for lithium‐ion batteries and beyond. Small 2022, 18 (3), 2103617.
(37) Lu, J.; Jaumaux, P.; Wang, T.; Wang, C.; Wang, G. Recent progress in quasi-solid and solid polymer electrolytes for multivalent metal-ion batteries. Journal of Materials Chemistry A 2021, 9 (43), 24175-24194.
(38) Guo, S.; Qin, L.; Hu, C.; Li, L.; Luo, Z.; Fang, G.; Liang, S. Quasi‐solid electrolyte design and in situ construction of dual electrolyte/electrode interphases for high‐stability zinc metal battery. Advanced Energy Materials 2022, 12 (25), 2200730.
(39) Mohamad, A. A. Absorbency and conductivity of quasi-solid-state polymer electrolytes for dye-sensitized solar cells: A characterization review. Journal of Power Sources 2016, 329, 57-71.
(40) Xue, W.; Ahangaran, F.; Wang, H.; Theato, P.; Cheng, Y. J. Gel Polymer Electrolytes for Lithium Batteries: Advantages, Challenges, and Perspectives. Macromolecular Rapid Communications 2025, 2500207.
(41) Engler, A.; Park, H.; Liu, N.; Kohl, P. A. Dicarbonate acrylate based single-ion conducting polymer electrolytes for lithium batteries. Journal of Power Sources 2023, 574, 233145.
(42) Rushing, J. C.; Gurung, A.; Kuroda, D. G. Relation between microscopic structure and macroscopic properties in polyacrylonitrile-based lithium-ion polymer gel electrolytes. The Journal of Chemical Physics 2023, 158 (14).
(43) Lin, W.; Zheng, X.; Ma, S.; Ji, K.; Wang, C.; Chen, M. Quasi-solid polymer electrolyte with multiple lithium-ion transport pathways by in situ thermal-initiating polymerization. ACS Applied Materials & Interfaces 2023, 15 (6), 8128-8137.
(44) Hosseinioun, A.; Paillard, E. In situ crosslinked PMMA gel electrolyte from a low viscosity precursor solution for cost-effective, long lasting and sustainable lithium-ion batteries. Journal of membrane science 2020, 594, 117456.
(45) Qin, S.; Wu, M.; Zhao, H.; Li, J.; Yan, M.; Ren, Y.; Qi, Y. An in-situ cross-linked network PMMA-based gel polymer electrolyte with excellent lithium storage performance. Journal of Materials Science & Technology 2024, 199, 197-205.
(46) Guan, X.; Wu, Q.; Zhang, X.; Guo, X.; Li, C.; Xu, J. In-situ crosslinked single ion gel polymer electrolyte with superior performances for lithium metal batteries. Chemical Engineering Journal 2020, 382, 122935.
(47) Armand, M.; Tarascon, J.-M. Building better batteries. nature 2008, 451 (7179), 652-657.
(48) Rolison, D. R.; Nazar, L. F. Electrochemical energy storage to power the 21st century. Mrs Bulletin 2011, 36 (7), 486-493.
(49) Yang, Z.; Zhang, J.; Kintner-Meyer, M. C.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chemical reviews 2011, 111 (5), 3577-3613.
(50) Babiker, D. M.; Usha, Z. R.; Wan, C.; Hassaan, M. M. E.; Chen, X.; Li, L. Recent progress of composite polyethylene separators for lithium/sodium batteries. Journal of Power Sources 2023, 564, 232853.
(51) Satchanska, G.; Davidova, S.; Petrov, P. D. Natural and synthetic polymers for biomedical and environmental applications. Polymers 2024, 16 (8), 1159.
(52) Dufresne, A. Nanocellulose: a new ageless bionanomaterial. Materials today 2013, 16 (6), 220-227.
(53) Delaporte, N.; Perea, A.; Paolella, A.; Dubé, J.; Vigeant, M.-J.; Demers, H.; Clément, D.; Zhu, W.; Gariépy, V.; Zaghib, K. Alumina-flame retardant separators toward safe high voltage Li-Ion batteries. Journal of Power Sources 2021, 506, 230189.
(54) Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated cellulose materials. Progress in Polymer Science 2016, 53, 169-206.
(55) Han, Y.; Zhang, X.; Wu, X.; Lu, C. Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures. ACS Sustainable Chemistry & Engineering 2015, 3 (8), 1853-1859.
(56) Barhoum, A.; Deshmukh, K.; García-Betancourt, M.-L.; Alibakhshi, S.; Mousavi, S. M.; Meftahi, A.; Sabery, M. S. K.; Samyn, P. Nanocelluloses as sustainable membrane materials for separation and filtration technologies: Principles, opportunities, and challenges. Carbohydrate Polymers 2023, 317, 121057.
(57) Xia, Y.; Li, X.; Zhuang, J.; Wang, W.; Abbas, S. C.; Fu, C.; Zhang, H.; Chen, T.; Yuan, Y.; Zhao, X. Exploitation of function groups in cellulose materials for lithium-ion batteries applications. Carbohydrate Polymers 2024, 325, 121570.
(58) Märtson, M.; Viljanto, J.; Hurme, T.; Laippala, P.; Saukko, P. Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials 1999, 20 (21), 1989-1995.
(59) Xiao, S.; Yang, Y.; Li, M.; Wang, F.; Chang, Z.; Wu, Y.; Liu, X. A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries. Journal of power sources 2014, 270, 53-58.
(60) Jabbour, L.; Bongiovanni, R.; Chaussy, D.; Gerbaldi, C.; Beneventi, D. Cellulose-based Li-ion batteries: a review. Cellulose 2013, 20, 1523-1545.
(61) Xu, D.; Wang, B.; Wang, Q.; Gu, S.; Li, W.; Jin, J.; Chen, C.; Wen, Z. High-strength internal cross-linking bacterial cellulose-network-based gel polymer electrolyte for dendrite-suppressing and high-rate lithium batteries. ACS applied materials & interfaces 2018, 10 (21), 17809-17819.
(62) Pan, R.; Cheung, O.; Wang, Z.; Tammela, P.; Huo, J.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. Mesoporous Cladophora cellulose separators for lithium-ion batteries. Journal of Power Sources 2016, 321, 185-192.
(63) Zhang, J.; Liu, Z.; Kong, Q.; Zhang, C.; Pang, S.; Yue, L.; Wang, X.; Yao, J.; Cui, G. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS applied materials & interfaces 2013, 5 (1), 128-134.
(64) Xu, Q.; Kong, Q.; Liu, Z.; Wang, X.; Liu, R.; Zhang, J.; Yue, L.; Duan, Y.; Cui, G. Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator. ACS Sustainable Chemistry & Engineering 2014, 2 (2), 194-199.
(65) Chen, M.; Xu, Y.; Dong, M.; Chen, K.; Zhang, Z.; Yang, L.; Chai, J.; Zheng, Y.; Li, Y.; Liu, Z. A safe composite cellulose membrane for quasi-solid-state lithium-ion batteries. Next Materials 2024, 5, 100266.
(66) Ma, J.; Wu, Y.; Jiang, H.; Yao, X.; Zhang, F.; Hou, X.; Feng, X.; Xiang, H. In situ directional polymerization of poly (1, 3‐dioxolane) solid electrolyte induced by cellulose paper‐based composite separator for lithium metal batteries. Energy & Environmental Materials 2023, 6 (3), e12370.
(67) Oster, G.; Yang, N.-L. Photopolymerization of vinyl monomers. Chemical reviews 1968, 68 (2), 125-151.
(68) Ma, G.; Zhang, X.; Han, J.; Song, G.; Nie, J. Photo-polymeriable chitosan derivative prepared by Michael reaction of chitosan and polyethylene glycol diacrylate (PEGDA). International journal of biological macromolecules 2009, 45 (5), 499-503.
(69) Chen, J.; Fang, L.; Xu, Z.; Lu, C. Self-healing epoxy coatings curing with varied ratios of diamine and monoamine triggered via near-infrared light. Progress in Organic Coatings 2016, 101, 543-552.
(70) Radl, S.; Roppolo, I.; Pölzl, K.; Ast, M.; Spreitz, J.; Griesser, T.; Kern, W.; Schlögl, S.; Sangermano, M. Light triggered formation of photo-responsive epoxy based networks. Polymer 2017, 109, 349-357.
(71) Hughes, T.; Simon, G.; Saito, K. Chemistries and capabilities of photo-formable and photoreversible crosslinked polymer networks. Materials Horizons 2019, 6 (9), 1762-1773.
(72) Li, C.; Wang, T.; Hu, L.; Wei, Y.; Liu, J.; Mu, X.; Nie, J.; Yang, D. Photocrosslinkable bioadhesive based on dextran and PEG derivatives. Materials Science and Engineering: C 2014, 35, 300-306.
(73) Yom-Tov, O.; Seliktar, D.; Bianco-Peled, H. PEG-Thiol based hydrogels with controllable properties. European Polymer Journal 2016, 74, 1-12.
(74) Bjork, J. W.; Johnson, S. L.; Tranquillo, R. T. Ruthenium-catalyzed photo cross-linking of fibrin-based engineered tissue. Biomaterials 2011, 32 (10), 2479-2488.
(75) Kaur, G.; Johnston, P.; Saito, K. Photo-reversible dimerisation reactions and their applications in polymeric systems. Polymer Chemistry 2014, 5 (7), 2171-2186.
(76) Froimowicz, P.; Frey, H.; Landfester, K. Towards the generation of self‐healing materials by means of a reversible photo‐induced approach. Macromolecular rapid communications 2011, 32 (5), 468-473.
(77) Arjmand, F.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. Preparation of photolabile nanoparticles by coumarin-based crosslinker for drug delivery under light irradiation. Journal of Physics and Chemistry of Solids 2021, 154, 110102.
(78) Venugopala, K. N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed research international 2013, 2013 (1), 963248.
(79) Ciamician, G.; Silber, P. Chemische lichtwirkungen. Berichte der deutschen chemischen Gesellschaft 1902, 35 (2), 1992-2000.
(80) Goodall, G. W.; Hayes, W. Advances in cycloaddition polymerizations. Chemical Society Reviews 2006, 35 (3), 280-312.
(81) Yonezawa, N.; Yoshida, T.; Hasegawa, M. Symmetric and asymmetric photocleavage of the cyclobutane rings in head-to-head coumarin dimers and their lactone-opened derivatives. Journal of the Chemical Society, Perkin Transactions 1 1983, 1083-1086.
(82) Hughes, T.; Simon, G.; Saito, K. Improvement and tuning of the performance of light-healable polymers by variation of the monomer content. Polymer Chemistry 2018, 9 (47), 5585-5593.
(83) Chen, Y.; Chou, C. F. Reversible photodimerization of coumarin derivatives dispersed in poly (vinyl acetate). Journal of Polymer Science Part A: Polymer Chemistry 1995, 33 (16), 2705-2714.
(84) Chen, Y.; Geh, J.-L. Copolymers derived from 7-acryloyloxy-4-methylcoumarin and acrylates: 2. Reversible photocrosslinking and photocleavage. Polymer 1996, 37 (20), 4481-4486.
(85) Abdallh, M.; Hearn, M. T.; Simon, G. P.; Saito, K. Light triggered self-healing of polyacrylate polymers crosslinked with 7-methacryloyoxycoumarin crosslinker. Polymer Chemistry 2017, 8 (38), 5875-5883.
(86) Cruz, M.; McKillop, S.; Tischler, V.; Lessard, B. H. Water‐Soluble Reversible Photo‐Cross‐Linking Polymer Dielectrics. Macromolecular Rapid Communications 2024, 45 (16), 2400205.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99659-
dc.description.abstract鋰金屬電池(LMBs)因其極高的理論比容量,被視為最具潛力的新一代高能量密度電池。然而,鋰金屬負極在循環過程中不均勻的鋰離子沉積與剝離,常導致鋰枝晶的形成,進而引發內部短路與易燃等安全問題。為了解決鋰金屬電池的安全性疑慮,類固態高分子電解質(QSPEs)被認為是極具潛力的解決方案。此類電解質將有機溶劑固定於高分子基質中,既能防止電解液洩漏與爆炸,又能維持良好的電池性能並抑制鋰枝晶生長。本研究設計並合成了一種接枝共聚物,其結構包含低分子量的聚乙二醇(PEG)側鏈與具有光響應性的香豆素基團。在365nm紫外光照射下,香豆素基團會發生光二聚化反應,形成機械性質強韌的交聯網絡,而PEG鏈段則有助於鋰離子傳輸。我們將光固化後的共聚物夾於兩層多孔纖維素複合隔離膜(Nano Base 2®)之間,製備出複合膜,作為QSPE的基質。藉由調整共聚物的組成,可調控其交聯密度,而此交聯密度對於QSPE的電化學性能至關重要。經過優化的QSPE,其電解液吸收率可達258 wt%,在20°C時的離子導電度為1.49 × 10-3 S cm-1 ,鋰離子遷移數為0.58。在0.2 mA cm⁻²的電流密度下進行定電流充放電(充放電各2小時),對應的鋰對稱電池展現了超過400小時的穩定循環,此性能顯著優於僅使用浸潤電解液之Nano Base 2®隔離膜的液態電池,證明了此QSPE抑制鋰枝晶生長的能力。值得注意的是,即使在-20°C的低溫環境下,其離子導電度仍可達9.30x10-4 S cm-1,顯示其具備在低溫環境下運作的良好潛力。此外,在254nm紫外光照射下,香豆素部分會發生逆二聚化反應,使QSPEs 解體。此可逆特性已透過宏觀形貌變化、溶液的螢光響應以及微觀結構的改變得到驗證,賦予此QSPE在回收與廢棄電池處理方面的潛力。結合纖維素纖維的生物可再生特性,本研究開發的QSPE被視為一種兼具環境友善與環境永續性的電解質。zh_TW
dc.description.abstractLithium metal batteries (LMBs) are top candidates for next-generation high-energy-density batteries due to their high theoretical specific capacity. However, non-uniform deposition/stripping of lithium ions on the lithium metal anode upon cycling often leads to lithium dendrite formation, causing internal short circuits and thus flammable problems. To relieve the safety issues of LMBs, quasi-solid polymer electrolytes (QSPEs), in which organic solvents are immobilized within a polymer matrix, are considered a highly potential solution to prevent solvent leakage and explosion while retaining good cell performance and mitigate lithium dendrite growth.
In this study, we design and synthesize a graft-copolymer containing low molecular weight poly(ethylene glycol) side chains and photo-responsive coumarin groups. Upon 365 nm UV irradiation, the coumarin groups undergo photo-dimerization to produce mechanical robust crosslinked network while the PEG segments should help lithium ion transport. A composite membrane comprising a photocured copolymer layer sandwiching between two mesoporous cellulose composite separators (Nano Base 2®) is fabricated to serve as the matrix of the QSPE. The crosslinking density could be tuned by adjusting the composition of the copolymer, and which plays a critical role in the electrochemical properties of the QSPE. The optimized QSPE exhibited a 258 wt% electrolyte uptake and a conductivity of 1.49 × 10-3 S cm-1 at 20°C with a lithium transference number of 0.58. The corresponding lithium symmetric cell demonstrates stable cycling over 400 hours upon galvanostatic cycling at a current density of 0.2 mA cm-2 and 2h/2h charging/discharging, remarkably better than the performance of liquid electrolytes saturated within the Nano Base 2® separator, indicating the capability of the QSPE to mitigate lithium dendrite growth. It is noteworthy that the low temperature conductivity still reaches 9.30x10-4 S cm-1 at -20°C, suggesting good potential for low temperature operation. Furthermore, the coumarin moieties undergo de-dimerization upon 254 nm UV irradiation to dissemble the QSPEs, verified by macroscopic morphological changes, fluorescence response of the solution, and microscopic structural alterations, endowing the QSPE for potential recyclability and feasibility in waste battery treatment. Combining with the bio-regenerative nature of the cellulose fibers, this QSPE is considered as an eco-friendly and environment-sustainable electrolyte.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:17:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:17:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 II
ABSTRACT III
目次 V
圖次 VIII
表次 XIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的與架構 2
第二章 文獻回顧 5
2.1 鋰金屬電池 5
2.2 類固態電解質(QSPEs) 9
2.2.1 丙烯酸酯基類固態電解質 9
2.3 纖維素膜在鋰金屬電池中的應用 14
2.4 可逆光交聯基團:香豆素(Coumarin) 19
2.4.1 香豆素(Coumarin)光反應之機制 22
2.4.2 香豆素(Coumarin)光可逆性之應用 25
第三章 實驗藥品與儀器分析 28
3.1 實驗藥品 28
3.2 實驗儀器 31
3.3 材料製備 32
3.3.1 Cou的合成 32
3.3.2 MAEMC的合成 32
3.3.3 MxEy 的合成 33
3.3.4 MxPy 的合成 33
3.3.5 類固態電解質(QSPEs)之獨立膜製備 34
3.3.6 類固態電解質(QSPEs)之複合膜製備 35
3.3.7 CR2032鈕扣型電池組裝 35
3.4 材料分析 36
3.4.1 化學結構之鑑定 36
3.4.2 聚合物分子量之測定 36
3.4.3 可逆光二聚化監測 37
3.4.4 交聯電解質之光裂解測試 37
3.4.5 熱重分析 37
3.4.6 微差熱分析 38
3.4.7 機械強度分析 38
3.4.8 薄膜電解液吸收量量測 39
3.4.9 薄膜表面及橫截面之形貌分析 39
3.4.10 薄膜表面接觸角分析 39
3.4.11 離子傳導度測量 40
3.4.12 線性掃描伏安法 40
3.4.13 鋰離子遷移係數量測 40
3.4.14 恆電流充放電循環測試(Galvanostatic cycling test) 41
3.4.15 鋰金屬表面分析 41
第四章 結果與討論 42
4.1 光可逆單體和共聚物的合成與鑑定 42
4.1.1 Cou的合成與鑑定 43
4.1.2 MAEMC的合成與鑑定 44
4.1.3 MxEy 的合成與鑑定 45
4.1.4 MxPy 的合成與鑑定 47
4.1.5 MxEy 和MxPy光可逆二聚化測試 49
4.2 ME和MP系列QSPE之製備與特性分析 51
4.2.1 QSPE的電解液吸附量與膨潤比 54
4.2.2 QSPE離子傳導度 56
4.2.3 小結 59
4.3 基於纖維素支撐材之 QSPE 製備與性能分析 60
4.3.1 微結構分析 61
4.3.2 接觸角表面分析 63
4.3.3 熱性質分析 65
4.3.4 機械性質 68
4.3.5 室溫離子傳導度 70
4.3.6 變溫離子傳導度 73
4.3.7 線性掃描伏安法(LSV)與電化學穩定性 76
4.3.8 鋰離子遷移係數 78
4.3.9 恆電流充放電循環測試(Galvanostatic cycling test) 80
4.3.10 恆電流充放電循環測試後的鋰金屬表面形貌分析 82
4.3.11 QSPE複合膜之光解交聯測試 85
第五章 結論 89
第六章 未來展望 90
參考文獻 91
附錄 97
-
dc.language.isozh_TW-
dc.subject鋰金屬電池zh_TW
dc.subject類固態電解質zh_TW
dc.subject香豆素zh_TW
dc.subject光可逆交聯zh_TW
dc.subject聚乙二醇zh_TW
dc.subject纖維素複合隔離膜zh_TW
dc.subject鋰枝晶zh_TW
dc.subjectreversible photo-crosslinkingen
dc.subjectlithium dendritesen
dc.subjectcellulose composite separatoren
dc.subjectlithium metal batteries (LMB)en
dc.subjectquasi-solid polymer electrolytes (QSPE)en
dc.subjectcoumarinen
dc.subjectpoly(ethylene glycol)en
dc.title可逆光交聯聚乙二醇接枝共聚物之開發及其在鋰金屬電池之類固態電解質應用zh_TW
dc.titleReversible Photo-Crosslinkable Poly(ethylene glycol) Graft Copolymers and Their Applications on Quasi-Solid Polymer Electrolytes in Lithium Metal Batteriesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭國忠;蘇威年zh_TW
dc.contributor.oralexamcommitteeKuo-Chung Cheng;Wei-Nien Suen
dc.subject.keyword鋰金屬電池,類固態電解質,香豆素,光可逆交聯,聚乙二醇,纖維素複合隔離膜,鋰枝晶,zh_TW
dc.subject.keywordlithium metal batteries (LMB),quasi-solid polymer electrolytes (QSPE),coumarin,reversible photo-crosslinking,poly(ethylene glycol),cellulose composite separator,lithium dendrites,en
dc.relation.page99-
dc.identifier.doi10.6342/NTU202503831-
dc.rights.note未授權-
dc.date.accepted2025-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved