請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99494完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳時欣 | zh_TW |
| dc.contributor.advisor | Shih Hsin Chen | en |
| dc.contributor.author | 黃閔裕 | zh_TW |
| dc.contributor.author | Min-Yu Huang | en |
| dc.date.accessioned | 2025-09-10T16:27:39Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-16 | - |
| dc.identifier.citation | 吳沛文 (2023)。皮克林乳液結合水膠製備凍融穩定性脂肪模擬物。國立臺灣大學食品科技所碩士論文。臺北市。
潘文涵 (2022)。國民營養健康狀況變遷調查。衛生福利部國民健康署。臺北市。 農業部 (2023)。糧食供需年報。農業部。臺北市。 Adelmann, H.; Binks, B. P.; Mezzenga, R. Oil powders and gels from particle-stabilized emulsions. Langmuir 2012, 28 (3), 1694–1697. https://doi.org/10.1021/la204811c Alejandre, M.; Astiasarán, I.; Ansorena, D.; Barbut, S. Using canola oil hydrogels and organogels to reduce saturated animal fat in meat batters. Food Research International 2019, 122, 129–136. https://doi.org/10.1016/j.foodres.2019.03.056 Alharbi. G, G.; Abdulhamid, M. A. Optimization of water/oil emulsion preparation: Impact of time, speed, and homogenizer type on droplet size and dehydration efficiency. Chemosphere 2023, 335, 139136. https://doi.org/10.1016/j.chemosphere.2023.139136 Anandharamakrishnan, C.; Ishwarya, S. P. Spray drying techniques for food ingredient encapsulation. Spray Drying Techniques for Food Ingredient Encapsulation 2015, 1–294. https://doi.org/10.1002/9781118863985 Arpagaus, C.; Schwartzbach, H. Scale-up from the büchi mini spray dryer b-290 to the niro mobile minor, best@ buchi Information Bulletin. Number 2008, 52, 2008. https://www.bcluae.com/upload/product/B-290_Scale-up_B-290_Niro_MOBILE_MINOR_en_01.pdf Arslan, A.; Alibaş, İ. Assessing the effects of different drying methods and minimal processing on the sustainability of the organic food quality. Innovative Food Science & Emerging Technologies 2024, 94, 103681. https://doi.org/10.1016/j.ifset.2024.103681 Arumugham, T.; Krishnamoorthy, R.; AlYammahi, J.; Hasan, S. W.; Banat, F. Spray dried date fruit extract with a maltodextrin/gum arabic binary blend carrier agent system: Process optimization and product quality. International Journal of Biological Macromolecules 2023, 238, 124340. https://doi.org/10.1016/j.ijbiomac.2023.124340 Banožić, M.; Krzywonos, M.; Aladić, K.; Pińkowska, H.; Mucha, I.; Złocińska, A.; Jokić, S. Physicochemical, structural characterization and evaluation of encapsulated hesperidin from natural sources: Comparison of two encapsulation techniques; spray drying and freeze drying. Journal of Drug Delivery Science and Technology 2023, 90, 105098. https://doi.org/10.1016/j.jddst.2023.105098 Barbosa-Cánovas, G.; Ortega-Rivas, E.; Juliano, P.; Yan, H. Food powders: Physical properties, processing, and functionality (Vol. 86). New York: Kluwer Academic/ Plenum Publishers 2005. https://doi.org/10.1007/0-387-27613-0 Barra, P. A.; Márquez, K.; Gil-Castell, O.; Mujica, J.; Ribes-Greus, A.; Faccini, M. Spray-drying performance and thermal stability of l-ascorbic acid microencapsulated with sodium alginate and gum arabic. Molecules 2019, 24 (16), 2872. https://doi.org/10.3390/molecules24162872 Benetti, J. V. M.; do Prado Silva, J. T.; Nicoletti, V. R. SPI microgels applied to pickering stabilization of O/W emulsions by ultrasound and high-pressure homogenization: Rheology and spray drying. Food Research International 2019, 122, 383–391. https://doi.org/10.1016/j.foodres.2019.04.020 Boel, E.; Koekoekx, R.; Dedroog, S.; Babkin, I.; Vetrano, M. R.; Clasen, C.; Van den Mooter, G. Unraveling particle formation: From single droplet drying to spray drying and electrospraying. Pharmaceutics 2020, 12 (7). https://doi.org/10.3390/pharmaceutics12070625 Caldas-Abril, M.; Bauer-Estrada, K.; Gallardo-Salas, M.; Bonilla-Bravo, V.; Pacheco-Pappenheim, S.; Quintanilla-Carvajal, M. X. Preparation of edible oleogels via encapsulation of high-oleic palm oil using spray drying: Structural characterization and their application as fat substitutes in ice cream. Food Hydrocolloids for Health 2025, 7, 100207. https://doi.org/10.1016/j.fhfh.2025.100207. Cal, K.; Sollohub, K. Spray drying technique. I: Hardware and process parameters. Journal of Pharmaceutical Sciences 2010, 99 (2), 575–586. https://doi.org/10.1002/jps.21886 Carrillo-Zurita, R. J.; Pierre, K.; Culler, M.; Rousseau, D. Microstructure and rheology of cellulose bead-filled whey protein isolate oleogels. Food Chemistry 2025, 470, 142563. https://doi.org/10.1016/j.foodchem.2024.142563 Chen, Q.; Chen, Z.; Zhang, J.; Wang, Q.; Wang, Y. Application of lipids and their potential replacers in plant-based meat analogs. Trends in Food Science & Technology 2023, 138, 645–654. https://doi.org/10.1016/j.tifs.2023.07.007 Chen, X.-W.; Yang, X.-Q. Characterization of orange oil powders and oleogels fabricated from emulsion templates stabilized solely by a natural triterpene saponin. Journal of Agricultural and Food Chemistry 2019, 67 (9), 2637–2646. https://doi.org/10.1021/acs.jafc.8b04588 Chen, Y.-B.; Zhu, X.-F.; Liu, T.-X.; Lin, W.-F.; Tang, C.-H.; Liu, R. Improving freeze-thaw stability of soy nanoparticle-stabilized emulsions through increasing particle size and surface hydrophobicity. Food Hydrocolloids 2019, 87, 404–412. https://doi.org/10.1016/j.foodhyd.2018.08.020 Clements, D. Food Emulsions : Principles, practices and techniques. CRC press 2005.https://doi.org/10.1201/9781420039436 Consoli, L.; Hubinger, M. D.; Dragosavac, M. M. Encapsulation of resveratrol via spray-drying of oil-in-water emulsions produced by ultrasound or membrane emulsification. Journal of Food Engineering 2023, 350, 111488. https://doi.org/10.1016/j.jfoodeng.2023.111488 Costa, C.; Medronho, B.; Filipe, A.; Mira, I.; Lindman, B.; Edlund, H.; Norgren, M. Emulsion formation and stabilization by biomolecules: The leading role of cellulose. Polymers 2019, 11 (10), 1570. https://doi.org/10.3390/polym11101570 Cui, B.; Mao, Y.; Liang, H.; Li, Y.; Li, J.; Ye, S.; Chen, W.; Li, B. Properties of soybean protein isolate/curdlan based emulsion gel for fat analogue: Comparison with pork backfat. International Journal of Biological Macromolecules 2022, 206, 481–488. https://doi.org/10.1016/j.ijbiomac.2022.02.157 Cui, T.; Chen, C.; Jia, A.; Li, D.; Shi, Y.; Zhang, M.; Bai, X.; Liu, X.; Liu, C. Characterization and human microfold cell assay of fish oil microcapsules: Effect of spray drying and freeze-drying using konjac glucomannan (KGM)-soybean protein isolate (SPI) as wall materials. Journal of Functional Foods 2021, 83, 104542. https://doi.org/10.1016/j.jff.2021.104542 Cui, Y.; Jin, R.; Zhang, Y.; Yu, M.; Zhou, Y.; Wang, L. Q. Cellulose nanocrystal-enhanced thermal-sensitive hydrogels of block copolymers for 3D bioprinting. Int J Bioprint 2021, 7 (4), 397. https://doi.org/10.18063/ijb.v7i4.397 Das, A. K.; Nanda, P. K.; Madane, P.; Biswas, S.; Das, A.; Zhang, W.; Lorenzo, J. M. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends in Food Science & Technology 2020, 99, 323–336. https://doi.org/10.1016/j.tifs.2020.03.010 de Barros Fernandes, R. V.; Marques, G. R.; Borges, S. V.; Botrel, D. A. Effect of solids content and oil load on the microencapsulation process of rosemary essential oil. Industrial Crops and Products 2014, 58, 173–181. https://doi.org/10.1016/j.indcrop.2014.04.025 Demirkesen, I.; Mert, B. Recent developments of oleogel utilizations in bakery products. Crit Rev Food Sci Nutr 2020, 60 (14), 2460–2479. https://doi.org/10.1080/10408398.2019.1649243 Di Giorgio, L.; Salgado, P. R.; Mauri, A. N. Nanocomposite systems based on soy proteins and cellulose nanocrystals to encapsulate fish oil by emulsification and spray-drying. Cellulose 2023, 30 (17), 10971–10982. https://doi.org/10.1007/s10570-023-05524-x Dieplinger, J.; Isabel Afonso Urich, A.; Mohsenzada, N.; Pinto, J. T.; Dekner, M.; Paudel, A. Influence of L-leucine content on the aerosolization stability of spray-dried protein dry powder inhalation (DPI). International Journal of Pharmaceutics 2024, 666, 124822. https://doi.org/10.1016/j.ijpharm.2024.124822 Ding, L.; Zhao, S.; Liu, L.; Wang, W.; Yao, C.; Chen, G. Characteristics of emulsion preparation in an ultrasonic microreactor: Cavitation, droplet size and energy efficiency. Chemical Engineering Journal 2024, 484, 149462. https://doi.org/10.1016/j.cej.2024.149462 Eedara, B. B.; Alabsi, W.; Encinas, D.; Polt, R.; Mansour, H. Spray-dried inhalable powder formulations of therapeutic proteins and peptides. AAPS PharmSciTech 2021, 22. https://doi.org/10.1208/s12249-021-02043-5 Fernandes, R. V. D.; Borges, S. V.; Botrel, D. A. Influence of spray drying operating conditions on microencapsulated rosemary essential oil properties. Food Science and Technology 2013, 33, 171–178. https://doi.org/10.1590/S0101-20612013000500025 Ferreira, S. L. C.; Silva Junior, M. M.; Felix, C. S. A.; da Silva, D. L. F.; Santos, A. S.; Santos Neto, J. H.; de Souza, C. T.; Cruz Junior, R. A.; Souza, A. S. Multivariate optimization techniques in food analysis – A review. Food Chemistry 2019, 273, 3–8. https://doi.org/10.1016/j.foodchem.2017.11.114 Focaroli, S.; Mah, P. T.; Hastedt, J. E.; Gitlin, I.; Oscarson, S.; Fahy, J. V.; Healy, A. M. A Design of Experiment (DoE) approach to optimise spray drying process conditions for the production of trehalose/leucine formulations with application in pulmonary delivery. International Journal of Pharmaceutics 2019, 562, 228–240. https://doi.org/10.1016/j.ijpharm.2019.03.004 Freitas, M. L. F.; Albano, K. M.; Telis, V. R. N. Characterization of biopolymers and soy protein isolate-high-methoxyl pectin complex. Polímeros 2017, 27. https://doi.org/10.1590/0104-1428.2404 Fu, H.; Li, J.; Yang, X.; Swallah, M. S.; Gong, H.; Ji, L.; Meng, X.; Lyu, B.; Yu, H. The heated-induced gelation of soy protein isolate at subunit level: Exploring the impacts of α and α′ subunits on SPI gelation based on natural hybrid breeding varieties. Food Hydrocolloids 2023, 134, 108008. https://doi.org/10.1016/j.foodhyd.2022.108008 Fuchs, M.; Turchiuli, C.; Bohin, M.; Cuvelier, M. E.; Ordonnaud, C.; Peyrat-Maillard, M. N.; Dumoulin, E. Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. Journal of Food Engineering 2006, 75 (1), 27–35. https://doi.org/10.1016/j.jfoodeng.2005.03.047 Funami, T.; Funami, M.; Yada, H.; Nakao, Y. Rheological and thermal studies on gelling characteristics of curdlan. Food Hydrocolloids 1999, 13 (4), 317–324. https://doi.org/10.1016/S0268-005X(99)00014-4 Gao, Z.; Zhang, C.; Li, Y.; Wu, Y.; Deng, Q.; Ni, X. Edible oleogels fabricated by dispersing cellulose particles in oil phase: Effects from the water addition. Food Hydrocolloids 2023, 134, 108040. https://doi.org/10.1016/j.foodhyd.2022.108040 Gawałek, J. Effect of spray dryer scale size on the properties of dried beetroot juice. Molecules 2021, 26 (21), 6700. https://doi.org/10.3390/molecules26216700 Gengatharan, A.; Mohamad, N. V.; Zahari, C. N. M. C.; Vijayakumar, R. Oleogels: Innovative formulations as fat substitutes and bioactive delivery systems in food and beyond. Food Structure 2023, 38. https://doi.org/10.1016/j.foostr.2023.100356 Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 2007, 40 (9), 1107–1121. https://doi.org/10.1016/j.foodres.2007.07.004 Gorle, A. P.; Chopade, S. S. Liquisolid technology: Preparation, characterization and applications. Journal of Drug Delivery and Therapeutics 2020, 10 (3-s), 295–307. https://doi.org/10.22270/jddt.v10i3-s.4067 Gravelle, A. J.; Marangoni, A. G. (2018). Chapter one - ethylcellulose oleogels: Structure, functionality, and food applications. In F. Toldrá (Ed.), Advances in Food and Nutrition Research (Vol. 84, pp. 1–56). Academic Press. https://doi.org/10.1016/bs.afnr.2018.01.002 Günal-Köroglu, D.; Subasi, B. G.; Saricaoglu, B.; Karabulut, G.; Capanoglu, E. Exploring the frontier of bioactive oleogels in recent research. Trends in Food Science & Technology 2024, 151. https://doi.org/10.1016/j.tifs.2024.104613 Guo, J.; Cui, L.; Meng, Z. Oleogels/emulsion gels as novel saturated fat replacers in meat products: A review. Food Hydrocolloids 2023, 137, 108313. https://doi.org/10.1016/j.foodhyd.2022.108313 Hirai, A.; Inui, O.; Horii, F.; Tsuji, M. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 2009, 25 (1), 497–502. https://doi.org/10.1021/la802947m Hou, X.; Liu, X.; Zhao, G.; Zhang, B.; Jiang, F.; Qiao, D. Self-assembly of curdlan molecules for the formation of thermally induced gels. Food Hydrocolloids 2024, 156, 110335. https://doi.org/10.1016/j.foodhyd.2024.110335 Hsu, J. L.; Sung, C.-C.; Tseng, J.-T. Willingness-to-pay for ready-to-eat clean label food products at convenient stores. Future Foods 2023, 7. https://doi.org/10.1016/j.fufo.2023.100237 Hu, W.; Xu, X.; Wang, X.; Ma, T.; Li, Y.; Qin, X.; Wei, J.; Chen, S. Effect of curdlan on the gel properties and interactions of whey protein isolate gels. International Journal of Biological Macromolecules 2024, 277, 134161. https://doi.org/10.1016/j.ijbiomac.2024.134161 Hu, Y.; Hu, Y.; Wu, H.; Bao, L.; Shi, X.; Wu, C.; Cui, B.; Liang, H.; Zhou, B. Insight into the relationship of spray-drying conditions with the physicochemical and gelation properties of egg white protein. Foods 2025, 14 (9), 1556. https://doi.org/10.3390/foods14091556 Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Resistant maltodextrin’s effect on the physicochemical and structure properties of spray dried orange juice powders. European Food Research and Technology 2021, 247 (5), 1125–1132. https://doi.org/10.1007/s00217-021-03693-2 Janiszewska, E.; Jedlińska, A.; Witrowa-Rajchert, D. Effect of homogenization parameters on selected physical properties of lemon aroma powder. Food and Bioproducts Processing 2015, 94, 405–413. https://doi.org/10.1016/j.fbp.2014.05.006 Jeoh, T.; Wong, D. E.; Strobel, S. A.; Hudnall, K.; Pereira, N. R.; Williams, K. A.; Arbaugh, B. M.; Cunniffe, J. C.; Scher, H. B. How alginate properties influence in situ internal gelation in crosslinked alginate microcapsules (CLAMs) formed by spray drying. Plos One 2021, 16 (2). https://doi.org/10.1371/journal.pone.0247171 Jiang, Q.; Xu, P.; Xu, J.; Hou, M.; Liu, Q.; Dai, B. Preparation and evaluation of composite hydrogel for reducing the leakage rate of lost circulation. Polymers 2023, 15(21), 4218. https://doi.org/10.3390/polym15214218 Jiang, Y.; Liu, L.; Wang, B.; Yang, X.; Chen, Z.; Zhong, Y.; Zhang, L.; Mao, Z.; Xu, H.; Sui, X. Polysaccharide-based edible emulsion gel stabilized by regenerated cellulose. Food Hydrocolloids 2019, 91, 232–237. https://doi.org/10.1016/j.foodhyd.2019.01.028 Kalajahi, S. E. M.; Ghandiha, S. Optimization of spray drying parameters for encapsulation of Nettle (Urtica dioica L.) extract. Lwt 2022, 158, 113149. https://doi.org/10.1016/j.lwt.2022.113149 Kaur, R.; Sharma, M. Cereal polysaccharides as sources of functional ingredient for reformulation of meat products: A review. Journal of Functional Foods 2019, 62. https://doi.org/10.1016/j.jff.2019.103527 Kent, J.; Mcleod, J. Spray dryer optimization. Powder Bulk Solids 2007, https://www.powderbulksolids.com/drying/spray-dryer-optimization Konno, A.; Harada, T. Thermal properties of curdlan in aqueous suspension and curdlan gel. Food Hydrocolloids 1991, 5 (5), 427-434. https://doi.org/10.1016/S0268-005X(09)80101-X. Kumar, S.; Xu, X.; Gokhale, R.; Burgess, D. J. Formulation parameters of crystalline nanosuspensions on spray drying processing: A DoE approach. International Journal of Pharmaceutics 2014, 464 (1), 34–45. https://doi.org/10.1016/j.ijpharm.2014.01.013 Lai, H.; Zhan, F.; Wei, Y.; Zongo, A. W. S.; Jiang, S.; Sui, H.; Li, B.; Li, J. Influence of particle size and ionic strength on the freeze-thaw stability of emulsions stabilized by whey protein isolate. Food Science and Human Wellness 2022, 11 (4), 922–932.https://doi.org/10.1016/j.fshw.2022.03.018 Lavanya, M. N.; Kathiravan, T.; Moses, J. A.; Anandharamakrishnan, C. Influence of spray-drying conditions on microencapsulation of fish oil and chia oil. Drying Technology 2020, 38 (3), 279–292. https://doi.org/10.1080/07373937.2018.1553181 Lee, E.; Kim, J.; Kim, E.; Choi, Y. J.; Hahn, J. The effect of curdlan and the resting process on the quality of the dried whole tofu noodles. Food Sci Biotechnol 2022, 31 (1), 61–68. https://doi.org/10.1007/s10068-021-01020-9 Lee, S. H.; Heng, D.; Ng, W. K.; Chan, H.-K.; Tan, R. B. H. Nano spray drying: A novel method for preparing protein nanoparticles for protein therapy. International Journal of Pharmaceutics 2011, 403 (1), 192–200. https://doi.org/10.1016/j.ijpharm.2010.10.012 Lefroy, K. S.; Murray, B. S.; Ries, M. E. Advances in the use of microgels as emulsion stabilisers and as a strategy for cellulose functionalisation. Cellulose 2021, 28 (2), 647–670. https://doi.org/10.1007/s10570-020-03595-8 Li, K.-Y.; Yu, W.-K.; Xiao, J.-X.; Huang, G.-Q. Addition of gelatin increased the spray drying performance of the Pickering emulsion stabilized by the ovalbumin – gum Arabic electrostatic complex. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 671, 131640. https://doi.org/10.1016/j.colsurfa.2023.131640 Li, K.-Y.; Zhou, Y.; Huang, G.-Q.; Li, X.-D.; Xiao, J.-X. Preparation of powdered oil by spray drying the Pickering emulsion stabilized by ovalbumin – Gum Arabic polyelectrolyte complex. Food Chemistry 2022, 391, 133223. https://doi.org/10.1016/j.foodchem.2022.133223 Li, M.; Yang, R.; Feng, X.; Fan, X.; Liu, Y.; Xu, X.; Zhou, G.; Zhu, B.; Ullah, N.; Chen, L. Effects of low-frequency and high-intensity ultrasonic treatment combined with curdlan gels on the thermal gelling properties and structural properties of soy protein isolate. Food Hydrocolloids 2022, 127, 107506. https://doi.org/10.1016/j.foodhyd.2022.107506 Li, T.; Wan, B.; Jog, R.; Costa, A.; Burgess, D. J. Pectin microparticles for peptide delivery: Optimization of spray drying processing. International Journal of Pharmaceutics 2022, 613, 121384. https://doi.org/10.1016/j.ijpharm.2021.121384 Li, X.; Zou, Y.; Zhao, B.; Luo, J.; Li, J.; Sheng, J.; Tian, Y. Effects of drying method and oil type on edible polyunsaturated oleogels co-structured by hydroxylpropyl methyl cellulose and xanthan gum. International Journal of Biological Macromolecules 2024, 256, 128551. https://doi.org/10.1016/j.ijbiomac.2023.128551 Li, Y.; Zou, Y.; Que, F.; Zhang, H. Recent advances in fabrication of edible polymer oleogels for food applications. Current Opinion in Food Science 2022, 43, 114–119. https://doi.org/10.1016/j.cofs.2021.11.007 Li, Z.; Wu, Y.; Yang, H.; Cai, C.; Zhang, H.; Hashiguchi, K.; Takeno, K.; Lu, J. Effect of liquid viscosity on atomization in an internal-mixing twin-fluid atomizer. Fuel 2013, 103, 486–494. https://doi.org/10.1016/j.fuel.2012.06.097 Liang, W.; Chow, M. Y. T.; Chow, S. F.; Chan, H.-K.; Kwok, P. C. L.; Lam, J. K. W. Using two-fluid nozzle for spray freeze drying to produce porous powder formulation of naked siRNA for inhalation. International Journal of Pharmaceutics 2018, 552 (1), 67–75. https://doi.org/10.1016/j.ijpharm.2018.09.045 Liu, L.; Gao, Z.; Chen, G.; Yao, J.; Zhang, X.; Qiu, X.; Liu, L. A comprehensive review: Impact of oleogel application on food texture and sensory properties. Food Sci Nutr 2024, 12 (6), 3849–3862. https://doi.org/10.1002/fsn3.4110 Liu, S.; Sun, C.; Xue, Y.; Gao, Y. Impact of pH, freeze–thaw and thermal sterilization on physicochemical stability of walnut beverage emulsion. Food Chemistry 2016, 196, 475–485. https://doi.org/10.1016/j.foodchem.2015.09.061 Liu, X.; Yang, C.; Qin, J.; Li, J.; Li, J.; Chen, J. Challenges, process technologies, and potential synthetic biology opportunities for plant-based meat production. Lwt 2023, 184. https://doi.org/10.1016/j.lwt.2023.115109 Locali Pereira, A. R.; Gonçalves Cattelan, M.; Nicoletti, V. R. Microencapsulation of pink pepper essential oil: Properties of spray-dried pectin/SPI double-layer versus SPI single-layer stabilized emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 581, 123806. https://doi.org/10.1016/j.colsurfa.2019.123806 Lu, W.; Maidannyk, V.; Kelly, A. L.; Miao, S. Fabrication and characterization of highly re-dispersible dry emulsions. Food Hydrocolloids 2020, 102, 105617. https://doi.org/10.1016/j.foodhyd.2019.105617 Manzocco, L.; Valoppi, F.; Calligaris, S.; Andreatta, F.; Spilimbergo, S.; Nicoli, M. C. Exploitation of κ-carrageenan aerogels as template for edible oleogel preparation. Food Hydrocolloids 2017, 71, 68–75. https://doi.org/10.1016/j.foodhyd.2017.04.021 Manzoor, S.; Masoodi, F. A.; Naqash, F.; Rashid, R. Oleogels: Promising alternatives to solid fats for food applications. Food Hydrocolloids for Health 2022, 2. https://doi.org/10.1016/j.fhfh.2022.100058 Maskat, M.; Lung, C. K.; Momeny, E.; Khan, M. J.; Siddiqui, S. A. Temperature and feed rate effects properties of spray dried hibiscus sabdariffa powder. International Journal of Drug Development and Research 2014, 6, 28–34. https://www.ijddr.in/drug-development/temperature-and-feed-rate-effects-properties-of-spray-dried-hibiscussabdariffa-powder.pdf Maurício, A. C.; Domingos, J.; Santos, D.; Sencadas, V.; Gomes, P.; Fernandes, M. H. Spray drying: An overview. Biomaterials - Physics and Chemistry - New Edition 2017, 2, 9-35 https://doi.org/10.5772/intechopen.72247 Mezzenga, R.; Ulrich, S. Spray-dried oil powder with ultrahigh oil content. Langmuir 2010, 26 (22), 16658–16661. https://doi.org/10.1021/la103447n Miao, W.; Zhou, W.; McClements, D. J.; Zhang, Z.; Lin, Q.; Ji, H.; Jin, Z.; Sang, S.; Qiu, C. Oleogels derived from modified starch-gelatin-tannic acid aerogel templates: Fabrication, characterization and application. Food Hydrocolloids 2025, 162, 110903. https://doi.org/10.1016/j.foodhyd.2024.110903 Ming, L.; Wu, H.; Liu, A.; Naeem, A.; Dong, Z.; Fan, Q.; Zhang, G.; Liu, H.; Li, Z. Evolution and critical roles of particle properties in Pickering emulsion: A review. Journal of Molecular Liquids 2023, 388, 122775. https://doi.org/10.1016/j.molliq.2023.122775 Moser, P.; Locali-Pereira, A. R.; Nicoletti, V. R. Optimization of spray drying process of buriti oil-loaded bilayer emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 698, 134516. https://doi.org/10.1016/j.colsurfa.2024.134516 Müller, D.; Fimbinger, E.; Brand, C. Algorithm for the determination of the angle of repose in bulk material analysis. Powder Technology 2021, 383, 598–605. https://doi.org/10.1016/j.powtec.2021.01.010 Namira, Z. R.; Paramita, V.; Kusumayanti, H. The effect of rotational speed of homogenization on emulsion results obtained using soy lecithin emulsifier. Journal of Vocational Studies on Applied Research 2021, 3(1), 14-17. https://doi.org/10.14710/jvsar.v3i1.10916 Navidad-Murrieta, M. S.; Pérez-Larios, A.; Sanchéz-Burgos, J. A.; Ragazzo-Sánchez, J. A.; Luna-Bárcenas, G.; Sáyago-Ayerdi, S. G. Use of a taguchi design in hibiscus sabdariffa extracts encapsulated by spray-drying. Foods 2020, 9 (2), 128. https://doi.org/10.3390/foods9020128 Nurhadi, B.; Andoyo, R.; Indiarto, R. Study the properties of honey powder produced from spray drying and vacuum drying method. International Food Research Journal 2012, 19 (3), 907–912, Article. http://www.ifrj.upm.edu.my/19%20(03)%202012/(18)%20IFRJ%2019%20(03)%202012%20Bambang.pdf Pang, Z.; Tong, F.; Jiang, S.; Chen, C.; Liu, X. Particle characteristics and tribo-rheological properties of soy protein isolate (SPI) dispersions: Effect of heating and incorporation of flaxseed gum. International Journal of Biological Macromolecules 2023, 232, 123455.https://doi.org/10.1016/j.ijbiomac.2023.123455. Peng, Y. C.; Han, Y. S.; Gardner, D. J. Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood and Fiber Science 2012, 44 (4), 448–461. https://wfs.swst.org/index.php/wfs/article/view/902/902 Pérez-Reyes, M. E.; Tang, J.; Barbosa-Cánovas, G. V.; Zhu, M.-J. Influence of water activity and dry-heating time on egg white powders quality. Lwt 2021, 140, 110717. https://doi.org/10.1016/j.lwt.2020.110717 Perta-Crisan, S.; Ursachi, C. S.; Chereji, B. D.; Tolan, I.; Munteanu, F. D. Food-grade oleogels: Trends in analysis, characterization, and applicability. Gels 2023, 9 (5). https://doi.org/10.3390/gels9050386 Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360 (6392), 987–992. https://www.science.org/doi/10.1126/science.aaq0216 Pramanik, A. Problems and solutions in machining of titanium alloys. International Journal of Advanced Manufacturing Technology 2014, 70 (5-8), 919–928. https://doi.org/10.1007/s00170-013-5326-x Pratap-Singh, A.; Guo, Y.; Lara Ochoa, S.; Fathordoobady, F.; Singh, A. Optimal ultrasonication process time remains constant for a specific nanoemulsion size reduction system. Scientific Reports 2021, 11 (1), 9241. https://doi.org/10.1038/s41598-021-87642-9 Pugliese, A.; Cabassi, G.; Chiavaro, E.; Paciulli, M.; Carini, E.; Mucchetti, G. Physical characterization of whole and skim dried milk powders. J Food Sci Technol 2017, 54 (11), 3433–3442. https://doi.org/10.1007/s13197-017-2795-1 Qu, K.; Qiu, H.; Zhang, H.; Yin, X. Characterization of physically stable oleogels transporting active substances rich in resveratrol. Food Bioscience 2022, 49, 101830. https://doi.org/10.1016/j.fbio.2022.101830 Ramakrishnan, Y.; Adzahan, N. M.; Yusof, Y. A.; Muhammad, K. Effect of wall materials on the spray drying efficiency, powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technology 2018, 328, 406–414. https://doi.org/10.1016/j.powtec.2017.12.018 Ren, W.; Tian, G.; Zhao, S.; Yang, Y.; Gao, W.; Zhao, C.; Zhang, H.; Lian, Y.; Wang, F.; Du, H.; Xiao, H.; Zheng, J. Effects of spray-drying temperature on the physicochemical properties and polymethoxyflavone loading efficiency of citrus oil microcapsules. Lwt 2020, 133, 109954. https://doi.org/10.1016/j.lwt.2020.109954 Ritchie, H.; Roser, M. You want to reduce the carbon footprint of your food? Focus on what you eat, not whether your food is local. Our world in data 2023. https://ourworldindata.org/food-choice-vs-eating-local Sandhya, K.; Leena, M. M.; Moses, J. A.; Anandharamakrishnan, C. Edible oil to powder technologies: Concepts and advances. Food Bioscience 2023, 53, 102567. https://doi.org/10.1016/j.fbio.2023.102567 Santos, J. C. O.; Santos, I. M. G.; Conceiçăo, M. M.; Porto, S. L.; Trindade, M. F. S.; Souza, A. G.; Prasad, S.; Fernandes, V. J.; Araújo, A. S. Thermoanalytical, kinetic and rheological parameters of commercial edible vegetable oils. Journal of Thermal Analysis and Calorimetry 2004, 75 (2), 419–428. https://doi.org/10.1023/B:JTAN.0000027128.62480.db Sarabandi, K.; Akbarbaglu, Z.; Mazloomi, N.; Gharehbeglou, P.; Peighambardoust, S. H.; Jafari, S. M. Structural modification of poppy-pollen protein as a natural antioxidant, emulsifier and carrier in spray-drying of O/W-emulsion: Physicochemical and oxidative stabilization. International Journal of Biological Macromolecules 2023, 250, 126260. https://doi.org/10.1016/j.ijbiomac.2023.126260 Sarraf, M.; Naji-Tabasi, S.; Beig-Babaei, A.; Moros, J. E.; Carrillo, M. C. S.; Tenorio-Alfonso, A. Developing edible oleogels structure prepared with emulsion-template approach based on soluble biopolymer complex. Food Chemistry: X 2024, 24, 101917. https://doi.org/10.1016/j.fochx.2024.101917 Shahin, H. I.; Vinjamuri, B. P.; Mahmoud, A. A.; Shamma, R. N.; Mansour, S. M.; Ammar, H. O.; Ghorab, M. M.; Chougule, M. B.; Chablani, L. Design and evaluation of novel inhalable sildenafil citrate spray-dried microparticles for pulmonary arterial hypertension. Journal of Controlled Release 2019, 302, 126–139. https://doi.org/10.1016/j.jconrel.2019.03.029 Shen, H.; Yu, J.; Bai, J.; Liu, Y.; Ge, X.; Li, W.; Zheng, J. A new pre-gelatinized starch preparing by spray drying and electron beam irradiation of oat starch. Food Chemistry 2023, 398, 133938. https://doi.org/10.1016/j.foodchem.2022.133938 Shepard, K. B.; Adam, M. S.; Morgen, M. M.; Mudie, D. M.; Regan, D. T.; Baumann, J. M.; Vodak, D. T. Impact of process parameters on particle morphology and filament formation in spray dried Eudragit L100 polymer. Powder Technology 2020, 362, 221–230. https://doi.org/10.1016/j.powtec.2019.12.013 Shrivastava, A.; Tripathi, A. D.; Paul, V.; Chandra Rai, D. Optimization of spray drying parameters for custard apple (Annona squamosa L.) pulp powder development using response surface methodology (RSM) with improved physicochemical attributes and phytonutrients. Lwt 2021, 151, 112091. https://doi.org/10.1016/j.lwt.2021.112091 Siacor, F. D. C.; Lim, K. J. A.; Cabajar, A. A.; Lobarbio, C. F. Y.; Lacks, D. J.; Taboada, E. B. Physicochemical properties of spray-dried mango phenolic compounds extracts. Journal of Agriculture and Food Research 2020, 2, 100048. https://doi.org/10.1016/j.jafr.2020.100048 Silva, T. J.; Barrera-Arellano, D.; Ribeiro, A. P. B. Oleogel-based emulsions: Concepts, structuring agents, and applications in food. J Food Sci 2021, 86 (7), 2785–2801. https://doi.org/10.1111/1750-3841.15788 Singh, M.; Mohamed, A. Influence of gluten–soy protein blends on the quality of reduced carbohydrates cookies. LWT - Food Science and Technology 2007, 40 (2), 353–360. https://doi.org/10.1016/j.lwt.2005.09.013 Siraj, N.; Shabbir, M. A.; Ahmad, T.; Sajjad, A.; Khan, M. R.; Khan, M. I.; Butt, M. S. Organogelators as a saturated fat replacer for structuring edible oils. International Journal of Food Properties 2015, 18 (9), 1973–1989. https://doi.org/10.1080/10942912.2014.951891 Sosnik, A.; Seremeta, K. P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Advances in Colloid and Interface Science 2015, 223, 40–54. https://doi.org/10.1016/j.cis.2015.05.003 Sungsinchai, S.; Niamnuy, C.; Wattanapan, P.; Charoenchaitrakool, M.; Devahastin, S. Spray drying of non-chemically prepared nanofibrillated cellulose: Improving water redispersibility of the dried product. International Journal of Biological Macromolecules 2022, 207, 434–442. https://doi.org/10.1016/j.ijbiomac.2022.02.153 Tabatabaei, M.; Ebrahimi, B.; Rajaei, A.; Movahednejad, M. H.; Rastegari, H.; Taghavi, E.; Aghbashlo, M.; Gupta, V. K.; Lam, S. S. Producing submicron chitosan-stabilized oil Pickering emulsion powder by an electrostatic collector-equipped spray dryer. Carbohydrate Polymers 2022, 294, 119791. https://doi.org/10.1016/j.carbpol.2022.119791 Taha, A.; Ahmed, E.; Ismaiel, A.; Ashokkumar, M.; Xu, X.; Pan, S.; Hu, H. Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends in Food Science & Technology 2020, 105, 363–377. https://doi.org/10.1016/j.tifs.2020.09.024 Tan, S.; Zhong, C.; Langrish, T. Pre-gelation assisted spray drying of whey protein isolates (WPI) for microencapsulation and controlled release. Lwt 2020, 117, 108625. https://doi.org/10.1016/j.lwt.2019.108625 Tang, C.-H.; Li, X.-R. Microencapsulation properties of soy protein isolate: Influence of preheating and/or blending with lactose. Journal of Food Engineering 2013, 117 (3), 281–290. https://doi.org/10.1016/j.jfoodeng.2013.03.018 Tavernier, I.; Heyman, B.; Van der Meeren, P.; Ruyssen, T.; Dewettinck, K. Oil powders stabilized with soy protein used to prepare oil-in-fat dispersions. Journal of Food Engineering 2019, 244, 136–141. https://doi.org/10.1016/j.jfoodeng.2018.09.029 Tay, J. B. J.; Chua, X.; Ang, C.; Subramanian, G. S.; Tan, S. Y.; Lin, E. M. J.; Wu, W.-Y.; Goh, K. K. T.; Lim, K. Effects of spray-drying inlet temperature on the production of high-quality native rice starch. Processes 2021, 9 (9), 1557. https://doi.org/10.3390/pr9091557 Thakur, D.; Singh, A.; Prabhakar, P. K.; Meghwal, M.; Upadhyay, A. Optimization and characterization of soybean oil-carnauba wax oleogel. Lwt 2022, 157. https://doi.org/10.1016/j.lwt.2022.113108 Tippetts, M. Effect of Processing and Formulation Conditions on Physicochemical characteristics of food emulsions. All Graduate Theses and Dissertations 2008, 147. https://doi.org/10.26076/1b1a-ba91 Tonon, R. V.; Brabet, C.; Hubinger, M. D. Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering 2008, 88 (3), 411–418. https://doi.org/10.1016/j.jfoodeng.2008.02.029 Tontul, I.; Topuz, A. Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology 2017, 63, 91–102. https://doi.org/10.1016/j.tifs.2017.03.009 Truong, T.; Bansal, N.; Sharma, R.; Palmer, M.; Bhandari, B. Effects of emulsion droplet sizes on the crystallisation of milk fat. Food Chem. 2014, 145, 725-735.https://doi.org/10.1016/j.foodchem.2013.08.072. Vanderghem, C.; Jacquet, N.; Danthine, S.; Blecker, C.; Paquot, M. Effect of physicochemical characteristics of cellulosic substrates on enzymatic hydrolysis by means of a multi-stage process for cellobiose production. Applied Biochemistry and Biotechnology 2012, 166 (6), 1423–1432. https://doi.org/10.1007/s12010-011-9535-1 Vázquez-Núñez, M. d. l. Á.; Aguilar-Zárate, M.; Gómez-García, R.; Reyes-Luna, C.; Aguilar-Zárate, P.; Michel, M. R. The specific encapsulation of procyanidins from litchi peel and coffee pulp extracts via spray-drying using green polymers. Polymers 2023, 15 (18), 3823. https://doi.org/10.3390/polym15183823 Vega, C.; Roos, Y. H. Invited review: Spray-dried dairy and dairy-like emulsions—compositional considerations. Journal of Dairy Science 2006, 89 (2), 383–401. https://doi.org/10.3168/jds.S0022-0302(06)72103-8 Vicente, J.; Pinto, J.; Menezes, J.; Gaspar, F. Fundamental analysis of particle formation in spray drying. Powder Technology 2013, 247, 1–7. https://doi.org/10.1016/j.powtec.2013.06.038 Vidović, S.; Ramić, M.; Ambrus, R.; Vladić, J.; Szabó-Révész, P.; Gavarić, A. Aronia berry processing by spray drying: From byproduct to high quality functional powder. Food Technology and Biotechnology 2019, 57 (4), 513–524. https://doi.org/10.1016/j.foodhyd.2023.108805 Wang, F.; Guo, L.; Liu, H.; Tao, H.; Yu, B.; Zhao, H.; Li, J.; Tao, H.; Cui, B.; Wang, Y. Water-in-oil oleogel with biphasic stabilization for fabrication of low-fat salad dressing. Food Hydrocolloids 2023, 142, 108805. https://doi.org/10.1016/j.foodhyd.2023.108805 Wang, Q.; Espert, M.; Larrea, V.; Quiles, A.; Salvador, A.; Sanz, T. Comparison of different indirect approaches to design edible oleogels based on cellulose ethers. Food Hydrocolloids 2023, 134, 108007. https://doi.org/10.1016/j.foodhyd.2022.108007 Wang, Z.; Chandrapala, J.; Truong, T.; & Farahnaky, A. Multicomponent oleogels prepared with high- and low-molecular-weight oleogelators: Ethylcellulose and waxes. Foods 2023, 12(16), 3093. https://doi.org/10.3390/foods12163093 Wiliana, A.; Agustin, S.; Kumalaputri, A. J.; Abduh, Y. Production and characterization of cascara powder from coffee pulp. Chemical and Natural Resources Engineering Journal 2022, 6, 2022. https://doi.org/10.31436/cnrej.v6i1.66 Wu, Y.; Sun, S.; Li, X.; Li, X.; Huang, Y.; An, F.; Huang, Q.; Song, H. Fabrication, characterization, and fat substitution application in chocolate spreads of methyl cellulose and xanthan gum foam-templated oleogels. International Journal of Biological Macromolecules 2024, 283, 137677. https://doi.org/10.1016/j.ijbiomac.2024.137677 Xiao, M.; Jiang, M.; Wu, K.; Yang, H.; Ni, X.; Yan, W.; Phillips, G. O.; Jiang, F. Investigation on curdlan dissociation by heating in water. Food Hydrocolloids 2017, 70, 57–64. https://doi.org/10.1016/j.foodhyd.2017.03.018 Yang, J.; Medronho, B.; Lindman, B.; Norgren, M. Simple one pot preparation of chemical hydrogels from cellulose dissolved in cold LiOH/Urea. Polymers 2020, 12 (2), 373. https://doi.org/10.3390/polym12020373 Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Filipič, M.; Jose Frutos, M.; Galtier, P. Re‐evaluation of celluloses E 460 (i), E 460 (ii), E 461, E 462, E 463, E 464, E 465, E 466, E 468 and E 469 as food additives. EFSA journal 2018, 16 (1), e05047. https://doi.org/10.2903/j.efsa.2018.5047 Zainal, S. H.; Mohd, N. H.; Suhaili, N.; Anuar, F. H.; Lazim, A. M.; Othaman, R. Preparation of cellulose-based hydrogel: a review. Journal of Materials Research and Technology 2021, 10, 935–952. https://doi.org/10.1016/j.jmrt.2020.12.012 Zhang, H.; Huang, L.; Nishinari, K.; Watase, M.; Konno, A. Thermal measurements of curdlan in aqueous suspension during gelation. Food Hydrocolloids 2000, 14 (2), 121–124. https://doi.org/10.1016/S0268-005X(99)00056-9 Zhao, F.; Liu, J.; Zhao, J.; Ge, X.; Ding, C.; Zhuang, X. The mechanism of 3D-printed high internal phase Pickering emulsion gels improved by soybean protein isolate / bacterial cellulose co-assemblies. International Journal of Biological Macromolecules 2025, 302, 140435. https://doi.org/10.1016/j.ijbiomac.2025.140435 Zheng, L.; Zhong, J.; Liu, X.; Wang, Q.; Qin, X. Physicochemical properties and intermolecular interactions of a novel diacylglycerol oil oleogel made with ethyl cellulose as affected by γ-oryzanol. Food Hydrocolloids 2023, 138, 108484. https://doi.org/10.1016/j.foodhyd.2023.108484. Zheng, S.; Lu, M.; Xiao, J.; Zhang, X.; Li, J.; Zhang, H.; Zhang, C.; Cao, Y.; Lan, Y. A novel strategy for preparation of rice bran protein oleogels based on high internal phase emulsion template. J Sci Food Agric 2023, 103 (12), 5717–5726. https://doi.org/10.1002/jsfa.12672 Zhou, L.; Zhang, W.; Wang, J. Recent advances in the study of modified cellulose in meat products: Modification method of cellulose, meat quality improvement and safety concern. Trends in Food Science & Technology 2022, 122, 140–156. https://doi.org/10.1016/j.tifs.2022.02.024 Zhou, Z.; Langrish, T. A. G.; Cai, S. Using particle residence time distributions as an experimental approach for evaluating the performance of different designs for a pilot-scale spray dryer. Processes 2023, 11 (1), 40. https://doi.org/10.3390/pr11010040 Zhu, X.-F.; Zheng, J.; Liu, F.; Qiu, C.-Y.; Lin, W.-F.; Tang, C.-H. Freeze-thaw stability of Pickering emulsions stabilized by soy protein nanoparticles. Influence of ionic strength before or after emulsification. Food Hydrocolloids 2018, 74, 37–45. https://doi.org/10.1016/j.foodhyd.2017.07.017 Zhu, X. F.; Zheng, J.; Liu, F.; Qiu, C. Y.; Lin, W. F.; Tang, C. H. The influence of ionic strength on the characteristics of heat-induced soy protein aggregate nanoparticles and the freeze-thaw stability of the resultant Pickering emulsions. Food & Function 2017, 8 (8), 2974–2981. https://doi.org/10.1039/c7fo00616k | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99494 | - |
| dc.description.abstract | 全球糧食系統對氣候變遷具有顯著影響,約佔全球溫室氣體排放量的25%,其中以動物性產品的生產為主要排放來源之一。為減緩環境衝擊並推動永續發展,植物性替代產品的研發已成為重要趨勢。儘管相關領域已有初步進展,脂肪替代的技術仍相對不足。在眾多創新技術中,利用高分子量油凝膠劑(high molecular weight oleogelator, HMWOG)製備油凝膠(oleogel),能夠達到優異的油結合能力、熱穩定性與機械穩定性,並在保留植物油營養價值的同時模擬動物脂肪的結構特性。然而,該技術於食品產業應用上仍面臨諸多挑戰,包括修飾纖維素引發的健康疑慮、乾燥效率不佳,以及製程複雜與成本高昂等問題。
本研究主要探討天然纖維素作為油凝膠劑的可行性,以應對修飾纖維素的安全性疑慮,並藉由噴霧乾燥(spray drying)技術,改善油凝膠於乾燥效率以及均勻穩定性等限制。實驗結果顯示,以大豆分離蛋白(soybean protein isolate, SPI)能與卡德蘭膠和棉花纖維素於總固體顆粒濃度4.9%以及70℃下熱交聯一小時,形成具有良好流動性與穩定性的水凝膠。此外,將SPI進行預熱處理後(95℃,15分鐘),於入口溫度180℃以及霧化氣體流量600 L/h的噴霧乾燥參數下,可形成具有優異水合能力且產率高達48.44%的水凝膠粉末。同時,將SPI進行後熱處理並以高速均質(12000 rpm, 5分鐘)以及超音波(20 kHz, 5分鐘)處理後能形成穩定的乳化系統,並在相同乾燥條件下形成含油量為76.03%、流動性佳,且產率為20.61%的乳液粉末。 將兩種粉末製備成油凝膠後,可在流變性質以及油煎試驗上達到與傳統油凝膠一致的結構性質且未產生任何負面影響。此外,水凝膠粉末能夠在三次凍融循環下維持其結構穩定性,並呈現較高的硬度與咀嚼性,適用於香腸與肉排等肉製品中作為脂肪模擬物;乳液粉末則呈現良好熱穩定性而避免高溫下的結構破壞,其柔軟的質地亦使其適用於烘焙餡料以及抹醬等食品應用中。綜上所述,本研究成功以噴霧乾燥以及熱處理技術,製備出符合綠色製程的天然纖維素油凝膠,並藉由水凝膠和乳液系統克服過去傳統油凝膠在使用與儲存上的限制,從而成功拓展產品的應用範圍。 | zh_TW |
| dc.description.abstract | The global food system contributes substantially to climate change, accounting for approximately 25% of total greenhouse gas emissions, with animal-based product production being a primary source. To mitigate environmental impact and enhance sustainability, plant-based alternatives have gained increasing attention. Despite this progress, fat substitution remains underexplored. Among emerging strategies, oleogelation using high-molecular-weight oleogelator (HMWOG) offers notable advantages, including enhanced oil-binding capacity, thermal and mechanical stability, and structural mimicry of conventional fats, while retaining the nutritional benefits of vegetable oils. However, industrial application faces significant barriers, such as health concerns associated with modified cellulose-based HMWOG, suboptimal drying performance, and complex, cost-intensive processing.
This study primarily investigates the feasibility of using natural cellulose as an oleogelator to address safety concerns associated with chemically modified cellulose. To overcome limitations related to drying performance and uniformity, spray drying was employed to improve efficiency and enhance product stability. Experimental results demonstrated that hydrogels composed of soybean protein isolate (SPI), combined with curdlan and cellulose at a total solid concentration of 4.9%, and thermally cross-linked at 70 °C for 1 hour, exhibited excellent flowability and stability. Furthermore, heat treatment SPI (95 °C for 15 minutes), spray-dried at an inlet temperature of 180 °C and a gas flow rate of 600 L/h, produced hydrogel powders with favorable rehydration properties and a production yield of 48.44%. Additionally, postheat treatment SPI, subjected to high speed homogenization(12,000 rpm for 5 minutes)and ultrasonication (20 kHz for 5 minutes), formed stable emulsion systems. Under the same spray drying conditions, these emulsions yielded oil powders with a high oil content (76.03%), good flowability, and a production yield of 20.61%. Upon reconstitution, both powder types formed oleogels exhibiting rheological and pan-frying characteristics comparable to conventional oleogels, without any adverse effects. The hydrogel powder showed structural stability over three freeze-thaw cycles and demonstrated enhanced hardness and chewiness, making it suitable for incorporation into meat products such as sausages and patties as a fat mimetic. The emulsion powder exhibited strong thermal stability, maintaining its structure under high temperatures, and its soft texture renders it suitable for applications in baked fillings and spreads. Overall, this study successfully demonstrates the preparation of natural cellulose-based oleogels using spray drying and thermal treatment, overcoming previous challenges in conventional oleogel applications and storage, and expanding their potential uses in food systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:27:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:27:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 vi 圖次 viii 表次 ix 縮寫檢索表 x 壹、前言 1 貳、文獻回顧 3 (一) 油凝膠介紹 3 (二) 油凝膠加工產品應用現況 9 (三) 噴霧乾燥介紹 15 參、實驗架構 27 (一) 實驗目的 27 (二) 實驗架構 28 肆、材料與方法 31 一、 實驗材料 31 二、 實驗試藥 31 三、 儀器設備 31 四、 實驗方法 33 (一) 進料溶液製備 33 (二) 噴霧乾燥 34 (三) 油凝膠製備 35 (四) 進料性質分析-表觀穩定性和流動性 36 (五) 粉末性質分析 37 (六) 油凝膠性質分析 41 (七) 數據統計分析 42 伍、結果與討論 43 (一) 噴霧乾燥進料溶液製備 43 1. 水凝膠製備 43 1.1. 未熱交聯水凝膠 43 1.2. 熱交聯水凝膠 46 2. 乳液製備 50 (二) 噴霧乾燥參數篩選: 53 1. 全因子分析實驗設計 53 2. 粉末性質 54 3. 凍融穩定性 60 4. 迴歸曲線 61 (三) 粉末性質 65 1. 表觀性質 65 2. 成分性質 67 3. 水合能力 68 4. 流動性質 69 (四) 油凝膠性質 70 1. 表觀性質 70 2. 凍融穩定性 71 3. 質地分析 72 4. 流變性質 74 5. 油煎試驗 79 6. DSC熱性質 80 陸、結論 82 柒、未來研究方向 83 捌、參考文獻 84 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 纖維素 | zh_TW |
| dc.subject | 油凝膠化 | zh_TW |
| dc.subject | 脂肪模擬物 | zh_TW |
| dc.subject | 大豆分離蛋白 | zh_TW |
| dc.subject | 噴霧乾燥 | zh_TW |
| dc.subject | spray drying | en |
| dc.subject | soybean protein isolate | en |
| dc.subject | fat substitute | en |
| dc.subject | cellulose | en |
| dc.subject | oleogelation | en |
| dc.title | 噴霧乾燥製備植物基油凝膠之開發 | zh_TW |
| dc.title | Plant-based oleogel formation using spray drying | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳輝煌;吳俊毅;林華宗 | zh_TW |
| dc.contributor.oralexamcommittee | Hui-Huang Chen;Jiumn-Yih Wu;Hua-Tsung Lin | en |
| dc.subject.keyword | 油凝膠化,纖維素,噴霧乾燥,大豆分離蛋白,脂肪模擬物, | zh_TW |
| dc.subject.keyword | oleogelation,cellulose,spray drying,soybean protein isolate,fat substitute, | en |
| dc.relation.page | 95 | - |
| dc.identifier.doi | 10.6342/NTU202501724 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-18 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2030-07-15 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.81 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
