Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99651
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙基揚zh_TW
dc.contributor.advisorChi-Yang Chaoen
dc.contributor.author陳昱達zh_TW
dc.contributor.authorYu-Da Chenen
dc.date.accessioned2025-09-17T16:16:03Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation(1) Saha, P.; Akash, F. A.; Shovon, S. M.; Monir, M. U.; Ahmed, M. T.; Khan, M. F. H.; Sarkar, S. M.; Islam, M. K.; Hasan, M. M.; Vo, D.-V. N.; et al. Grey, blue, and green hydrogen: A comprehensive review of production methods and prospects for zero-emission energy. International Journal of Green Energy 2024, 21 (6), 1383-1397.
(2) Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy 2013, 38 (12), 4901-4934.
(3) Leng, Y.; Chen, G.; Mendoza, A. J.; Tighe, T. B.; Hickner, M. A.; Wang, C.-Y. Solid-State Water Electrolysis with an Alkaline Membrane. Journal of the American Chemical Society 2012, 134 (22), 9054-9057.
(4) Gottesfeld, S.; Dekel, D. R.; Page, M.; Bae, C.; Yan, Y.; Zelenay, P.; Kim, Y. S. Anion exchange membrane fuel cells: Current status and remaining challenges. Journal of Power Sources 2018, 375, 170-184.
(5) Zhu, Y.; Li, L.; Cheng, H.; Ma, J. Alkaline Hydrogen Evolution Reaction Electrocatalysts for Anion Exchange Membrane Water Electrolyzers: Progress and Perspective. JACS Au 2024, 4 (12), 4639-4654.
(6) Li, L.; Lin, C.; Ma, X.; Ma, Y.; Zhu, A.; Xie, Z.; Zhang, Q. Rational design of membrane electrode assembly for durable anion exchange membrane water electrolysis. Chemical Engineering Journal 2025, 508, 160916.
(7) Yang, Y.; Li, P.; Zheng, X.; Sun, W.; Dou, S. X.; Ma, T.; Pan, H. Anion-exchange membrane water electrolyzers and fuel cells. Chemical Society Reviews 2022, 51 (23), 9620-9693.
(8) Jeon, J. Y.; Park, S.; Han, J.; Maurya, S.; Mohanty, A. D.; Tian, D.; Saikia, N.; Hickner, M. A.; Ryu, C. Y.; Tuckerman, M. E.; et al. Synthesis of Aromatic Anion Exchange Membranes by Friedel–Crafts Bromoalkylation and Cross-Linking of Polystyrene Block Copolymers. Macromolecules 2019, 52 (5), 2139-2147.
(9) Lee, J.; Min, K.; Jeon, S.; Park, S.; Kim, H.; Kim, T.-H. Development of crosslinked SEBS-based anion exchange membranes for water electrolysis: Investigation of the crosslinker effect. International Journal of Hydrogen Energy 2023, 48 (63), 24180-24195.
(10) Lee, Y.; Min, K.; Choi, J.; Choi, G.; Kim, H.; Kim, T.-H. Development of highly conductive anion exchange membranes based on crosslinked PIM-SEBS with high free volume. Journal of Materials Chemistry A 2023, 11 (45), 25008-25019.
(11) Elabd, Y. A. Ion transport in hydroxide conducting block copolymers. Molecular Systems Design & Engineering 2019, 4 (3), 519-530.
(12) Kuleshov, V. N.; Kuleshov, N. V.; Kurochkin, S. V.; Gavriluk, A. A.; Klimova, M. A.; Grigorieva, O. Y. Polysulfone-Based Anion-Exchange Membranes for Alkaline Water Electrolyzers. Russian Journal of Electrochemistry 2024, 60 (8), 613-622.]
(13) Son, T. Y.; Kim, D. J.; Vijayakumar, V.; Kim, K.; Kim, D. S.; Nam, S. Y. Anion exchange membrane using poly(ether ether ketone) containing imidazolium for anion exchange membrane fuel cell (AEMFC). JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY 2020, 89, 175-182.
(14) Vinodh, R.; Ilakkiya, A.; Elamathi, S.; Sangeetha, D. A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: Synthesis and characterization. Materials Science and Engineering: B 2010, 167 (1), 43-50.
(15) Zhang, X.; Shi, Q.; Chen, P.; Zhou, J.; Li, S.; Xu, H.; Chen, X.; An, Z. Block poly(arylene ether sulfone) copolymers tethering aromatic side-chain quaternary ammonium as anion exchange membranes. Polymer Chemistry 2018, 9 (6), 699-711.
(16) Lee, H.-C.; Liu, K.-L.; Tsai, L.-D.; Lai, J.-Y.; Chao, C.-Y. Anion exchange membranes based on novel quaternized block copolymers for alkaline direct methanol fuel cells. RSC Advances 2014, 4 (21), 10944-10954.
(17) Cai, Z.; Bu, X.; Wang, P.; Ho, J. C.; Yang, J.; Wang, X. Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A 2019, 7 (10), 5069-5089.
(18) Santos, D.; Sequeira, C.; Figueiredo, J. Hydrogen production by alkaline water electrolysis. Química Nova 2012, 36, 1176-1193.
(19) Zhang, H.; Maijenburg, A. W.; Li, X.; Schweizer, S. L.; Wehrspohn, R. B. Bifunctional Heterostructured Transition Metal Phosphides for Efficient Electrochemical Water Splitting. Advanced Functional Materials 2020, 30 (34), 2003261.
(20) Liu, C.; Geng, Z.; Wang, X.; Liu, W.; Wang, Y.; Xia, Q.; Li, W.; Jin, L.; Zhang, C. Development of advanced anion exchange membrane from the view of the performance of water electrolysis cell. Journal of Energy Chemistry 2024, 90, 348-369.
(21) Zaffora, A.; Megna, B.; Seminara, B.; Di Franco, F.; Santamaria, M. Ni,Fe,Co-LDH Coated Porous Transport Layers for Zero-Gap Alkaline Water Electrolyzers. In Nanomaterials, 2024; Vol. 14.
(22) Chen, Y.; Liu, C.; Xu, J.; Xia, C.; Wang, P.; Xia, B. Y.; Yan, Y.; Wang, X. Key Components and Design Strategy for a Proton Exchange Membrane Water Electrolyzer. Small Structures 2023, 4 (6), 2200130.
(23) Wu, H.; Zuo, X.; Wang, S.-P.; Yin, J.-W.; Zhang, Y.-N.; Chen, J. Theoretical and experimental design of Pt-Co(OH)2 electrocatalyst for efficient HER performance in alkaline solution. Progress in Natural Science: Materials International 2019, 29 (3), 356-361.
(24) Xiong, Y.; He, P. A review on electrocatalysis for alkaline oxygen evolution reaction (OER) by Fe-based catalysts. Journal of Materials Science 2023, 58 (5), 2041-2067.
(25) Gülzow, E.; Schulze, M. Long-term operation of AFC electrodes with CO2 containing gases. JOURNAL OF POWER SOURCES 2004, 127 (1-2), 243-251.
(26) Mustain, W. E.; Chatenet, M.; Page, M.; Kim, Y. S. Durability challenges of anion exchange membrane fuel cells. Energy & Environmental Science 2020, 13 (9), 2805-2838.
(27) Agmon, N. Mechanism of hydroxide mobility. Chemical Physics Letters 2000, 319 (3), 247-252.
(28) Kreuer, K.-D.; Rabenau, A.; Weppner, W. Vehicle Mechanism, A New Model for the Interpretation of the Conductivity of Fast Proton Conductors. Angewandte Chemie International Edition in English 1982, 21 (3), 208-209.
(29) Tuckerman, M. E.; Marx, D.; Parrinello, M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 2002, 417 (6892), 925-929.
(30) Chen, C.; Tse, Y.-L. S.; Lindberg, G. E.; Knight, C.; Voth, G. A. Hydroxide Solvation and Transport in Anion Exchange Membranes. Journal of the American Chemical Society 2016, 138 (3), 991-1000.
(31) Zhang, J.; Liu, H.; Liu, H.; Hu, J.; Tan, S.; Wu, T. Using diethylamine as crosslinking agent for getting polyepichlorohydrin-based composite membrane with high tensile strength and good chemical stability. Polymer Bulletin 2017, 74 (3), 625-639.
(32) Arges, C. G.; Ramani, V. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes. Proceedings of the National Academy of Sciences 2013, 110 (7), 2490-2495.
(33) Cheng, J.; He, G.; Zhang, F. A mini-review on anion exchange membranes for fuel cell applications: Stability issue and addressing strategies. International Journal of Hydrogen Energy 2015, 40 (23), 7348-7360.
(34) Komkova, E. N.; Stamatialis, D. F.; Strathmann, H.; Wessling, M. Anion-exchange membranes containing diamines: preparation and stability in alkaline solution. Journal of Membrane Science 2004, 244 (1), 25-34.
(35) Yang, Y.; Wang, J.; Zheng, J.; Li, S.; Zhang, S. A stable anion exchange membrane based on imidazolium salt for alkaline fuel cell. Journal of Membrane Science 2014, 467, 48-55.
(36) Li, Y.; Liu, Y.; Savage, A. M.; Beyer, F. L.; Seifert, S.; Herring, A. M.; Knauss, D. M. Polyethylene-Based Block Copolymers for Anion Exchange Membranes. Macromolecules 2015, 48 (18), 6523-6533.
(37) Pan, Y.; Jiang, K.; Sun, X.; Ma, S.; So, Y.-M.; Ma, H.; Yan, X.; Zhang, N.; He, G. Facilitating ionic conduction for anion exchange membrane via employing star-shaped block copolymer. Journal of Membrane Science 2021, 630, 119290.
(38) Liu, L.; Li, D.; Xing, Y.; Li, N. Mid-block quaternized polystyrene-b-polybutadiene-b-polystyrene triblock copolymers as anion exchange membranes. Journal of Membrane Science 2018, 564, 428-435.
(39) Wang, L.; Hickner, M. A. Highly conductive side chain block copolymer anion exchange membranes. Soft Matter 2016, 12 (24), 5359-5371.
(40) Zhu, M.; Zhang, M.; Chen, Q.; Su, Y.; Zhang, Z.; Liu, L.; Wang, Y.; An, L.; Li, N. Synthesis of midblock-quaternized triblock copolystyrenes as highly conductive and alkaline-stable anion-exchange membranes. Polymer Chemistry 2017, 8 (13), 2074-2086.
(41) Henkensmeier, D.; Najibah, M.; Harms, C.; Žitka, J.; Hnát, J.; Bouzek, K. Overview: State-of-the Art Commercial Membranes for Anion Exchange Membrane Water Electrolysis. Journal of Electrochemical Energy Conversion and Storage 2020, 18 (2).
(42) Weber, R. L.; Ye, Y.; Banik, S. M.; Elabd, Y. A.; Hickner, M. A.; Mahanthappa, M. K. Thermal and ion transport properties of hydrophilic and hydrophobic polymerized styrenic imidazolium ionic liquids. Journal of Polymer Science Part B: Polymer Physics 2011, 49 (18), 1287-1296.
(43) Hugar, K. M.; Kostalik, H. A. I. V.; Coates, G. W. Imidazolium Cations with Exceptional Alkaline Stability: A Systematic Study of Structure–Stability Relationships. Journal of the American Chemical Society 2015, 137 (27), 8730-8737.
(44) Liu, Z.; Sajjad, S. D.; Gao, Y.; Yang, H.; Kaczur, J. J.; Masel, R. I. The effect of membrane on an alkaline water electrolyzer. International Journal of Hydrogen Energy 2017, 42 (50), 29661-29665.
(45) Lee, W.-H.; Park, E. J.; Han, J.; Shin, D. W.; Kim, Y. S.; Bae, C. Poly(terphenylene) Anion Exchange Membranes: The Effect of Backbone Structure on Morphology and Membrane Property. ACS Macro Letters 2017, 6 (5), 566-570.
(46) Park, E. J.; Capuano, C. B.; Ayers, K. E.; Bae, C. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis. Journal of Power Sources 2018, 375, 367-372.
(47) Lee, K. M.; Han, C. D. Order−Disorder Transition Induced by the Hydroxylation of Homogeneous Polystyrene-block-polyisoprene Copolymer. Macromolecules 2002, 35 (3), 760-769.
(48) Chung, T. C.; Raate, M.; Berluche, E.; Schulz, D. N. Synthesis of functional hydrocarbon polymers with well-defined molecular structures. Macromolecules 1988, 21 (7), 1903-1907.
(49) Mao, G.; Wang, J.; Clingman, S. R.; Ober, C. K.; Chen, J. T.; Thomas, E. L. Molecular Design, Synthesis, and Characterization of Liquid Crystal−Coil Diblock Copolymers with Azobenzene Side Groups. Macromolecules 1997, 30 (9), 2556-2567.
(50) Appel, R. Tertiary Phosphane/Tetrachloromethane, a Versatile Reagent for Chlorination, Dehydration, and PN Linkage. Angewandte Chemie International Edition in English 1975, 14 (12), 801-811.
(51) Youngblood, J. P.; Andruzzi, L.; Ober, C. K.; Hexemer, A.; Kramer, E. J.; Callow, J. A.; Finlay, J. A.; Callow, M. E. Coatings based on side-chain ether-linked poly(ethylene glycol) and fluorocarbon polymers for the control of marine biofouling. Biofouling 2003, 19 Suppl, 91-98.
(52) Trent, J. S.; Scheinbeim, J. I.; Couchman, P. R. Ruthenium tetraoxide staining of polymers for electron microscopy. Macromolecules 1983, 16 (4), 589-598.
(53) Trent, J. S.; Scheinbeim, J. I.; Couchman, P. R. Electron microscopy of PS/PMMA and rubber-modified polymer blends: Use of ruthenium tetroxide as a new staining agent. Journal of Polymer Science: Polymer Letters Edition 1981, 19 (6), 315-319.
(54) Kiernan, J. A. Histochemical demonstration of unsaturated hydrophilic lipids with palladium chloride. J Histochem Cytochem 1977, 25 (3), 200-205.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99651-
dc.description.abstract氫能因其高能量密度與燃燒過程乾淨無碳排放等特性,已經成為未來替代能源的有力候選之一。水電解是製備綠氫的常用方法,其中陰離子交換膜水電解反應槽(Anion Exchange Membrane Water Electrolyzers, AEMWE)利用陰離子交換膜(Anion Exchange Membranes, AEM)將氫氧根離子由陰極傳導至陽極。該技術的優勢包括:析氧反應(Oxygen Evolution Reaction, OER)在鹼性環境下具備有利的動力學,能夠降低反應能耗,以及在催化劑材料選用上可避免使用昂貴的鉑族金屬,使其具備商業開發的潛力。
本研究旨在開發具高穩定性且具成本效益的陰離子交換膜,以應用於陰離子交換膜水電解槽中。我們使用陰離子聚合合成具有特定分子量與組成的聚苯乙烯-聚異戊二烯嵌段共聚物(Poly(styrene-b-isoprene), PS-b-PI)作為高分子骨架,並對PI鏈段上高反應性的垂懸雙鍵進行一系列後續化學修飾,使PI鏈段帶有可交聯之反應性官能基。而後在系統中導入直鏈型(linear type)與橋環型(bridged type)的交聯劑,並評估不同交聯系統的性能差異。以雙環戊二烯(Dicyclopentadiene, DCPD)為起始物合成之新型橋聯雙環型交聯劑具有兩個一級胺,可與PI主鏈上的溴基反應,形成交聯橋鍵,後續將交聯薄膜浸泡於碘甲烷溶液,即可在橋環位置產生具陰離子導電性的季銨官能基。而直鏈型交聯劑N,N,N’,N’-tetramethyl-1,6-hexanediamine(TMHDA)則由兩個三級胺與柔軟長碳鏈組成,可形成交聯鍵結的同時進行四級銨化。兩交聯系統皆提供薄膜良好的鹼性穩定性與剛性,其中橋環結構可引入較大自由體積以容納結合水,並誘導產生更加規整的微相分離結構,形成連續的離子傳導通道以促進氫氧根離子的傳導。直鏈結構則具有較小的離子傳導通道尺寸,且更限縮薄膜的吸水與澎潤,保有良好的結構完整性與機械性質。
zh_TW
dc.description.abstractHydrogen energy has emerged as a promising candidate for future alternative energy sources due to its high energy density and carbon-free combustion process. Water electrolysis is a widely adopted method for green hydrogen production, among which anion exchange membrane water electrolyzers (AEMWE) utilize anion exchange membranes (AEMs) to transport hydroxide ions from the cathode to the anode. The advantages of this technology include the favorable kinetics of the oxygen evolution reaction (OER) under alkaline conditions, which helps reduce energy consumption, and the ability to employ non-precious metal catalysts, thus enhancing its commercial viability.
This study aims to develop highly stable and cost-effective anion exchange membranes for application in AEMWE systems. Poly(styrene-b-isoprene) (PS-b-PI) block copolymers with tailored molecular weights and compositions were synthesized via anionic polymerization to serve as the polymeric backbone. The reactive pendant double bonds on the PI segments were subsequently modified through a series of post-functionalization reactions to introduce crosslinkable functional groups. Two types of crosslinkers—linear and bridged—were incorporated into the system to investigate the effects of crosslinking architectures on membrane performance.
A novel bridged crosslinker derived from dicyclopentadiene (DCPD), containing two primary amine groups, was designed to react with the brominated PI backbone, forming covalent crosslinked bridges. Subsequent immersion of the crosslinked membranes in methyl iodide resulted in the formation of anion-conductive quaternary ammonium groups at the bridged sites. In contrast, the linear crosslinker N,N,N’,N’-tetramethyl-1,6-hexanediamine (TMHDA), composed of two tertiary amines and a flexible aliphatic chain, simultaneously facilitated crosslinking and quaternization.
Both crosslinking systems conferred the membranes with excellent alkaline stability and rigidity. The bridged architecture introduced larger free volume, which accommodated sufficient bound water and promoted the formation of well-ordered lamellar microphase-separated structures, thereby enabling the creation of continuous ion transport channels for enhanced hydroxide ion conductivity. Conversely, the linear architecture produced smaller ionic domains and restricted water uptake and swelling, maintaining superior structural integrity and mechanical robustness.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:16:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:16:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 v
圖次 viii
表次 xii
第1章 緒論 1
1.1 研究背景 1
1.2 研究目的與架構 3
第2章 文獻回顧 6
2.1 水電解反應槽 6
2.1.1 鹼性水電解反應槽 8
2.1.2 質子交換膜水電解反應槽 9
2.1.3 陰離子交換膜水電解反應槽 10
2.2 陰離子交換膜 13
2.2.1 氫氧根離子的傳導機制 14
2.2.2 鹼性穩定性與降解機制 18
2.3 嵌段共聚高分子應用於陰離子交換膜 22
2.4 應用於電解產氫的商用陰離子交換膜 32
第3章 實驗步驟與原理 34
3.1 實驗藥品與材料 34
3.2 實驗儀器 36
3.3 材料製備 37
3.3.1 SI之合成 38
3.3.2 SI-OH之合成 40
3.3.3 SI-Br之合成 41
3.3.4 THDCPD-diamine之合成 42
3.3.4.1 THDCPD-diacid之合成 43
3.3.4.2 THDCPD-diol之合成 43
3.3.4.3 THDCPD-diPHI之合成 44
3.3.4.4 THDCPD-diamine之合成 44
3.3.5 交聯陰離子交換膜之製備 45
3.4 材料分析 47
3.4.1 化學結構之鑑定 47
3.4.2 離子交換容量測試 48
3.4.3 熱性質分析 49
3.4.4 機械性質分析 50
3.4.5 薄膜微結構分析 50
3.4.6 吸水率及膨潤率量測 51
3.4.7 離子傳導度量測 52
第4章 結果與討論 53
4.1 PS-b-PI雙嵌段共聚高分子之合成與官能基轉化 53
4.1.1 SI之合成鑑定 53
4.1.2 SI-OH與SI-Br之合成鑑定 56
4.2 THDCPD衍生物之合成與鑑定 58
4.3 交聯陰離子交換膜之製備 63
4.4 離子交換容量(IEC) 64
4.5 熱性質分析 67
4.6 機械性質分析 68
4.7 薄膜微結構分析 70
4.8 陰離子交換膜性質評估 74
4.8.1 吸水率與膨潤率測試 74
4.8.2 離子傳導度測試 76
4.8.3 鹼性穩定性測試 80
第5章 結論 82
第6章 未來展望 84
參考文獻 85
附錄 90
-
dc.language.isozh_TW-
dc.subject析氫反應zh_TW
dc.subject陰離子交換膜zh_TW
dc.subject雙環戊二烯zh_TW
dc.subject嵌段共聚高分子zh_TW
dc.subject陰離子交換膜水電解反應槽zh_TW
dc.subjectanion exchange membrane water electrolyzeren
dc.subjectblock copolymeren
dc.subjectdicyclopentadieneen
dc.subjecthydrogen evolutionen
dc.subjectAnion exchange membranesen
dc.title基於新型氫氧根傳導雙環交聯劑之交聯聚苯乙烯-聚異戊二烯嵌段共聚物應用於陰離子交換膜zh_TW
dc.titleAnion Exchange Membranes based on Crosslinked Polystyrene-block-Polyisoprene using Novel Hydroxide Conductive bicyclic Crosslinkersen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee梁文傑;朱哲毅;莊高樹zh_TW
dc.contributor.oralexamcommitteeMan-Kit Leung;Che-Yi Chu;Kao-Shuh Chuangen
dc.subject.keyword陰離子交換膜,析氫反應,陰離子交換膜水電解反應槽,嵌段共聚高分子,雙環戊二烯,zh_TW
dc.subject.keywordAnion exchange membranes,hydrogen evolution,anion exchange membrane water electrolyzer,block copolymer,dicyclopentadiene,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202504067-
dc.rights.note未授權-
dc.date.accepted2025-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
8.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved