請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99654完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙基揚 | zh_TW |
| dc.contributor.advisor | Chi-Yang Chao | en |
| dc.contributor.author | 張雅筑 | zh_TW |
| dc.contributor.author | Ya-Zhu Chang | en |
| dc.date.accessioned | 2025-09-17T16:16:35Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | (1) Luo, D.; Li, M.; Ma, Q.; Wen, G.; Dou, H.; Ren, B.; Liu, Y.; Wang, X.; Shui, L.; Chen, Z. Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies. Chem Soc Rev 2022, 51 (8), 2917-2938. DOI: 10.1039/d1cs01014j
(2) Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310 (5751), 1166-1170. DOI: doi:10.1126/science.1120411. (3) Lorandi, F.; Liu, T.; Fantin, M.; Manser, J.; Al-Obeidi, A.; Zimmerman, M.; Matyjaszewski, K.; Whitacre, J. F. Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes. iScience 2021, 24 (6), 102578. DOI: 10.1016/j.isci.2021.102578 (4) Hu, Y.; Wayment, L. J.; Haslam, C.; Yang, X.; Lee, S.-h.; Jin, Y.; Zhang, W. Covalent organic framework based lithium-ion battery: Fundamental, design and characterization. EnergyChem 2021, 3 (1). DOI: 10.1016/j.enchem.2020.100048. (5) Shao, W.; Xu, D.; Wang, T.; Pan, H.; Liu, Y.; Gao, X.; Luo, J.; Wang, J.; Li, Z.-K.; Guo, Y.; et al. Dynamic covalent synthesis of highly-crystalline and fully-cyclized aromatic COF as an artificial interphase layer toward stable lithium metal batteries. Chemical Engineering Journal 2025, 511. DOI: 10.1016/j.cej.2025.161960. (6) Wu, X.; Zhang, S.; Xu, X.; Wen, F.; Wang, H.; Chen, H.; Fan, X.; Huang, N. Lithiophilic Covalent Organic Framework as Anode Coating for High-Performance Lithium Metal Batteries. Angew Chem Int Ed Engl 2024, 63 (11), e202319355. DOI: 10.1002/anie.202319355 (7) Wang, S.; Wang, Q.; Shao, P.; Han, Y.; Gao, X.; Ma, L.; Yuan, S.; Ma, X.; Zhou, J.; Feng, X.; et al. Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries. J Am Chem Soc 2017, 139 (12), 4258-4261. DOI: 10.1021/jacs.7b02648 (8) Yang, Y.; Zhang, C.; Zhao, G.; An, Q.; Mei, Z. y.; Sun, Y.; Xu, Q.; Wang, X.; Guo, H. Regulating the Electron Structure of Covalent Organic Frameworks by Strong Electron‐Withdrawing Nitro to Construct Specific Li+ Oriented Channel. Advanced Energy Materials 2023, 13 (26). DOI: 10.1002/aenm.202300725. (9) Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem Rev 2020, 120 (16), 8814-8933. DOI: 10.1021/acs.chemrev.9b00550 (10) de la Pena Ruigomez, A.; Rodriguez-San-Miguel, D.; Stylianou, K. C.; Cavallini, M.; Gentili, D.; Liscio, F.; Milita, S.; Roscioni, O. M.; Ruiz-Gonzalez, M. L.; Carbonell, C.; et al. Direct On-Surface Patterning of a Crystalline Laminar Covalent Organic Framework Synthesized at Room Temperature. Chemistry 2015, 21 (30), 10666-10670. DOI: 10.1002/chem.201501692 (11) Li, W.; Huang, L.; Zhang, H.; Wu, Y.; Wei, F.; Zhang, T.; Fu, J.; Jing, C.; Cheng, J.; Liu, S. Supramolecular mineralization strategy for engineering covalent organic frameworks with superior Zn-I2 battery performances. Matter 2023, 6 (7), 2312-2323. DOI: 10.1016/j.matt.2023.04.019. (12) Li, X.; Yang, C.; Sun, B.; Cai, S.; Chen, Z.; Lv, Y.; Zhang, J.; Liu, Y. Expeditious synthesis of covalent organic frameworks: a review. Journal of Materials Chemistry A 2020, 8 (32), 16045-16060. DOI: 10.1039/d0ta05894g. (13) Smith, B. J.; Overholts, A. C.; Hwang, N.; Dichtel, W. R. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks. Chem Commun (Camb) 2016, 52 (18), 3690-3693. DOI: 10.1039/c5cc10221a (14) Matsumoto, M.; Dasari, R. R.; Ji, W.; Feriante, C. H.; Parker, T. C.; Marder, S. R.; Dichtel, W. R. Rapid, Low Temperature Formation of Imine-Linked Covalent Organic Frameworks Catalyzed by Metal Triflates. J Am Chem Soc 2017, 139 (14), 4999-5002. DOI: 10.1021/jacs.7b01240 (15) Shirokura, T.; Hirohata, T.; Sato, K.; Villani, E.; Sekiya, K.; Chien, Y. A.; Kurioka, T.; Hifumi, R.; Hattori, Y.; Sone, M.; et al. Site-Selective Synthesis and Concurrent Immobilization of Imine-Based Covalent Organic Frameworks on Electrodes Using an Electrogenerated Acid. Angew Chem Int Ed Engl 2023, 62 (40), e202307343. DOI: 10.1002/anie.202307343 (16) Wang, S.; Zhang, Z.; Zhang, H.; Rajan, A. G.; Xu, N.; Yang, Y.; Zeng, Y.; Liu, P.; Zhang, X.; Mao, Q.; et al. Reversible Polycondensation-Termination Growth of Covalent-Organic-Framework Spheres, Fibers, and Films. Matter 2019, 1 (6), 1592-1605. DOI: 10.1016/j.matt.2019.08.019. (17) Bourda, L.; Krishnaraj, C.; Van Der Voort, P.; Van Hecke, K. Conquering the crystallinity conundrum: efforts to increase quality of covalent organic frameworks. Materials Advances 2021, 2 (9), 2811-2845. DOI: 10.1039/d1ma00008j. (18) Hamzehpoor, E.; Jonderian, A.; McCalla, E.; Perepichka, D. F. Synthesis of Boroxine and Dioxaborole Covalent Organic Frameworks via Transesterification and Metathesis of Pinacol Boronates. J Am Chem Soc 2021, 143 (33), 13274-13280. DOI: 10.1021/jacs.1c05987 (19) Castano, I.; Evans, A. M.; Li, H.; Vitaku, E.; Strauss, M. J.; Bredas, J. L.; Gianneschi, N. C.; Dichtel, W. R. Chemical Control over Nucleation and Anisotropic Growth of Two-Dimensional Covalent Organic Frameworks. ACS Cent Sci 2019, 5 (11), 1892-1899. DOI: 10.1021/acscentsci.9b00944 (20) Zhu, D.; Alemany, L. B.; Guo, W.; Verduzco, R. Enhancement of crystallinity of imine-linked covalent organic frameworks via aldehyde modulators. Polymer Chemistry 2020, 11 (27), 4464-4468. DOI: 10.1039/d0py00776e. (21) Zhu, D.; Zhu, Y.; Chen, Y.; Yan, Q.; Wu, H.; Liu, C. Y.; Wang, X.; Alemany, L. B.; Gao, G.; Senftle, T. P.; et al. Three-dimensional covalent organic frameworks with pto and mhq-z topologies based on Tri- and tetratopic linkers. Nat Commun 2023, 14 (1), 2865. DOI: 10.1038/s41467-023-38538-x (22) Zheng, B.; Lin, X.; Zhang, X.; Wu, D.; Matyjaszewski, K. Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage. Advanced Functional Materials 2019, 30 (41). DOI: 10.1002/adfm.201907006. (23) Tran, L. D.; Ree, B. J.; Ruditskiy, A.; Beagle, L. K.; Selhorst, R. C.; Sarker, B. K.; Bhagwandin, D. D.; Miesle, P.; Drummy, L. F.; Durstock, M. F.; et al. Oriented Covalent Organic Framework Film Synthesis from Azomethine Compounds. Advanced Materials Interfaces 2023, 10 (13). DOI: 10.1002/admi.202300042. (24) Matsumoto, M.; Valentino, L.; Stiehl, G. M.; Balch, H. B.; Corcos, A. R.; Wang, F.; Ralph, D. C.; Mariñas, B. J.; Dichtel, W. R. Lewis-Acid-Catalyzed Interfacial Polymerization of Covalent Organic Framework Films. Chem 2018, 4 (2), 308-317. DOI: 10.1016/j.chempr.2017.12.011. (25) Wang, X.; Liu, M.; Wang, X.; Tan, B. Synthesis of highly crystalline imine-linked covalent organic frameworks via controlling monomer feeding rates in an open system. Chem Commun (Camb) 2022, 58 (88), 12313-12316. DOI: 10.1039/d2cc04374b (26) Zhang, H.; Li, H. Lithium-ion distribution and motion in two-dimensional covalent organic frameworks: the example of TAPB-PDA COF. Journal of Materials Chemistry C 2022, 10 (37), 13834-13843. DOI: 10.1039/d2tc01076c. (27) Xue, J.; Sun, Z.; Sun, B.; Zhao, C.; Yang, Y.; Huo, F.; Cabot, A.; Liu, H. K.; Dou, S. Covalent Organic Framework-Based Materials for Advanced Lithium Metal Batteries. ACS Nano 2024, 18 (27), 17439-17468. DOI: 10.1021/acsnano.4c05040 (28) Liu, B.; Zhang, J.-G.; Xu, W. Advancing Lithium Metal Batteries. Joule 2018, 2 (5), 833-845. DOI: 10.1016/j.joule.2018.03.008. (29) Qian, J.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Henderson, W. A.; Zhang, Y.; Zhang, J.-G. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy 2015, 15, 135-144. DOI: 10.1016/j.nanoen.2015.04.009. (30) Li, J.; Kong, Z.; Liu, X.; Zheng, B.; Fan, Q. H.; Garratt, E.; Schuelke, T.; Wang, K.; Xu, H.; Jin, H. Strategies to anode protection in lithium metal battery: A review. InfoMat 2021, 3 (12), 1333-1363. DOI: 10.1002/inf2.12189. (31) Chen, K.; Pathak, R.; Gurung, A.; Adhamash, E. A.; Bahrami, B.; He, Q.; Qiao, H.; Smirnova, A. L.; Wu, J. J.; Qiao, Q.; et al. Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes. Energy Storage Materials 2019, 18, 389-396. DOI: 10.1016/j.ensm.2019.02.006. (32) Yuan, Y.; Wu, F.; Chen, G.; Bai, Y.; Wu, C. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. Journal of Energy Chemistry 2019, 37, 197-203. DOI: 10.1016/j.jechem.2019.03.014. (33) Wu, C.; Guo, F.; Zhuang, L.; Ai, X.; Zhong, F.; Yang, H.; Qian, J. Mesoporous Silica Reinforced Hybrid Polymer Artificial Layer for High-Energy and Long-Cycling Lithium Metal Batteries. ACS Energy Letters 2020, 5 (5), 1644-1652. DOI: 10.1021/acsenergylett.0c00804. (34) Airoldi, M.; Berrocal, J. A.; Gunkel, I.; Steiner, U. Polymer-based solid electrolyte interphase for stable lithium metal anodes. RSC Applied Polymers 2025, 3 (1), 278-288. DOI: 10.1039/d4lp00293h. (35) Chen, C.; Zhang, J.; Hu, B.; Liang, Q.; Xiong, X. Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode. Nat Commun 2023, 14 (1), 4018. DOI: 10.1038/s41467-023-39636-6 (36) DeBlase, C. R.; Silberstein, K. E.; Truong, T. T.; Abruna, H. D.; Dichtel, W. R. beta-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J Am Chem Soc 2013, 135 (45), 16821-16824. DOI: 10.1021/ja409421d (37) Yang, D.-H.; Yao, Z.-Q.; Wu, D.; Zhang, Y.-H.; Zhou, Z.; Bu, X.-H. Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. Journal of Materials Chemistry A 2016, 4 (47), 18621-18627. DOI: 10.1039/c6ta07606h. (38) Yang, X.; Hu, Y.; Dunlap, N.; Wang, X.; Huang, S.; Su, Z.; Sharma, S.; Jin, Y.; Huang, F.; Wang, X.; et al. A Truxenone-based Covalent Organic Framework as an All-Solid-State Lithium-Ion Battery Cathode with High Capacity. Angew Chem Int Ed Engl 2020, 59 (46), 20385-20389. DOI: 10.1002/anie.202008619 (39) Xu, S.; Wang, G.; Biswal, B. P.; Addicoat, M.; Paasch, S.; Sheng, W.; Zhuang, X.; Brunner, E.; Heine, T.; Berger, R.; et al. A Nitrogen-Rich 2D sp(2) -Carbon-Linked Conjugated Polymer Framework as a High-Performance Cathode for Lithium-Ion Batteries. Angew Chem Int Ed Engl 2019, 58 (3), 849-853. DOI: 10.1002/anie.201812685 (40) Wu, M.; Zhao, Y.; Sun, B.; Sun, Z.; Li, C.; Han, Y.; Xu, L.; Ge, Z.; Ren, Y.; Zhang, M.; et al. A 2D covalent organic framework as a high-performance cathode material for lithium-ion batteries. Nano Energy 2020, 70. DOI: 10.1016/j.nanoen.2020.104498. (41) Vitaku, E.; Gannett, C. N.; Carpenter, K. L.; Shen, L.; Abruna, H. D.; Dichtel, W. R. Phenazine-Based Covalent Organic Framework Cathode Materials with High Energy and Power Densities. J Am Chem Soc 2020, 142 (1), 16-20. DOI: 10.1021/jacs.9b08147 (42) Vazquez-Molina, D. A.; Mohammad-Pour, G. S.; Lee, C.; Logan, M. W.; Duan, X.; Harper, J. K.; Uribe-Romo, F. J. Mechanically Shaped Two-Dimensional Covalent Organic Frameworks Reveal Crystallographic Alignment and Fast Li-Ion Conductivity. J Am Chem Soc 2016, 138 (31), 9767-9770. DOI: 10.1021/jacs.6b05568 (43) Zhang, G.; Hong, Y. L.; Nishiyama, Y.; Bai, S.; Kitagawa, S.; Horike, S. Accumulation of Glassy Poly(ethylene oxide) Anchored in a Covalent Organic Framework as a Solid-State Li(+) Electrolyte. J Am Chem Soc 2019, 141 (3), 1227-1234. DOI: 10.1021/jacs.8b07670 (44) Yang, Y.; Yao, S.; Liang, Z.; Wen, Y.; Liu, Z.; Wu, Y.; Liu, J.; Zhu, M. A Self-Supporting Covalent Organic Framework Separator with Desolvation Effect for High Energy Density Lithium Metal Batteries. ACS Energy Letters 2022, 7 (2), 885-896. DOI: 10.1021/acsenergylett.1c02719. (45) Patra, B. C.; Das, S. K.; Ghosh, A.; Raj K, A.; Moitra, P.; Addicoat, M.; Mitra, S.; Bhaumik, A.; Bhattacharya, S.; Pradhan, A. Covalent organic framework based microspheres as an anode material for rechargeable sodium batteries. Journal of Materials Chemistry A 2018, 6 (34), 16655-16663. DOI: 10.1039/c8ta04611e. (46) Chen, L.; Du, J.; Zhou, W.; Shen, H.; Tan, L.; Zhou, C.; Dong, L. Microwave-Assisted Solvothermal Synthesis of Covalent Organic Frameworks (COFs) with Stable Superhydrophobicity for Oil/Water Separation. Chem Asian J 2020, 15 (21), 3421-3427. DOI: 10.1002/asia.202000872 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99654 | - |
| dc.description.abstract | 多孔有機高分子(Porous organic polymers, POPs),是由輕量元素如碳、氫、氧、氮等共價鍵結形成,擁有高表面積、大量的官能基團、連續多孔微結構等優點。POP的拓樸形貌可藉由節點與邊緣單體的立體幾何構造與官能基種類及數量來進行調控,進而得到不同微結構與結晶特性之POP。本研究利用相同反應條件之一鍋法合成出兩種同樣具有imine連結官能基與拓樸設計但卻具有極大微結構差異的POP:一為以與先前文獻報導相同的單體組合1,3,5-tris(4-aminophenyl)benzene (TAPB,節點三胺基單體)與terephthalaldehyde (PDA,邊緣雙醛基單體),合成出具有高度六方堆積結晶度的TAPB-PDA POP;另一POP則是以1,3,5-tris(4-formyl phenyl) benzene (TFPB, 節點三醛基單體) 與p-phenylenediamine (PPD,邊緣雙胺基單體)為單體,合成出片狀且無規整六角孔洞之層狀堆疊結構。為解釋將單體進行連結反應的醛基與胺基的位置對調而造成微結構上的巨大差異, 本研究利用imine鍵結機制與反應動力學提出一模型進行解釋。爾後此兩種POP進一步應用於鋰金屬電池之人工固態電解質介面(artificial solid electrolyte interphase, A-SEI)時,相對於無POP A-SEI之電池,POP A-SEI皆能使鋰離子均勻沉積/剝離於鋰金屬表面,抑制鋰枝晶生長,進而提升鋰金屬電池長期穩定性與安全性。有趣的是,相對於六方堆積TAPB-PDA POP,層狀TFPB-PPD POP擁有較高的導離子率、更穩定的鋰金屬介面與電池循環壽命。此結果與多數文獻認為高結晶度的六方堆積POP能提供鋰離子快速傳輸的通道以提升相關之電化學性質的論點相衝突。此篇論文也提出一對應的鋰離子傳輸機制以解釋層狀POP展現出較優異的電池表現的原因。 | zh_TW |
| dc.description.abstract | Porous Organic Polymers (POPs), constructed from light elements such as C, O, N, H via covalent bonding, possess advantages of high surface area with abundant functionalities and continuous porous microstructures. POPs are generally built by linking knot and/or edge monomers, and whose topography could be manipulated by employing monomers with functional groups at designated positions. The microstructure and the crystallinity of POPs are affected complicatedly by the topography and the reaction parameters. In this work, two imine linked POPs having identical topography design are prepared via the same one-pot chemistry from two different monomer combinations; interestingly, the resulting POPs exhibited different topography and very distinctive microstructures. The one using 1,3,5-tris(4-aminophenyl)benzene (TAPB, amine knot monomer) and terephthalaldehyde (PDA, aldehyde edge monomer), termed as TAPB-PDA POP, exhibits high crystallinity with hexagonal channels similar to those reported in previous literatures . Contrary, by switching the positions of the aldehyde and the amine groups in the knot/edge monomers, the POPs synthesized from 1,3,5-tris(4-formyl phenyl) benzene (TFPB, aldehyde knot monomer) and p-phenylenediamine (PPD, amine edge more) are layered stacking flakes without orderly hexagonal pores. We propose a model to explain the interesting differences in topography and microstructure based on the imine bonding formation mechanism and the associated kinetics. When these two POPs are applied as an artificial solid-electrolyte interphase (A-SEI) in lithium metal batteries, both POPs could facilitate homogeneous lithium ion deposition/stripping at lithium metal surface to suppress lithium dendrite formation comparing to the cell without POP based A-SEI, therefore improving long term stability and safety of LMBs. Interestingly, the layer stacked TFPB-PPD POP demonstrates a higher ion conductivity, more stable lithium metal surface and a longer life time in galvanostatic cycling with respect to the hexagonal packed TAPB-PDA POP. The observation is somewhat opposite to most literatures, which suggested that highly ordered hexagonal crystals in POPs serving as ion conducting channels could benefit fast lithium ion transport and improve the associate electrochemical properties. A corresponding mechanism is proposed in this thesis to address the superiority of layered POPs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:16:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:16:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目次 V 圖次 IX 表次 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與架構 2 第二章 文獻回顧 6 2.1 多孔有機高分子(POP) 6 2.2 Covalent organic framework (COF) 8 2.3 COF之合成機制與路徑 13 2.3.1 催化劑 15 2.3.2 調節劑(Modulator) 18 2.4 TAPB-PDA COF 21 2.5 鋰金屬電池 26 2.6 A-SEI在鋰金屬電池中的應用 29 2.7 COF在鋰金屬電池中的應用 31 2.7.1 電極材料 36 2.7.2 電解質添加劑、ASEI與隔離膜材料 40 2.8 其他應用 43 第三章 實驗步驟與原理 45 3.1 實驗藥品 45 3.2 實驗儀器 48 3.3 材料製備 50 3.3.1 單體TFPB之合成 50 3.3.2 POP之合成 52 3.3.3 POP A-SEI製備 53 3.3.4 CR2032鈕扣型電池組裝 53 3.3.5 X光繞射儀(PXRD) 53 3.3.6 小角度X光散射儀(SAXS) 54 3.3.7 液態核磁共振氫譜(1H NMR) 55 3.3.8 固態核磁共振鋰譜(7Li ssNMR) 55 3.3.9 固態核磁共振異核單量子相干譜(ssNMR HSQC) 55 3.3.10 傅立葉轉換紅外光譜儀(FT-IR) 56 3.3.11 掃描式電子顯微鏡(SEM) 56 3.3.12 穿透式電子顯微鏡(TEM) 57 3.3.13 氮氣吸脫附分析儀(BET) 57 3.3.14 離子傳導度測量 57 3.3.15 電化學阻抗頻譜 58 3.3.16 鋰離子遷移係數測量 59 3.3.17 恆電流充放電循環測試(Galvanostatic cycling test) 59 3.3.18 鋰金屬表面分析 60 第四章 結果與討論 61 4.1 POP之合成與鑑定 61 4.1.1 POP之PXRD與SAXS圖譜 61 4.1.2 POP之形貌觀察 68 4.1.3 POP的BET分析 69 4.2 POP之成長機制與造成微結構差異之原因探討 70 4.3 以POP作為鋰金屬電池電解液之添加劑 76 4.4 含POP電解液之離子傳導度 79 4.5 POP A-SEI之介面性質 83 4.6 含POP電解液的 LSC恆電流充放電循環測試 84 4.7 POP A-SEI LSC之鋰金屬表面分析 86 第五章 結論 89 第六章 未來展望 90 參考文獻 91 附錄 97 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鋰金屬電池 | zh_TW |
| dc.subject | 多孔有機高分子 | zh_TW |
| dc.subject | 鋰離子遷移機制 | zh_TW |
| dc.subject | 鋰枝晶 | zh_TW |
| dc.subject | 人工固態電解質介面 | zh_TW |
| dc.subject | artificial solid electrolyte interphase(A-SEI) | en |
| dc.subject | lithium dendrite | en |
| dc.subject | lithium ion migration mechanism | en |
| dc.subject | lithium metal battery | en |
| dc.subject | Porous Organic Polumers(POPs) | en |
| dc.title | 多孔有機高分子應用至鋰金屬電池人工固態電解質介面層 | zh_TW |
| dc.title | Porous Organic Polymers (POPs) for Artificial Solid-electrolyte Interface (A-SEI) of Lithium Metal Batteries | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭國忠;蘇威年 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Chung Cheng;Wei-Nien Su | en |
| dc.subject.keyword | 多孔有機高分子,鋰金屬電池,人工固態電解質介面,鋰枝晶,鋰離子遷移機制, | zh_TW |
| dc.subject.keyword | Porous Organic Polumers(POPs),lithium metal battery,artificial solid electrolyte interphase(A-SEI),lithium dendrite,lithium ion migration mechanism, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202503963 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 8.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
