Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99655
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙基揚zh_TW
dc.contributor.advisorChi-Yang Chaoen
dc.contributor.author陳俊堯zh_TW
dc.contributor.authorChun-Yao Chenen
dc.date.accessioned2025-09-17T16:16:45Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation1. Campion, C.L., W. Li, W.B. Euler, B.L. Lucht, B. Ravdel, J.F. DiCarlo, R. Gitzendanner, and K. Abraham, Suppression of toxic compounds produced in the decomposition of lithium-ion battery electrolytes. Electrochemical and Solid-State Letters, 2004. 7(7): p. A194.
2. Archuleta, M.M., Toxicity of materials used in the manufacture of lithium batteries. Journal of power sources, 1995. 54(1): p. 138–142.
3. Wang, Q., P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, Thermal runaway caused fire and explosion of lithium ion battery. Journal of power sources, 2012. 208: p. 210–224.
4. Zhai, P., L. Liu, X. Gu, T. Wang, and Y. Gong, Interface engineering for lithium metal anodes in liquid electrolyte. Advanced Energy Materials, 2020. 10(34): p. 2001257.
5. He, X., X. Liu, Q. Han, P. Zhang, X. Song, and Y. Zhao, A liquid/liquid electrolyte interface that inhibits corrosion and dendrite growth of lithium in lithium‐metal batteries. Angewandte Chemie, 2020. 132(16): p. 6459–6467.
6. Xiao, J., How lithium dendrites form in liquid batteries. Science, 2019. 366(6464): p. 426–427.
7. Tan, S., Y.J. Ji, Z.R. Zhang, and Y. Yang, Recent progress in research on high‐voltage electrolytes for lithium‐ion batteries. ChemPhysChem, 2014. 15(10): p. 1956–1969.
8. Ngai, K.S., S. Ramesh, K. Ramesh, and J.C. Juan, A review of polymer electrolytes: fundamental, approaches and applications. Ionics, 2016. 22(8): p. 1259–1279.
9. Yuan, F., H.-Z. Chen, H.-Y. Yang, H.-Y. Li, and M. Wang, PAN–PEO solid polymer electrolytes with high ionic conductivity. Materials Chemistry and Physics, 2005. 89(2-3): p. 390–394.
10. Niitani, T., M. Shimada, K. Kawamura, K. Dokko, Y.-H. Rho, and K. Kanamura, Synthesis of Li+ ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure. Electrochemical and Solid-State Letters, 2005. 8(8): p. A385.
11. Ji, J., B. Li, and W.-H. Zhong, Effects of a block copolymer as multifunctional fillers on ionic conductivity, mechanical properties, and dimensional stability of solid polymer electrolytes. The Journal of Physical Chemistry B, 2010. 114(43): p. 13637–13643.
12. Chen, Y., Y. Shi, Y. Liang, H. Dong, F. Hao, A. Wang, Y. Zhu, X. Cui, and Y. Yao, Hyperbranched PEO-Based Hyperstar Solid Polymer Electrolytes with Simultaneous Improvement of Ion Transport and Mechanical Strength. ACS Applied Energy Materials, 2019. 2(3): p. 1608–1615.
13. Li, S., K. Jiang, J. Wang, C. Zuo, Y.H. Jo, D. He, X. Xie, and Z. Xue, Molecular Brush with Dense PEG Side Chains: Design of a Well-Defined Polymer Electrolyte for Lithium-Ion Batteries. Macromolecules, 2019. 52(19): p. 7234–7243.
14. Butzelaar, A.J., P. Roring, T.P. Mach, M. Hoffmann, F. Jeschull, M. Wilhelm, M. Winter, G. Brunklaus, and P. Theato, Styrene-Based Poly(ethylene oxide) Side-Chain Block Copolymers as Solid Polymer Electrolytes for High-Voltage Lithium-Metal Batteries. ACS Appl Mater Interfaces, 2021. 13(33): p. 39257–39270.
15. Teran, A.A. and N.P. Balsara, Thermodynamics of block copolymers with and without salt. J Phys Chem B, 2014. 118(1): p. 4–17.
16. Galluzzo, M.D., W.S. Loo, A.A. Wang, A. Walton, J.A. Maslyn, and N.P. Balsara, Measurement of Three Transport Coefficients and the Thermodynamic Factor in Block Copolymer Electrolytes with Different Morphologies. J Phys Chem B, 2020. 124(5): p. 921–935.
17. Chintapalli, M., T.N.P. Le, N.R. Venkatesan, N.G. Mackay, A.A. Rojas, J.L. Thelen, X.C. Chen, D. Devaux, and N.P. Balsara, Structure and Ionic Conductivity of Polystyrene-block-poly(ethylene oxide) Electrolytes in the High Salt Concentration Limit. Macromolecules, 2016. 49(5): p. 1770–1780.
18. Abdo, E.E. and N.P. Balsara, Phase transitions in block copolymer electrolytes induced by ionic current. European Polymer Journal, 2024. 204.
19. Galluzzo, M.D., W.S. Loo, E. Schaible, C. Zhu, and N.P. Balsara, Dynamic Structure and Phase Behavior of a Block Copolymer Electrolyte under dc Polarization. ACS Appl Mater Interfaces, 2020. 12(51): p. 57421–57430.
20. Li, H., H. Chen, Q. Kang, L. Guo, X. Huang, and H. Xu, Gel polymer electrolyte for flexible and stretchable lithium metal battery: Advances and prospects. Chinese Chemical Letters, 2025. 36(9).
21. Kim, S., G. Park, S.J. Lee, S. Seo, K. Ryu, C.H. Kim, and J.W. Choi, Lithium-Metal Batteries: From Fundamental Research to Industrialization. Adv Mater, 2023. 35(43): p. e2206625.
22. Wang, X., R. Kerr, F. Chen, N. Goujon, J.M. Pringle, D. Mecerreyes, M. Forsyth, and P.C. Howlett, Toward High-Energy-Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes. Adv Mater, 2020. 32(18): p. e1905219.
23. Martins, V.L., H.R. Neves, I.E. Monje, M.M. Leite, P.F.M. Oliveira, R.M. Antoniassi, S. Chauque, W.G. Morais, E.C. Melo, T.T. Obana, B.L. Souza, and R.M. Torresi, An Overview on the Development of Electrochemical Capacitors and Batteries - part II. An Acad Bras Cienc, 2020. 92(2): p. e20200800.
24. Liu, Y.K., C.Z. Zhao, J. Du, X.Q. Zhang, A.B. Chen, and Q. Zhang, Research progresses of liquid electrolytes in lithium‐ion batteries. Small, 2023. 19(8): p. 2205315.
25. Feng, X., M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy storage materials, 2018. 10: p. 246–267.
26. Hou, J., L. Lu, L. Wang, A. Ohma, D. Ren, X. Feng, Y. Li, Y. Li, I. Ootani, X. Han, W. Ren, X. He, Y. Nitta, and M. Ouyang, Thermal runaway of Lithium-ion batteries employing LiN(SO(2)F)(2)-based concentrated electrolytes. Nat Commun, 2020. 11(1): p. 5100.
27. Wang, Q., L. Jiang, Y. Yu, and J. Sun, Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 2019. 55: p. 93–114.
28. Li, C., Z.-y. Wang, Z.-j. He, Y.-j. Li, J. Mao, K.-h. Dai, C. Yan, and J.-c. Zheng, An advance review of solid-state battery: Challenges, progress and prospects. Sustainable Materials and Technologies, 2021. 29.
29. Huang, Y., H. Yang, Y. Gao, G. Chen, Y. Li, L. Shi, and D. Zhang, Mechanism and solutions of lithium dendrite growth in lithium metal batteries. Materials Chemistry Frontiers, 2024. 8(5): p. 1282–1299.
30. Chen, K.-H., K.N. Wood, E. Kazyak, W.S. LePage, A.L. Davis, A.J. Sanchez, and N.P. Dasgupta, Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. Journal of Materials Chemistry A, 2017. 5(23): p. 11671–11681.
31. Xu, S., K.-H. Chen, N.P. Dasgupta, J.B. Siegel, and A.G. Stefanopoulou, Evolution of Dead Lithium Growth in Lithium Metal Batteries: Experimentally Validated Model of the Apparent Capacity Loss. Journal of The Electrochemical Society, 2019. 166(14): p. A3456–A3463.
32. Xue, Z., D. He, and X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015. 3(38): p. 19218–19253.
33. Gurusiddappa, J., W. Madhuri, R. Padma Suvarna, and K. Priya Dasan, Studies on the morphology and conductivity of PEO/LiClO4. Materials Today: Proceedings, 2016. 3(6): p. 1451–1459.
34. Ganeshbabu, M. and R.K. Selvan, Preparation and Conductivity Analysis of LLTO Nanofiber‐Incorporated PEO‐PVDF‐HFP‐LiClO4 Solid Polymer Electrolytes for High‐Voltage Lithium Metal Batteries. Polymers for Advanced Technologies, 2024. 35(10).
35. Sethuraman, V., S. Mogurampelly, and V. Ganesan, Multiscale Simulations of Lamellar PS–PEO Block Copolymers Doped with LiPF6 Ions. Macromolecules, 2017. 50(11): p. 4542–4554.
36. Song, Y., M. Su, H. Xiang, J. Kang, W. Yu, Z. Peng, H. Wang, B. Cheng, N. Deng, and W. Kang, PEO-Based Solid-State Polymer Electrolytes for Wide-Temperature Solid-State Lithium Metal Batteries. Small, 2025. 21(3): p. e2408045.
37. Kalita, M., M. Bukat, M. Ciosek, M. Siekierski, S.H. Chung, T. Rodríguez, S.G. Greenbaum, R. Kovarsky, D. Golodnitsky, E. Peled, D. Zane, B. Scrosati, and W. Wieczorek, Effect of calixpyrrole in PEO–LiBF4 polymer electrolytes. Electrochimica Acta, 2005. 50(19): p. 3942–3948.
38. Dhatarwal, P. and R.J. Sengwa, Influence of solid polymer electrolyte preparation methods on the performance of (PEO–PMMA)–LiBF4 films for lithium-ion battery applications. Polymer Bulletin, 2018. 75(12): p. 5645–5666.
39. Astuti, Y., T. Lestariningsih, N.Z. Kamalia, and H. Muzadi, Effect of LiTFSI Electrolyte Salt Composition on Characteristics of PVDF-PEO-LiTFSI-Based Solid Polymer Electrolyte (SPE) for Lithium-Ion Battery. Molekul, 2023. 18(1).
40. Sengwa, R.J., V.K. Patel, and M. Saraswat, Investigation on promising properties of PEO/PVP/LiTFSI solid polymer electrolytes for high-performance energy storage and next-generation flexible optoelectronic and iontronic devices. Journal of Polymer Research, 2022. 29(11).
41. Devaux, D., R. Bouchet, D. Glé, and R. Denoyel, Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight and end groups. Solid State Ionics, 2012. 227: p. 119–127.
42. Borodin, O. and G.D. Smith, Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations. Macromolecules, 2006. 39: p. 1620–1629.
43. Ye, Z., Z.-K. Zhang, S.-P. Ding, D.-L. Xia, and J.-T. Xu, Salt Distribution, Phase Structure, and Conductivity of Poly(ethylene oxide)-block-Poly(n-butyl acrylate) Block Copolymer Electrolytes with Double Conductive Phases. ACS Applied Polymer Materials, 2022. 5(1): p. 120–129.
44. Meabe, L., T.V. Huynh, N. Lago, H. Sardon, C. Li, L.A. O'Dell, M. Armand, M. Forsyth, and D. Mecerreyes, Poly(ethylene oxide carbonates) solid polymer electrolytes for lithium batteries. Electrochimica Acta, 2018. 264: p. 367–375.
45. He, Y., N. Liu, and P.A. Kohl, Difunctional block copolymer with ion solvating and crosslinking sites as solid polymer electrolyte for lithium batteries. Journal of Power Sources, 2021. 481.
46. Huang, W., Q. Pan, H. Qi, X. Li, Y. Tu, and C.Y. Li, Poly(butylene terephthalate)-b-poly(ethylene oxide) alternating multiblock copolymers: Synthesis and application in solid polymer electrolytes. Polymer, 2017. 128: p. 188–199.
47. Niitani, T., M. Shimada, K. Kawamura, K. Dokko, Y.-H. Rho, and K. Kanamura, Synthesis of Li + Ion Conductive PEO-PSt Block Copolymer Electrolyte with Microphase Separation Structure. Electrochemical and Solid-State Letters, 2005. 8: p. A385–A388.
48. Fang, J., Y. Xuan, and Q. Li, Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals. Science China Technological Sciences, 2010. 53(11): p. 3088–3093.
49. Vrandečić, N.S., M. Erceg, M. Jakić, and I. Klarić, Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight. Thermochimica Acta, 2010. 498(1-2): p. 71–80.
50. Sun, J., L. Jiao, X. Wei, W. Peng, L. Liu, and H. Yuan, Effect of PEG molecular weight on the crystal structure and electrochemical performance of LiV3O8. Journal of Solid State Electrochemistry, 2009. 14(4): p. 615–619.
51. Nishizaki, H., K. Yoshida, and J.H. Wang, Comparative study of various methods for thermogravimetric analysis of polystyrene degradation. Journal of Applied Polymer Science, 1980. 25(12): p. 2869–2877.
52. Zhu, J., A.B. Morgan, F.J. Lamelas, and C.A. Wilkie, Fire Properties of Polystyrene−Clay Nanocomposites. Chemistry of Materials, 2001. 13(10): p. 3774–3780.
53. Ibrahim, S. and M.R. Johan, Thermolysis and Conductivity Studies of Poly(Ethylene Oxide) (PEO) Based Polymer Electrolytes Doped with Carbon Nanotube. International Journal of Electrochemical Science, 2012. 7(3): p. 2596–2615.
54. Marcilla, A., A. Gómez, M. Beltrán, D. Berenguer, I. Martínez, and I. Blasco, TGA–FTIR study of the thermal and SBA-15-catalytic pyrolysis of potassium citrate under nitrogen and air atmospheres. Journal of Analytical and Applied Pyrolysis, 2017. 125: p. 144–152.
55. Díaz-Faes, E., C. Barriocanal, M.A. Díez, and R. Alvarez, Applying TGA parameters in coke quality prediction models. Journal of Analytical and Applied Pyrolysis, 2007. 79(1-2): p. 154–160.
56. Yang, S., Z. Liu, Y. Liu, and Y. Jiao, Effect of molecular weight on conformational changes of PEO: an infrared spectroscopic analysis. Journal of Materials Science, 2014. 50(4): p. 1544–1552.
57. Marcost, J.I., E. Orlandi, and G. Zerbi, Poly(ethylene oxide)-poly(methyl methacrylate) interactions in polymer blends: an infra-red study. Polymer, 1990. 31(10): p. 1899–1903.
58. McCann, J. and S. Badwal, Equivalent circuit analysis of the impedance response of semiconductor/electrolyte/counterelectrode cells. Journal of The Electrochemical Society, 1982. 129(3): p. 551.
59. Vyroubal, P. and T. Kazda, Equivalent circuit model parameters extraction for lithium ion batteries using electrochemical impedance spectroscopy. Journal of Energy Storage, 2018. 15: p. 23–31.
60. Gudla, H., A. Hockmann, D. Brandell, and J. Mindemark, To Hop or Not to Hop: Unveiling Different Modes of Ion Transport in Solid Polymer Electrolytes through Molecular Dynamics Simulations. ACS Appl Polym Mater, 2025. 7(8): p. 4716–4724.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99655-
dc.description.abstract傳統以聚乙二醇(poly(ethylene oxide), PEO)為材料的固態高分子電解質(SPEs)因其半結晶的特性使其在常溫的鋰離子傳導度僅有約10-7~10-8 S cm-1,為提升其在常溫下的離子傳導度,本研究開發了一種A-block-(B-graft-C) type雙嵌段共聚高分子作為固態高分子電解質材料,其中A嵌段為具有較高玻璃轉換溫度的聚苯乙烯(polystyrene, PS)嵌段,在固態高分子電解質中可形成剛硬的高分子骨架以提升整體的機械強度;B嵌段為性質柔軟的聚異戊二烯(polyisoprene, PI)嵌段,其具備側鏈垂懸雙鍵可進行後續的官能基修飾以及接枝反應;C嵌段為小分子量的聚乙二醇,利用低分子量高分子熔點較低的特性,解決聚乙二醇於常溫下結晶的問題以提升鋰離子傳導度。本研究期望藉由嵌段共聚高分子具備奈米尺度微相分離結構的特性,使此固態高分子電解質同時兼具優異的機械強度與鋰離子傳導能力。
研究中以陰離子聚合技術合成不同分子量的PS-b-PI高分子,再以官能基轉換與PEO側鏈接枝反應製備不同PEO接枝率的PS-b-(PI-g-PEO)雙嵌段共聚高分子,將各高分子與鋰鹽混和後以溶劑揮發法製備固態高分子電解質薄膜,並系統化討論主鏈分子量、PEO接枝率及鋰鹽濃度對相分離結構、機械強度及鋰離子傳導度的影響。於小角度X光散射試驗中,各SPEs皆出現層狀的奈米尺度的相分離結構,且各樣品相分離結構中的domain spacing皆有隨鋰鹽濃度上升而增加的趨勢。差示掃描量熱法與X光繞射結果均證實,低分子量 PEO側鏈接枝的分子設計於常溫下不具結晶性,此特性有助於提升SPEs在室溫下的離子傳導表現。動態機械分析試驗中P2-G15R05樣品展現出最佳的機械強度,其楊氏模數達134.5 MPa,結果顯示,提升PS嵌段的分子量及其含量,能有效增強固態高分子電解質的機械強度。變溫鋰離子傳導度的測試中,P2-G35R05樣品於常溫下表現出最高的鋰離子傳導度,達4.14×10⁻⁶ S cm⁻¹,歸因於其較大的傳導通道與高PEO含量。在鋰離子傳遞活化能的分析中,較大尺寸的微結構可以提供較低的活化能,顯示鋰離子主要通過PI-g-PEO區域中傳遞。鋰鹽濃度上升對傳導度的貢獻並不明顯,而活化能反而有增加的趨勢,表示SPEs中鋰鹽的添加限制了PEO鏈段的運動,鋰離子在高鋰鹽濃度下較難藉由PEO鏈段的運動傳遞。
zh_TW
dc.description.abstractTraditional solid polymer electrolytes (SPEs) based on poly(ethylene oxide) (PEO) exhibit limited lithium ion conductivities of only about 10-7~10-8 S cm-1 at room temperature due to the semi-crystalline properties of PEO. To improve the ionic conductivity at room temperature, this study developed an A-block-(B-graft-C) type diblock copolymer as a solid polymer electrolyte material. The A block is polystyrene (PS), which has a high glass transition temperature and serves as a rigid polymer framework to improve the overall mechanical strength of the SPE. The B block is polyisoprene (PI), which contains pendant double bonds for subsequent functional group modification and grafting reaction. The C segment is short-chain PEO, designed to lower the crystallinity of PEO at room temperature, thereby enhancing lithium ion coductivities. This study hopes to make the SPEs have both excellent mechanical strength and lithium ion conductivities by using the characteristics of block copolymers with micro-phase separation structure.
In this study, PS-b-PI polymers with different molecular weights were synthesized by anionic polymerization technology, and then PS-b-(PI-g-PEO) diblock copolymers with different PEO grafting ratio were prepared by functional group conversion and PEO side-chain grafting reaction. Free standing SPE membranes are obtained by solvent casting from the blends of lithium salts and the block copolymer in designated composition. In this work, we systematically study the interplays among the backbone molecular weight, PEO grafting ratio, and lithium salt concentration on phase-separated structure, mechanical strength, and lithium-ion conductivity of the resulting SPEs. Small-angle X-ray scattering (SAXS) measurements revealed nanostructured lamellar (LAM) phase separation in all SPEs. The results of differential scanning calorimetry (DSC) and X-ray diffraction (XRD) confirmed that the low-molecular-weight PEO side chains were amorphous at room temperature, which contributed to improve lithium ion transport. In the dynamic mechanical analysis (DMA) test, the P3-G15R05 sample showed the highest mechanical strength, with a Young's modulus of 134.5 MPa. The results showed that increasing the molecular weight and content of the PS block can effectively enhance the mechanical strength of the SPEs. In the test of lithium ion conductivity, the P2-G35R05 SPE showed the highest lithium ion conductivity at room temperature, reaching 4.14×10⁻⁶ S cm⁻¹, which is attributed to its larger conduction pathways and high PEO content. In the analysis of activation energy of lithium ion transfer, larger micro-phase separation sturcture domains are associated with lower activation energies, indicating that lithium ions primarily migrate through the PI-g-PEO regions. The increase in lithium salt concentration does not significantly enhance ionic conductivity; instead, it leads to a rising trend in activation energy. This suggests that the addition of lithium salt in the SPEs restricts the mobility of PEO chains, making it more difficult for lithium ions to migrate via the segmental motion of PEO at high salt concentrations.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:16:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:16:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iv
目次 vi
圖次 ix
表次 xiv
第一章 緒論 1
1.1 研究背景 1
1.2研究目的與架構 2
第二章 文獻回顧 5
2.1 鋰金屬電池 5
2.2 聚乙二醇系列固態高分子電解質 7
2.2.1 以PEO為主鏈製備嵌段共聚高分子於SPE的應用 9
2.2.2側鏈接枝PEO於SPE的應用 15
2.2.3額外混合PEO於SPEs中的應用 21
2.3 PS-PEO SPEs系統中的奈米尺度相分離結構 27
2.3.1 奈米尺度相分離結構的理論模型 28
2.3.2 鋰鹽濃度對於相分離結構的影響 31
2.3.3高鋰鹽濃度對相分離結構的影響 35
2.3.4 動態相變化過程 38
第三章 實驗步驟與原理 41
3.1 實驗藥品 41
3.2 材料製備 44
3.2.1 嵌段共聚高分子PS-b-PI的合成 45
3.2.2 PS-b-PI(OH)的合成 52
3.2.3 emPEO550的合成 54
3.2.4 PS-b-(PI-g-PEO)的合成 56
3.2.5 PS-b-(PI-g-PEO) 固態高分子電解質薄膜製備 58
3.2.6 CR2032鈕扣電池組裝 60
3.3 材料分析與儀器設備 61
3.3.1化學結構鑑定 61
3.3.2矽晶圓基材接觸角量測 62
3.3.3薄膜微相分離結構分析 62
3.3.4熱重分析 63
3.3.5熱示差掃描分析 63
3.3.6 X光繞射分析 64
3.3.7薄膜機械強度分析 64
3.3.8電化學阻抗頻譜分析 64
第四章 結果與討論 67
4.1 PS-b-(PI-g-PEO)雙嵌段共聚高分子之聚合與官能基轉化 67
4.1.1 PS-b-PI的合成與鑑定 67
4.1.2 PS-b-PI(OH)的合成與鑑定 71
4.1.3 emPEO550的合成與鑑定 73
4.1.4 PS-b-(PI-g-PEO)的合成與鑑定 74
4.2 PS-b-(PI-g-PEO)高分子固態電解質薄膜製備 78
4.3 PS-b-(PI-g-PEO) SPEs微相分離結構分析 83
4.3.1 P1系列SPEs微相分離結構分析 83
4.3.2 P2系列SPEs微相分離結構分析 87
4.4 熱性質分析 91
4.4.1熱重分析 91
4.4.2差示掃描量熱法 93
4.5 PS-b-(PI-g-PEO) SPEs晶體結構分析 96
4.6 PS-b-(PI-g-PEO) SPEs機械性質分析 98
4.6.1 分子量與PEO接枝率對SPEs機械性質的影響 99
4.6.2 鋰鹽濃度對SPEs機械性質的影響 101
4.7 PS-b-(PI-g-PEO) BCP SPEs變溫離子傳導度 103
4.7.1 PS-b-PI主鏈分子量與側鏈PEO接枝率對BCP SPEs鋰離子傳導度的影響 105
4.7.2不同鋰鹽濃度對SPEs鋰離子傳導度的影響 107
4.7.3 標準化離子傳導度 109
第五章 結論 110
第六章 未來展望 112
參考文獻 113
附錄 121
-
dc.language.isozh_TW-
dc.subject嵌段共聚物zh_TW
dc.subject微相分離zh_TW
dc.subject陰離子聚合zh_TW
dc.subject聚乙二醇zh_TW
dc.subject固態高分子電解質zh_TW
dc.subject接枝共聚物zh_TW
dc.subjectAnionic polymerizationen
dc.subjectGraft copolymeren
dc.subjectPoly(ethylene oxide) (PEO)en
dc.subjectSolid polymer electrolyteen
dc.subjectBlock copolymeren
dc.subjectMicro-phase separationen
dc.title聚苯乙烯-b-(聚異戊二烯-g-聚乙二醇)嵌段共聚高分子於鋰金屬電池固態高分子電解質中的應用zh_TW
dc.titlePolystyrene-block-(polyisoprene-graft-poly(ethylene oxide)) diblock copolymer for solid polymer electrolytes in lithium metal batteriesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳乃立;葉哲寧;朱哲毅zh_TW
dc.contributor.oralexamcommitteeNae-Lih Wu;Che-Ning Yeh;Che-Yi Chuen
dc.subject.keyword固態高分子電解質,嵌段共聚物,接枝共聚物,聚乙二醇,陰離子聚合,微相分離,zh_TW
dc.subject.keywordSolid polymer electrolyte,Block copolymer,Graft copolymer,Poly(ethylene oxide) (PEO),Anionic polymerization,Micro-phase separation,en
dc.relation.page123-
dc.identifier.doi10.6342/NTU202503943-
dc.rights.note未授權-
dc.date.accepted2025-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved