Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99526
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王弘毅zh_TW
dc.contributor.advisorHurng-Yi Wangen
dc.contributor.author游宗翰zh_TW
dc.contributor.authorTsung-Han Yuen
dc.date.accessioned2025-09-10T16:33:41Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-09-
dc.identifier.citation1. 王子元 and 黃世彬, 多出一塊的生態拼圖: 日本溪哥入侵淡水河的啟示. 清流雙月刊, 2020(5): p. 65-70.
2. Liao, N.-L., S.-P. Huang, and T.-Y. Wang, Interspecific mating behavior between introduced Zacco platypus and native Opsariichthys evolans in Taiwan. Zoological Studies, 2020. 59: p. e6.
3. 陳義雄, 臺灣淡水魚類原色圖鑑. Vol. 1. 2005: 水產出版社.
4. Jordan, D.S., Notes on a collection of fishes from the island of Formosa. Vol. 25. 1902: US Government Printing Office.
5. Kitanishi, S., et al., Phylogeography of Opsariichthys platypus in Japan based on mitochondrial DNA sequences. Ichthyological Research, 2016. 63: p. 506-518.
6. 馬國欽, 台灣鱲屬魚類 (鲤目: 鲤科) 之系統分類, 族群遺傳結構及生物親緣地理研究. 國立臺灣大學動物科學技術學系學位論文, 2006. 2006: p. 1-114.
7. Bian, C., et al., Genomics comparisons of three chromosome-level mudskipper genome assemblies reveal molecular clues for water-to-land evolution and adaptation. Journal of Advanced Research, 2024. 58: p. 93-104.
8. Jeggo, P. and M. Lobrich, DNA double-strand breaks: their cellular and clinical impact? Oncogene, 2007. 26(56): p. 7717-7720.
9. Barra, V. and D. Fachinetti, The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat Commun, 2018. 9(1): p. 4340.
10. Marcais, G. and C. Kingsford, A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 2011. 27(6): p. 764-70.
11. Kolmogorov, M., et al., metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods, 2020. 17(11): p. 1103-1110.
12. Dominik R. Laetsch, M.L.B., BlobTools: Interrogation of genome assemblies. F1000Research, 2017.
13. Boratyn, G.M., et al., BLAST: a more efficient report with usability improvements. Nucleic Acids Res, 2013. 41(Web Server issue): p. W29-33.
14. Sayers, E.W., et al., Database resources of the national center for biotechnology information. Nucleic Acids Res, 2022. 50(D1): p. D20-D26.
15. Li, H., Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997, 2013.
16. Zimin, A.V., et al., The MaSuRCA genome assembler. Bioinformatics, 2013. 29(21): p. 2669-77.
17. Zimin, A.V. and S.L. Salzberg, The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput Biol, 2020. 16(6): p. e1007981.
18. Durand, N.C., et al., Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Syst, 2016. 3(1): p. 95-8.
19. Dudchenko, O., et al., De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science, 2017. 356(6333): p. 92-95.
20. Dierckxsens, N., P. Mardulyn, and G. Smits, NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res, 2017. 45(4): p. e18.
21. Simao, F.A., et al., BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 2015. 31(19): p. 3210-2.
22. Manni, M., et al., BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol Biol Evol, 2021. 38(10): p. 4647-4654.
23. Nishimura, O., Y. Hara, and S. Kuraku, gVolante for standardizing completeness assessment of genome and transcriptome assemblies. Bioinformatics, 2017. 33(22): p. 3635-3637.
24. Steenwyk, J.L., et al., BioKIT: a versatile toolkit for processing and analyzing diverse types of sequence data. Genetics, 2022. 221(3).
25. Flynn, J.M., et al., RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A, 2020. 117(17): p. 9451-9457.
26. Bao, Z. and S.R. Eddy, Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res, 2002. 12(8): p. 1269-76.
27. Price, A.L., N.C. Jones, and P.A. Pevzner, De novo identification of repeat families in large genomes. Bioinformatics, 2005. 21 Suppl 1: p. i351-8.
28. Xu, Z. and H. Wang, LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res, 2007. 35(Web Server issue): p. W265-8.
29. Ou, S. and N. Jiang, LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons. Plant Physiol, 2018. 176(2): p. 1410-1422.
30. Ou, S. and N. Jiang, LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long terminal repeat retrotransposons. Mob DNA, 2019. 10: p. 48.
31. Shao, F., et al., FishTEDB: a collective database of transposable elements identified in the complete genomes of fish. Database (Oxford), 2018. 2018.
32. Storer, J., et al., The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob DNA, 2021. 12(1): p. 2.
33. Bao, W., K.K. Kojima, and O. Kohany, Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA, 2015. 6: p. 11.
34. Smit, AFA, Hubley, R & Green, P. RepeatMasker Open-4.0. 2013-2015 <http://www.repeatmasker.org>.
35. Lin, L., et al., Transposable elements impact the population divergence of rice blast fungus Magnaporthe oryzae. Mbio, 2024. 15(5): p. e00086-24.
36. Bruna, T., et al., BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom Bioinform, 2021. 3(1): p. lqaa108.
37. Bruna, T., A. Lomsadze, and M. Borodovsky, A new gene finding tool GeneMark-ETP significantly improves the accuracy of automatic annotation of large eukaryotic genomes. bioRxiv, 2024.
38. Stanke, M., et al., Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics, 2008. 24(5): p. 637-44.
39. Kim, D., B. Langmead, and S.L. Salzberg, HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015. 12(4): p. 357-60.
40. Bruna, T., A. Lomsadze, and M. Borodovsky, GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR Genom Bioinform, 2020. 2(2): p. lqaa026.
41. Gabriel, L., et al., TSEBRA: transcript selector for BRAKER. BMC Bioinformatics, 2021. 22(1): p. 566.
42. Jones, P., et al., InterProScan 5: genome-scale protein function classification. Bioinformatics, 2014. 30(9): p. 1236-40.
43. Paysan-Lafosse, T., et al., InterPro in 2022. Nucleic Acids Res, 2023. 51(D1): p. D418-D427.
44. Cantalapiedra, C.P., et al., eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol, 2021. 38(12): p. 5825-5829.
45. Huerta-Cepas, J., et al., eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res, 2019. 47(D1): p. D309-D314.
46. Gotz, S., et al., High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res, 2008. 36(10): p. 3420-35.
47. Moriya, Y., et al., KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res, 2007. 35(Web Server issue): p. W182-5.
48. Kanehisa, M. and S. Goto, KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000. 28(1): p. 27-30.
49. Danecek, P., et al., Twelve years of SAMtools and BCFtools. Gigascience, 2021. 10(2).
50. Marcais, G., et al., MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol, 2018. 14(1): p. e1005944.
51. Dainat J. AGAT: Another Gff Analysis Toolkit to handle annotations in any GTF/GFF format. (Version v1.2.1). Zenodo. https://www.doi.org/10.5281/zenodo.3552717.
52. Emms, D.M. and S. Kelly, OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol, 2019. 20(1): p. 238.
53. Ranwez, V., et al., MACSE v2: Toolkit for the Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons. Mol Biol Evol, 2018. 35(10): p. 2582-2584.
54. Nguyen, L.T., et al., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 2015. 32(1): p. 268-74.
55. Wang, Y., et al., MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012. 40(7): p. e49.
56. Farrer, R.A., Synima: a Synteny imaging tool for annotated genome assemblies. BMC bioinformatics, 2017. 18: p. 1-4.
57. Danecek, P., et al., The variant call format and VCFtools. Bioinformatics, 2011. 27(15): p. 2156-8.
58. Browning, B.L., et al., Fast two-stage phasing of large-scale sequence data. Am J Hum Genet, 2021. 108(10): p. 1880-1890.
59. Browning, B.L., Y. Zhou, and S.R. Browning, A One-Penny Imputed Genome from Next-Generation Reference Panels. Am J Hum Genet, 2018. 103(3): p. 338-348.
60. Chan, A.H., P.A. Jenkins, and Y.S. Song, Genome-wide fine-scale recombination rate variation in Drosophila melanogaster. PLoS Genet, 2012. 8(12): p. e1003090.
61. Mendes, F.K., et al., CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics, 2021. 36(22-23): p. 5516-5518.
62. Yang, Z., PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007. 24(8): p. 1586-91.
63. Virtanen, P., et al., SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods, 2020. 17(3): p. 261-272.
64. Cook, D.E. and E.C. Andersen, VCF-kit: assorted utilities for the variant call format. Bioinformatics, 2017. 33(10): p. 1581-1582.
65. Pavlidis, P., et al., SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol Biol Evol, 2013. 30(9): p. 2224-34.
66. Carlson M, P.H., AnnotationForge: Tools for building SQLite-based annotation data packages. 2024.
67. Wu, T., et al., clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb), 2021. 2(3): p. 100141.
68. Ayad, L.A. and S.P. Pissis, MARS: improving multiple circular sequence alignment using refined sequences. BMC Genomics, 2017. 18(1): p. 86.
69. Kumar, S., et al., MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol, 2018. 35(6): p. 1547-1549.
70. Chang, C.C., et al., Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 2015. 4: p. 7.
71. Jombart, T., adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 2008. 24(11): p. 1403-5.
72. Alexander, D.H., J. Novembre, and K. Lange, Fast model-based estimation of ancestry in unrelated individuals. Genome Res, 2009. 19(9): p. 1655-64.
73. Yang, X., et al., Chromosome-level genome assembly of Triplophysa tibetana, a fish adapted to the harsh high-altitude environment of the Tibetan Plateau. Mol Ecol Resour, 2019. 19(4): p. 1027-1036.
74. Howe, K., et al., The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013. 496(7446): p. 498-503.
75. Liu, H., et al., The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet. Gigascience, 2017. 6(7): p. 1-13.
76. Tai, J.-H., et al., Transposons accelerate chromosomal speciation by centromere expansion and chromosome fission. bioRxiv, 2025: p. 2025.02.13.638213.
77. Xu, X., et al., Chromosome-Level Assembly of the Chinese Hooksnout Carp (Opsariichthys bidens) Genome Using PacBio Sequencing and Hi-C Technology. Front Genet, 2021. 12: p. 788547.
78. Varadharajan, S., et al., A High-Quality Assembly of the Nine-Spined Stickleback (Pungitius pungitius) Genome. Genome Biol Evol, 2019. 11(11): p. 3291-3308.
79. Talbert, P.B. and S. Henikoff, What makes a centromere? Experimental Cell Research, 2020. 389(2).
80. Nambiar, M. and G.R. Smith, Repression of harmful meiotic recombination in centromeric regions. Seminars in Cell & Developmental Biology, 2016. 54: p. 188-197.
81. Melters, D.P., et al., Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biology, 2013. 14(1).
82. Levan, A., K. Fredga, and A.A. Sandberg, Nomenclature for centromeric position on chromosomes. 1964.
83. Reinar, W.B., et al., Teleost genomic repeat landscapes in light of diversification rates and ecology. Mob DNA, 2023. 14(1): p. 14.
84. Kent, T.V., J. Uzunović, and S.I. Wright, Coevolution between transposable elements and recombination. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017. 372(1736): p. 20160458.
85. Charlesworth, B. and C.H. Langley, The population genetics of Drosophila transposable elements. Annual review of genetics, 1989. 23(1): p. 251-287.
86. Klein, S.J. and R.J. O'Neill, Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res, 2018. 26(1-2): p. 5-23.
87. Steiner, F.A. and S. Henikoff, Diversity in the organization of centromeric chromatin. Curr Opin Genet Dev, 2015. 31: p. 28-35.
88. Kolnicki, R.L., Kinetochore reproduction in animal evolution: cell biological explanation of karyotypic fission theory. Proc Natl Acad Sci U S A, 2000. 97(17): p. 9493-7.
89. Huang, Y., S.K. Sahu, and X. Liu, Deciphering recent transposition patterns in plants through comparison of 811 genome assemblies. Plant Biotechnol J, 2025. 23(4): p. 1121-1132.
90. Freeman, L., L. Aragon-Alcaide, and A. Strunnikov, The condensin complex governs chromosome condensation and mitotic transmission of rDNA. The Journal of cell biology, 2000. 149(4): p. 811-824.
91. Pebernard, S., et al., Localization of Smc5/6 to centromeres and telomeres requires heterochromatin and SUMO, respectively. The EMBO Journal, 2008. 27(22): p. 3011-3023.
92. Torres-Rosell, J., et al., SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nat Cell Biol, 2005. 7(4): p. 412-9.
93. Fesquet, D., et al., CCDC69 maintains genome integrity by regulating KIF2C/MCAK depolymerase activity and the stability of the chromosomal passenger complex. Sci Rep, 2024. 14(1): p. 30401.
94. Zhu, S., et al., Kinesin Kif2C in regulation of DNA double strand break dynamics and repair. Elife, 2020. 9.
95. Phan, L.M. and A.H. Rezaeian, ATM: Main Features, Signaling Pathways, and Its Diverse Roles in DNA Damage Response, Tumor Suppression, and Cancer Development. Genes (Basel), 2021. 12(6).
96. Wandke, C., et al., Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis. J Cell Biol, 2012. 198(5): p. 847-63.
97. Thompson, A.F., et al., Pathogenic mutations in the chromokinesin KIF22 disrupt anaphase chromosome segregation. Elife, 2022. 11.
98. Ma, G.-C., et al., Mitochondrial phylogeny reveals the artificial introduction of the pale chub Zacco platypus (Cyprinidae) in Taiwan. Ichthyological Research, 2006. 53: p. 323-329.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99526-
dc.description.abstract平頷鱲(Zacco platypus)屬於鯉形目(Cypriniformes)鲴科(Xenocyprididae),是分布於中國東部、韓國和日本的溪魚,後被引進臺灣淡水河流域。本研究組裝的染色體層級平頷鱲基因體包含24條染色體,大小為847Mb,其中重複序列長466Mb (55.02%),共註釋了27,249個基因,完整BUSCO值為96.7%。
與具有39條染色體的馬口鱲(Opsariichthys bidens)比較後發現,24條染色體中有15條經歷了染色體斷裂(chromosome fission)。我們進一步檢測了重複序列在染色體上的分布,發現在這些斷裂區間中,LINE-2和LTR-Gypsy轉座子有明顯的增加,這在近期的轉座子上尤其明顯。斷裂後的染色體若缺乏著絲點可能導致染色體丟失(chromosome loss),進而影響個體的存活,因此我辨認了平頷鱲染色體中節的位置,並發現中節全都落在斷裂區間之間。此外,也發現重組率與近期的LINE-2和LTR-Gypsy轉座子間呈現負相關,顯示中節的低重組率可能也是導致轉座子能夠持續累積在相同區域的原因。
透過基因家族分析,我們發現與基因轉位或重組相關的功能在馬口魚族的擴張基因家族中呈現高度富集,可能與馬口魚族內的物種間有大量的染色體倒位和斷裂有關。此外,亦發現許多與細胞分裂過程染色體正確分離或DNA修復相關的關鍵基因(如smc4、smc5、kif2c、kif22及atm)可能受到正向選擇或選擇性清除,顯示染色體結構維持與穩定可能為平頷鱲演化過程中重要的選擇壓力。
我們也比較了來自中國、韓國、日本與臺灣的平頷鱲,並發現中國與韓國的平頷鱲具有較高的相似度,臺灣的族群則與日本的個體更為接近,本研究以全基因體的角度再次說明了臺灣平頷鱲族群的起源。
zh_TW
dc.description.abstractZacco platypus, a freshwater fish of the family Xenocyprididae, is native to eastern China, Korea, and Japan, and was later introduced into the Tamsui River basin in Taiwan. In this study, we present a chromosome-level genome assembly of Z. platypus, comprising 24 chromosomes with a total length of 847 Mb and repetitive elements constitute 55.02% of it. A total of 27,249 genes were annotated, with a BUSCO completeness of 96.7%.
Comparative analysis with Opsariichthys bidens, a related species with 39 chromosomes, revealed that 15 out of the 24 chromosomes in Z. platypus have undergone chromosome fission events. Distribution of repetitive elements showed a notable enrichment of LINE-2 and LTR-Gypsy retrotransposon in the breaking regions, particularly among recently active transposons. Since chromosome fission may lead to chromosome lost, potentially affecting viability, we identified the positions of centromeres in Z. platypus and found that all centromeres are located within breaking regions. In addition, we observed a negative correlation between recombination rate and the abundance of recently active LINE-2 and LTR-Gypsy elements, suggesting that low recombination rates around centromeres may facilitate the accumulation of transposons in these regions.
Gene family analysis revealed that functions related to transposition and recombination are enriched in expanded gene families within the Opsariichthyini lineage, potentially explaining the extensive chromosomal inversions and fissions observed in this group. We also identified several key genes involved in chromosome segregation and DNA repair (e.g., smc4, smc5, kif2c, kif22, and atm) as likely targets of positive selection or selective sweep, indicating that the maintenance and stability of chromosomal structures may represent important selective pressures during the evolution of Z. platypus.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:33:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:33:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目次 v
表次 vii
圖次 viii
第一章 前言 1
第二章 材料與方法 3
2.1 研究材料 3
2.1.1 DNA萃取、建庫與定序 3
2.1.2 RNA萃取、建庫與定序 3
2.1.3 Omni-C建庫與定序 4
2.1.4 族群重定序(Resequencing) 4
2.2 參考基因體組裝 4
2.3 基因體註釋 5
2.4 序列資料處理 7
2.5 比較基因體學(Comparative genomics) 7
2.6 重組率(Recombination rate)估算 8
2.7 基因家族分析 9
2.7.1 基因家族擴張分析 9
2.7.2 PAML正向選擇檢測 9
2.7.3 MK檢定(McDonald–Kreitman test) 10
2.7.4 選擇性清除檢測(Selective sweep detection) 10
2.7.5 基因富集分析 11
2.8 族群遺傳分析 11
第三章 結果 13
3.1 平頷鱲基因體概述 13
3.2 比較基因體學 14
3.3 重複序列分布與染色體核型分析(Karyotyping) 14
3.4 基因分析 15
3.4.1 基因家族擴張分析 15
3.4.2 正向選擇檢測 15
3.5 族群遺傳分析 16
第四章 討論 18
4.1 平頷鱲基因體 18
4.2 中節與染色體斷裂 18
4.3 基因功能分析 19
4.4 平頷鱲之族群結構 21
第五章 結論 22
第六章 參考文獻 23
表 28
圖 43
-
dc.language.isozh_TW-
dc.subject鲴科zh_TW
dc.subject平頷鱲zh_TW
dc.subject染色體斷裂zh_TW
dc.subject基因體組裝zh_TW
dc.subject比較基因體學zh_TW
dc.subjectcomparative genomicsen
dc.subjectchromosome fissionen
dc.subjectgenome assemblyen
dc.subjectXenocyprididaeen
dc.subjectZacco platypusen
dc.title平頷鱲基因體組裝與染色體演化分析zh_TW
dc.titleChromosome-level genome assembly of Zacco platypus reveals insights into chromosomal evolutionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor王子元zh_TW
dc.contributor.coadvisorTzi-Yuan Wangen
dc.contributor.oralexamcommittee廖德裕;李承叡zh_TW
dc.contributor.oralexamcommitteeTe-Yu Liao;Cheng- Ruei Leeen
dc.subject.keyword平頷鱲,鲴科,基因體組裝,染色體斷裂,比較基因體學,zh_TW
dc.subject.keywordZacco platypus,Xenocyprididae,genome assembly,chromosome fission,comparative genomics,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202501662-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-11-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
dc.date.embargo-lift2026-07-08-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved