請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99493完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳時欣 | zh_TW |
| dc.contributor.advisor | Shin Hsin Chen | en |
| dc.contributor.author | 林芳妤 | zh_TW |
| dc.contributor.author | Fang Yu Lin | en |
| dc.date.accessioned | 2025-09-10T16:27:28Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-15 | - |
| dc.identifier.citation | 網站:
農業部。2025。糧食供需年報-糧食平衡表。取自https://agrstat.moa.gov.tw/sdweb/public/book/Book.aspx 農業部。2023。公糧稻穀驗收標準。取自 https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=M0030040 農業部。2025。糧價查詢系統。取自 https://reurl.cc/mxjdLA 日商環球訊息有限公司。2023。全球麵包市場-2023–2030。取自 https://www.gii.tw/report/dmin1304466-global-bread-market.html 台北市糕餅商業同業公會。2013。《台灣烘焙趨勢大調查》。取自 http://www.bakery.org.tw/bulletin_detail.php?id=554 中文文獻: 1. 盧訓。1996。稻米品種結構與米食加工之關系。稻作生產改進策略研討會專刊。 2. 王柏蓉、鄧執庸、陳明芬。2019。提升糧食自給率之臺灣多元米製產品研發。臺中區農業專訊, (06), 7-10。https://reurl.cc/2KkMG9 3. 許美芳、洪偉玲。2005。淺談米食加工。桃園區農業專訊, (52), 30-37。https://doi.org/10.29566/XLZY.200506.0007 4. 施錦花。2012。銷售公糧搗碎糙米供飼料使用辦理情形。農政與農情。101年5月(第239期)。https://www.moa.gov.tw/ws.php?id=2445689 5. 白書縵。2016。綠色製程製備高抗性米穀粉。國立宜蘭大學食品科學系碩士論文。宜蘭。https://doi.org/10.6820/NIU.2014.00142 6. 施屏婷。2020。溫度循環式濕熱處理提升去支米穀粉消化抗性及其系統放大之研究。國立宜蘭大學食品科學系碩士論文。宜蘭。 7. 張舒涵。2014。米穀粉或糊化米混合麵粉製備米包之特性探討。國立宜蘭大學食品科學系碩士論文。宜蘭。https://doi.org/10.6820/NIU.2014.00142 8. 劉瓊鎂。2013。米品種與添加量對米包及米蛋糕升糖指數之影響。國立宜蘭大學食品科學系碩士論文。宜蘭。https://doi.org/10.6820/NIU.2013.00131 9. 黃双奇。2013。探討抗性澱粉對麵團性質及麵包品質之影響。靜宜大學食品營養系碩士論文。台中。https://hdl.handle.net/11296/g5m3y4 10. 楊文秀。2016。植物膠與預糊化澱粉對非麩質米穀粉麵包品質性質之研究。台南應用科技大學生活服務產業系碩士論文。台南。https://hdl.handle.net/11296/cy97r9 英文文獻: Aguiar, E. V., Santos, F. G., Krupa-Kozak, U., & Capriles, V. D. (2023). Nutritional facts regarding commercially available gluten-free bread worldwide: Recent advances and future challenges. Critical Reviews in Food Science and Nutrition, 63(5), 693-705. https://doi.org/10.1080/10408398.2021.1952403 Amagliani, L., O’Regan, J., Kelly, A. L., & O’Mahony, J. A. (2016). Chemistry, structure, functionality and applications of rice starch. Journal of Cereal Science, 70, 291-300. https://doi.org/10.1016/j.jcs.2016.06.014 Amoako, D. B., & Awika, J. M. (2019). Resistant starch formation through intrahelical V-complexes between polymeric proanthocyanidins and amylose. Food Chemistry, 285, 326-333. https://doi.org/10.1016/j.foodchem.2019.01.173 Arp, C. G., Correa, M. J., & Ferrero, C. (2018). High-Amylose Resistant Starch as a Functional Ingredient in Breads: a Technological and Microstructural Approach. Food and Bioprocess Technology, 11(12), 2182-2193. https://doi.org/10.1007/s11947-018-2168-4 Arp, C. G., Correa, M. J., & Ferrero, C. (2021). Improving quality: Modified celluloses applied to bread dough with high level of resistant starch. Food Hydrocolloids, 112. https://doi.org/10.1016/j.foodhyd.2020.106302 Bach Knudsen, K. E., Laerke, H. N., Hedemann, M. S., Nielsen, T. S., Ingerslev, A. K., Gundelund Nielsen, D. S., Theil, P. K., Purup, S., Hald, S., Schioldan, A. G., Marco, M. L., Gregersen, S., & Hermansen, K. (2018). Impact of Diet-Modulated Butyrate Production on Intestinal Barrier Function and Inflammation. Nutrients, 10(10). https://doi.org/10.3390/nu10101499 Barros, J. H. T., Telis, V. R. N., Taboga, S., & Franco, C. M. L. (2018). Resistant starch: effect on rheology, quality, and staling rate of white wheat bread. Journal of Food Science and Technology, 55(11), 4578-4588. https://doi.org/10.1007/s13197-018-3393-6 Baxter, N. T., Schmidt, A. W., Venkataraman, A., Kim, K. S., Waldron, C., & Schmidt, T. M. (2019). Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio, 10(1), 10-1128. https://doi.org/10.1128/mbio.02566-18 Bhadha, J. H., Mukhopadhyay, S., Andrews, C., & VanWeelden, M. (2019). Rice Physiology, Products, and Critical Steps Associated with Postharvest Operations in Southern Florida: SS-AGR-438/AG438, 9/2019. EDIS, 2019(5), 5-5. https://edis.ifas.ufl.edu/publication/AG438 Bindels, L. B., Segura Munoz, R. R., Gomes-Neto, J. C., Mutemberezi, V., Martinez, I., Salazar, N., Cody, E. A., Quintero-Villegas, M. I., Kittana, H., de Los Reyes-Gavilan, C. G., Schmaltz, R. J., Muccioli, G. G., Walter, J., & Ramer-Tait, A. E. (2017). Resistant starch can improve insulin sensitivity independently of the gut microbiota. Microbiome, 5(1), 12. https://doi.org/10.1186/s40168-017-0230-5 Bodinham, C. L., Frost, G. S., & Robertson, M. D. (2010). Acute ingestion of resistant starch reduces food intake in healthy adults. British Journal of Nutrition, 103(6), 917-922. https://doi.org/10.1017/S0007114509992534 Cao, X., Tong, J., Ding, M., Wang, K., Wang, L., Cheng, D., Li, H., Liu, A., Liu, J., Zhao, Z., Wang, Z., & Gao, X. (2019). Physicochemical properties of starch in relation to rheological properties of wheat dough (Triticum aestivum L.). Food Chemistry, 297, 125000. https://doi.org/10.1016/j.foodchem.2019.125000 Chang, R., Xiong, L., Li, M., Liu, J., Wang, Y., Chen, H., & Sun, Q. (2018). Fractionation of debranched starch with different molecular weights via edible alcohol precipitation. Food Hydrocolloids, 83, 430-437. https://doi.org/10.1016/j.foodhyd.2018.05.033 Chen, Q., Yu, H., Wang, L., ul Abdin, Z., Chen, Y., Wang, J., Zhou, W., Yang, X., Khan, R. U., Zhang, H., & Chen, X. (2015). Recent progress in chemical modification of starch and its applications. RSC Advances, 5(83), 67459-67474. https://doi.org/10.1039/c5ra10849g Chen, S. H., Li, X.-F., Shih, P.-T., & Pai, S.-M. (2020). Preparation of thermally stable and digestive enzyme resistant flour directly from Japonica broken rice by combination of steam infusion, enzymatic debranching and heat moisture treatment. Food Hydrocolloids, 108, 106022. https://doi.org/10.1016/j.foodhyd.2020.106022 Chi, C., Li, X., Huang, S., Chen, L., Zhang, Y., Li, L., & Miao, S. (2021). Basic principles in starch multi-scale structuration to mitigate digestibility: A review. Trends in Food Science & Technology, 109, 154-168. https://doi.org/10.1016/j.tifs.2021.01.024 Chung, H.-J., Cho, A., & Lim, S.-T. (2012). Effect of heat-moisture treatment for utilization of germinated brown rice in wheat noodle. LWT - Food Science and Technology, 47(2), 342-347. https://doi.org/10.1016/j.lwt.2012.01.029 Chung, H.-J., Cho, A., & Lim, S.-T. (2014). Utilization of germinated and heat-moisture treated brown rices in sugar-snap cookies. LWT - Food Science and Technology, 57(1), 260-266. https://doi.org/10.1016/j.lwt.2014.01.018 Corrado, M., Zafeiriou, P., Ahn-Jarvis, J. H., Savva, G. M., Edwards, C. H., & Hazard, B. A. (2023). Impact of storage on starch digestibility and texture of a high-amylose wheat bread. Food Hydrocolloids, 135. https://doi.org/10.1016/j.foodhyd.2022.108139 Correa, M. J., Giannuzzi, L., Weisstaub, A. R., Zuleta, A., & Ferrero, C. (2019). Chemically modified resistant starch in breadmaking: Impact on bone, mineral metabolism and gut health of growing Wistar rats. International Journal of Food Science & Technology, 55(1), 239-247. https://doi.org/10.1111/ijfs.14352 Dainty, S. A., Klingel, S. L., Pilkey, S. E., McDonald, E., McKeown, B., Emes, M. J., & Duncan, A. M. (2016). Resistant Starch Bagels Reduce Fasting and Postprandial Insulin in Adults at Risk of Type 2 Diabetes. The Journal of Nutrition, 146(11), 2252-2259. https://doi.org/10.3945/jn.116.239418 Deng, C., Zhang, T., Zhang, X., Gu, T., Xu, L., Yu, Z., Zheng, M., & Zhou, Y. (2023). Multiscale structure and precipitation mechanism of debranched starch precipitated by different alcohols. International Journal of Biological Macromolecules, 241, 124562. https://doi.org/10.1016/j.ijbiomac.2023.124562 Dong, S., Fang, G., Luo, Z., & Gao, Q. (2021). Effect of granule size on the structure and digestibility of jackfruit seed starch. Food Hydrocolloids, 120. https://doi.org/10.1016/j.foodhyd.2021.106964 Dreher, M. L., Dreher, C. J., & Berry, J. W. (1984). Starch digestibility of foods: a nutritional perspective. Critical Reviews in Food Science & Nutrition, 20(1), 47-71. https://doi.org/10.1080/10408398409527383 Foster-Powell, K., Holt, S. H., & Brand-Miller, J. C. (2002). International table of glycemic index and glycemic load values: 2002. The American Journal of Clinical Nutrition, 76(1), 5-56. https://doi.org/10.1093/ajcn/76.1.5 Fratelli, C., Muniz, D. G., Santos, F. G., & Capriles, V. D. (2018). Modelling the effects of psyllium and water in gluten-free bread: An approach to improve the bread quality and glycemic response. Journal of Functional Foods, 42, 339-345. https://doi.org/10.1016/j.jff.2018.01.015 Gallant, P. M., Bouchet, B., & Baldwin, J. M. (1997). Microscopy of starch evidence of a new level of granule organization. Carbohydrate Polymers. https://doi.org/10.1016/S0144-8617(97)00008-8 Gérard, C., Colonna, P., Buléon, A., & Planchot, V. (2001). Amylolysis of maize mutant starches. Journal of the Science of Food and Agriculture, 81(13), 1281-1287. https://doi.org/10.1002/jsfa.929 Gidley, M. J. (1989). Molecular mechanisms underlying amylose aggregation and gelation. Macromolecules, 22(1), 351-358. Gong, B., Cheng, L., Gilbert, R. G., & Li, C. (2019). Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch. Food Hydrocolloids, 96, 634-643. https://doi.org/10.1016/j.foodhyd.2019.06.003 Goñi, I., Garcia-Alonso, A., & Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17(3), 427-437. https://doi.org/10.1016/S0271-5317(97)00010-9 Granfeldt, Y., Björck, I., Drews, A., & Tovar, J. (1992). An in vitro procedure based on chewing to predict metabolic response to starch in cereal and legume products. European Journal of Clinical Nutrition, 46, 649-660. https://reurl.cc/qGjDv3 Grassi de Alcantara, R., Aparecida de Carvalho, R., & Maria Vanin, F. (2020). Evaluation of wheat flour substitution type (corn, green banana and rice flour) and concentration on local dough properties during bread baking. Food Chemistry, 326, 126972. https://doi.org/10.1016/j.foodchem.2020.126972 Guo, B., Liu, C., Grossmann, L., & Weiss, J. (2022). Pickering emulsion stabilized by hydrolyzed starch: Effect of the molecular weight. Journal of Colloid and Interface Science, 612, 525-535. https://doi.org/10.1016/j.jcis.2021.12.185 Hii, S. L., Tan, J. S., Ling, T. C., & Ariff, A. B. (2012). Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme research, 2012(1), 921362. https://doi.org/10.1155/2012/921362 Hu, X., Cheng, L., Hong, Y., Li, Z., Li, C., & Gu, Z. (2023). An extensive review: How starch and gluten impact dough machinability and resultant bread qualities. Critical Reviews in Food Science and Nutrition, 63(13), 1930-1941. https://doi.org/10.1080/10408398.2021.1969535 Huang, T. T., Zhou, D. N., Jin, Z. Y., Xu, X. M., & Chen, H. Q. (2015). Effect of debranching and heat-moisture treatments on structural characteristics and digestibility of sweet potato starch. Food Chemistry, 187, 218-224. https://doi.org/10.1016/j.foodchem.2015.04.050 Ishaq, A., Nadeem, M., Ahmad, R., Ahmed, Z., & Khalid, N. (2024). Recent advances in applications of marine hydrocolloids for improving bread quality. Food Hydrocolloids, 148. https://doi.org/10.1016/j.foodhyd.2023.109424 Jane, J.-l., Wong, K.-s., & McPherson, A. E. (1997). Branch-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydrate Research, 300(3), 219-227. https://doi.org/10.1016/S0008-6215(97)00056-6 Jekle, M., Mühlberger, K., & Becker, T. (2016). Starch–gluten interactions during gelatinization and its functionality in dough like model systems. Food Hydrocolloids, 54, 196-201. https://doi.org/10.1016/j.foodhyd.2015.10.005 Jenkins, D. J., Kendall, C. W., Augustin, L. S., Franceschi, S., Hamidi, M., Marchie, A., Jenkins, A. L., & Axelsen, M. (2002). Glycemic index: overview of implications in health and disease. The American Journal of Clinical Nutrition, 76(1), 266S-273S. https://doi.org/10.1093/ajcn/76/1.266S Jenkins, D. J., Wolever, T. M., Taylor, R. H., Barker, H., Fielden, H., Baldwin, J. M., Bowling, A. C., Newman, H. C., Jenkins, A. L., & Goff, D. V. (1981). Glycemic index of foods: a physiological basis for carbohydrate exchange. The American Journal of Clinical Nutrition, 34(3), 362-366. https://doi.org/10.1093/ajcn/34.3.362 Juliano, B. O., & Tuaño, A. P. P. (2019). Gross structure and composition of the rice grain. In J. Bao (Ed.), Rice: Chemistry and Technology (4th ed., pp. 31–55). AACC International Press. https://doi.org/10.1016/b978-0-12-811508-4.00002-2 Kaimal, A. M., Mujumdar, A. S., & Thorat, B. N. (2021). Resistant starch from millets: Recent developments and applications in food industries. Trends in Food Science & Technology, 111, 563-580. https://doi.org/10.1016/j.tifs.2021.02.074 Kalichevsky, M. T., Orford, P. D., & Ring, S. (1990). The retrogradation and gelation of amylopectins from various botanical sources. Carbohydrate Research. https://doi.org/10.1016/0008-6215(90)84275-Y Kang, X., Jia, S., Gao, W., Wang, B., Zhang, X., Tian, Y., Sun, Q., Atef, M., Cui, B., & Abd El-Aty, A. M. (2022). The formation of starch-lipid complexes by microwave heating. Food Chemistry, 382, 132319. https://doi.org/10.1016/j.foodchem.2022.132319 Karlsson, R., Olered, R., & Eliasson, A. C. (2006). Changes in starch granule size distribution and starch gelatinization properties during development and maturation of wheat, barley and rye. Starch‐Stärke, 35(10), 335-340. https://doi.org/10.1002/star.19830351002 Kim, M. J., Oh, S. G., & Chung, H. J. (2017). Impact of heat-moisture treatment applied to brown rice flour on the quality and digestibility characteristics of Korean rice cake. Food Science and Biotechnology, 26(6), 1579-1586. https://doi.org/10.1007/s10068-017-0151-x Korus, J., Witczak, M., Ziobro, R., & Juszczak, L. (2009). The impact of resistant starch on characteristics of gluten-free dough and bread. Food Hydrocolloids, 23(3), 988-995. https://doi.org/10.1016/j.foodhyd.2008.07.010 Kumar, S. R., Tangsrianugul, N., Sriprablom, J., Winuprasith, T., Wansuksri, R., & Suphantharika, M. (2023). Effects of single and dual modifications with debranching and heat-moisture treatments on physicochemical, rheological, and digestibility properties of proso millet starch. Carbohydrate Polymer Technologies and Applications, 6. https://doi.org/10.1016/j.carpta.2023.100399 Kunyanee, K., & Luangsakul, N. (2022). The impact of heat moisture treatment on the physicochemical properties and in vitro glycemic index of rice flour with different amylose contents and associated effects on rice dumpling quality. LWT - Food Science and Technology, 154,112694. https://doi.org/10.1016/j.lwt.2021.112694 Li, C., Dhital, S., & Gidley, M. J. (2022). High-amylose wheat bread with reduced in vitro digestion rate and enhanced resistant starch content. Food Hydrocolloids, 123. https://doi.org/10.1016/j.foodhyd.2021.107181 Lin, L., Yu, X., Gao, Y., Mei, L., Zhu, Z., & Du, X. (2022). Physicochemical properties and in vitro starch digestibility of wheat starch/rice protein hydrolysate complexes. Food Hydrocolloids, 125. https://doi.org/10.1016/j.foodhyd.2021.107348 Liu, G., Hong, Y., Gu, Z., Li, Z., & Cheng, L. (2015). Pullulanase hydrolysis behaviors and hydrogel properties of debranched starches from different sources. Food Hydrocolloids, 45, 351-360. https://doi.org/10.1016/j.foodhyd.2014.12.006 Lopez-Rubio, A., Flanagan, B. M., Gilbert, E. P., & Gidley, M. J. (2008). A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study. Biopolymers: Original Research on Biomolecules, 89(9), 761-768. https://doi.org/10.1002/bip.21005 Lu, X., Ma, R., Qiu, H., Sun, C., & Tian, Y. (2021). Mechanism of effect of endogenous/exogenous rice protein and its hydrolysates on rice starch digestibility. International Journal of Biological Macromolecules, 193, 311-318. https://doi.org/10.1016/j.ijbiomac.2021.10.140 Macia, L., Tan, J., Vieira, A. T., Leach, K., Stanley, D., Luong, S., Maruya, M., Ian McKenzie, C., Hijikata, A., Wong, C., Binge, L., Thorburn, A. N., Chevalier, N., Ang, C., Marino, E., Robert, R., Offermanns, S., Teixeira, M. M., Moore, R. J., . . . Mackay, C. R. (2015). Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Communications, 6(1), 6734. https://doi.org/10.1038/ncomms7734 Pasqualoni, I., Tolve, R., Simonato, B., & Bianchi, F. (2024). The Impact of Selected Ingredients on the Predicted Glycemic Index and Technological Properties of Bread. Foods, 13(16), 2488. https://doi.org/10.3390/foods13162488 Pongjaruvat, W., Methacanon, P., Seetapan, N., Fuongfuchat, A., & Gamonpilas, C. (2014). Influence of pregelatinised tapioca starch and transglutaminase on dough rheology and quality of gluten-free jasmine rice breads. Food Hydrocolloids, 36, 143-150. https://doi.org/10.1016/j.foodhyd.2013.09.004 Puncha-arnon, S., & Uttapap, D. (2013). Rice starch vs. rice flour: differences in their properties when modified by heat-moisture treatment. Carbohydrate Polymers, 91(1), 85-91. https://doi.org/10.1016/j.carbpol.2012.08.006 Qin, W., Lin, Z., Wang, A., Xiao, T., He, Y., Chen, Z., Wang, L., Liu, L., Wang, F., & Tong, L.-T. (2021). Influence of damaged starch on the properties of rice flour and quality attributes of gluten-free rice bread. Journal of Cereal Science, 101, 103296. https://doi.org/10.1016/j.jcs.2021.103296 Roman, L., & Martinez, M. M. (2019). Structural Basis of Resistant Starch (RS) in Bread: Natural and Commercial Alternatives. Foods, 8(7). https://doi.org/10.3390/foods8070267 Roman, L., Reguilon, M. P., Gomez, M., & Martinez, M. M. (2020). Intermediate length amylose increases the crumb hardness of rice flour gluten-free breads. Food Hydrocolloids, 100, 105451. https://doi.org/10.1016/j.foodhyd.2019.105451 Rosell, C. M., & Foegeding, A. (2007). Interaction of hydroxypropylmethylcellulose with gluten proteins: Small deformation properties during thermal treatment. Food Hydrocolloids, 21(7), 1092-1100. https://doi.org/10.1016/j.foodhyd.2006.08.003 Sajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant Starch-A Review. Comprehensive Reviews in Food Science and Food Safety, 5(1), 1-17. https://doi.org/10.1111/j.1541-4337.2006.tb00076.x Satmalee, P., & Matsuki, J. (2011). Effect of debranching and heat-moisture treatment on the properties of Thai rice flours. International Journal of Food Science & Technology, 46(12), 2628-2633. https://doi.org/10.1111/j.1365-2621.2011.02793.x Schafranski, K., Ito, V. C., & Lacerda, L. G. (2021). Impacts and potential applications: A review of the modification of starches by heat-moisture treatment (HMT). Food Hydrocolloids, 117, 106690. https://doi.org/10.1016/j.foodhyd.2021.106690 Schirmer, M., Jekle, M., & Becker, T. (2014). Starch gelatinization and its complexity for analysis. Starch‐Stärke, 67(1-2), 30-41. https://doi.org/10.1002/star.201400071 Segura, M. E., & Rosell, C. M. (2011). Chemical composition and starch digestibility of different gluten-free breads. Plant Foods for Human Nutrition, 66(3), 224-230. https://doi.org/10.1007/s11130-011-0244-2 Singh, J., Dartois, A., & Kaur, L. (2010). Starch digestibility in food matrix: a review. Trends in Food Science & Technology, 21(4), 168-180. https://doi.org/10.1016/j.tifs.2009.12.001 Tang, H., Mitsunaga, T., & Kawamura, Y. (2006). Molecular arrangement in blocklets and starch granule architecture. Carbohydrate Polymers, 63(4), 555-560. https://doi.org/10.1016/j.carbpol.2005.10.016 Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151-165. https://doi.org/10.1016/j.jcs.2003.12.001 Tester, R. F., Qi, X., & Karkalas, J. (2006). Hydrolysis of native starches with amylases. Animal Feed Science and Technology, 130(1-2), 39-54. https://doi.org/10.1016/j.anifeedsci.2006.01.016 Tian, S., & Sun, Y. (2020). Influencing factor of resistant starch formation and application in cereal products: A review. International Journal of Biological Macromolecules, 149, 424-431. https://doi.org/10.1016/j.ijbiomac.2020.01.264 Toutounji, M. R., Farahnaky, A., Santhakumar, A. B., Oli, P., Butardo, V. M., & Blanchard, C. L. (2019). Intrinsic and extrinsic factors affecting rice starch digestibility. Trends in Food Science & Technology, 88, 10-22. https://doi.org/10.1016/j.tifs.2019.02.012 Tremaroli, V., & Backhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415), 242-249. https://doi.org/10.1038/nature11552 Van Hung, P., Chau, H. T., & Phi, N. T. (2016). In vitro digestibility and in vivo glucose response of native and physically modified rice starches varying amylose contents. Food Chemistry, 191, 74-80. https://doi.org/10.1016/j.foodchem.2015.02.118 Van Hung, P., Duyen, T. T. M., Van Thanh, H., Widiastuti, D., & An, N. T. H. (2021). Starch digestibility and quality of cookies made from acid and heat-moisture treated sweet potato starch and wheat flour composites. Journal of Food Measurement and Characterization, 15(4), 3045-3051. https://doi.org/10.1007/s11694-021-00892-z Vidrine, K., Ye, J., Martin, R. J., McCutcheon, K. L., Raggio, A. M., Pelkman, C., Durham, H. A., Zhou, J., Senevirathne, R. N., Williams, C., Greenway, F., Finley, J., Gao, Z., Goldsmith, F., & Keenan, M. J. (2014). Resistant starch from high amylose maize (HAM-RS2) and dietary butyrate reduce abdominal fat by a different apparent mechanism. Obesity, 22(2), 344-348. https://doi.org/10.1002/oby.20501 Wang, Q., Li, L., & Zheng, X. (2021). Recent advances in heat-moisture modified cereal starch: Structure, functionality and its applications in starchy food systems. Food Chemistry, 344, 128700. https://doi.org/10.1016/j.foodchem.2020.128700 Wei, M., Tang, M., Wang, L., Cheng, X., Wu, Y., & Ouyang, J. (2021). Endogenous bioactive compounds of naked oats (Avena nuda L.) inhibit α-amylase and α-glucosidase activity. LWT - Food Science and Technology, 149. https://doi.org/10.1016/j.lwt.2021.111902 Whisner, C. M., & Castillo, L. F. (2018). Prebiotics, Bone and Mineral Metabolism. Calcified Tissue International, 102(4), 443-479. https://doi.org/10.1007/s00223-017-0339-3 Wu, T., Wang, L., Li, Y., Qian, H., Liu, L., Tong, L., Zhou, X., Wang, L., & Zhou, S. (2019). Effect of milling methods on the properties of rice flour and gluten-free rice bread. LWT - Food Science and Technology, 108, 137-144. https://doi.org/10.1016/j.lwt.2019.03.050 Wunthunyarat, W., Seo, H. S., & Wang, Y. J. (2020). Effects of germination conditions on enzyme activities and starch hydrolysis of long-grain brown rice in relation to flour properties and bread qualities. Journal of Food Science, 85(2), 349-357. https://doi.org/10.1111/1750-3841.15008 Yang, Z., Hao, H., Wu, Y., Liu, Y., & Ouyang, J. (2021). Influence of moisture and amylose on the physicochemical properties of rice starch during heat treatment. International Journal of Biological Macromolecules, 168, 656-662. https://doi.org/10.1016/j.ijbiomac.2020.11.122 Yang, Z., Zhang, Y., Wu, Y., & Ouyang, J. (2023). Factors influencing the starch digestibility of starchy foods: A review. Food Chemistry, 406, 135009. https://doi.org/10.1016/j.foodchem.2022.135009 Yano, H., Fukui, A., Kajiwara, K., Kobayashi, I., Yoza, K.-i., Satake, A., & Villeneuve, M. (2017). Development of gluten-free rice bread: Pickering stabilization as a possible batter-swelling mechanism. LWT - Food Science and Technology, 79, 632-639. https://doi.org/10.1016/j.lwt.2016.11.086 Yun, P., Devahastin, S., & Chiewchan, N. (2021). In vitro glycemic index, physicochemical properties and sensory characteristics of white bread incorporated with resistant starch powder prepared by a novel spray-drying based method. Journal of Food Engineering, 294. https://doi.org/10.1016/j.jfoodeng.2020.110438 Zeng, F., Zhu, S., Chen, F., Gao, Q., & Yu, S. (2016). Effect of different drying methods on the structure and digestibility of short chain amylose crystals. Food Hydrocolloids, 52, 721-731. https://doi.org/10.1016/j.foodhyd.2015.08.012 Zhang, L., Chen, D. L., Wang, X. F., Qian, J. Y., & He, X. D. (2022). Enzymatically modified quinoa starch-based Pickering emulsion: Effect of enzymolysis and emulsifying conditions. International Journal of Biological Macromolecules, 219, 824-834. https://doi.org/10.1016/j.ijbiomac.2022.08.031 Zhang, Y., Guo, Q., Feng, N., Wang, J.-r., Wang, S.-j., & He, Z.-h. (2016). Characterization of A- and B-type starch granules in Chinese wheat cultivars. Journal of Integrative Agriculture, 15(10), 2203-2214. https://doi.org/10.1016/s2095-3119(15)61305-3 Zhou, J., Martin, R. J., Raggio, A. M., Shen, L., McCutcheon, K., & Keenan, M. J. (2015). The importance of GLP-1 and PYY in resistant starch's effect on body fat in mice. Molecular Nutrition & Food Research, 59(5), 1000-1003. https://doi.org/10.1002/mnfr.201400904 Zhou, L., Zheng, X., Yan, J., He, X., McClements, D. J., Qiu, C., Dai, L., & Sun, Q. (2024). Preparation of debranched starch with high thermal stability and crystallinity using a novel thermal cycling treatment. Carbohydrate Polymers, 345, 122583. https://doi.org/10.1016/j.carbpol.2024.122583 Zobel, H. F., Young, S. N., & Rocca, L. A. (1988). Starch Gelatinization: An X-ray Diffraction Study. Cereal Chemistry, 443-446. https://reurl.cc/dQjra8 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99493 | - |
| dc.description.abstract | 白土司作為常見早餐與主食的選擇,但其高升糖指數(glycemic index, GI)對於健康造成不利影響。由於代謝性疾病日益普遍與消費者健康意識提升,本研究旨在開發具較低升糖指數之麵包(土司)。碎米為碾米過程中產生之副產物,經酵素去支化(debranching)與濕熱處理(heat-moisture treatment)改質,可進一步提升其抗性澱粉(resistant starch, RS)含量,然而,其應用於烘焙製品時,常伴隨質地不良與適口性差等問題。本研究以高抗性米穀粉為原料,針對麵包配方開發、成品質地、物化性質與體外消化特性進行探討。研究結果顯示,透過製程優化可將去支穀粉回收率由54.37%提升至82.99%,並且乾燥方式的不同顯著影響粉體體化消化性質。此外,添加高抗性米穀粉作為麵包原料,可藉水分調整有效改善麵包結構與性質。在去支米麵包(DB)組別,加熱處理的有無對於麵包性質並無顯著影響,但經由去支-濕熱處理穀粉中,因澱粉結晶程度提升,藉由預加熱處理後,使澱粉膨潤可增加麵包體積與適口性質,顯示原料粉類的不同可以經由加工製程改善使烘焙性質提升。將實驗最佳組別進行儲藏性與體外消化性質分析,去支-濕熱米麵包(DHB)隨著儲藏時間增加硬度上升緩慢,甚至低於對照組白土司,顯示其延緩澱粉老化的能力。在消化性方面,以白土司作為標準品進行探討,DB與DHB組體外水解指數分別降至81.85%和77.98%,在30%取代比例下,其GI值顯著下降,使麵包由高GI降為中GI等級,且RS含量明顯提升。本研究成功利用預加熱處理與配方調整開發兼具良好適口性與健康功能之麵包,提供未來產品開發新方向。 | zh_TW |
| dc.description.abstract | White bread (WB), a staple food with widespread consumption, is associated with a high glycemic response, which may contribute to adverse metabolic outcomes. In light of the increasing prevalence of metabolic disorders, this study aimed to develop a novel bread formulation with a reduced glycemic index by incorporating high-resistant starch rice flour. Broken rice—a byproduct of rice milling—underwent enzymatic debranching followed by temperature-cycled heat-moisture treatment (HMT) to enhance its resistant starch (RS) content. Incorporating this modified flour into bread was systematically evaluated for its effects on dough hydration, bread texture, physicochemical properties, and in vitro starch digestibility. Results indicated that process improvement increased the recovery rate of debranched rice flour from 54.37% to 82.99%, and different drying methods significantly affected the flour's physicochemical and digestibility characteristics. Formulation adjustments, particularly in water content, were critical to achieving desirable bread texture due to the altered hydration properties of the high-RS flour. Pre-gelatinization treatment effectively enhanced starch swelling and matrix integration, improving bread volume and palatability. Storage tests showed that debranched-HMT rice flour partially substituted bread exhibited slower hardness increase and suppressed starch retrogradation, suggesting extended shelf life. HMT contributed to increased starch crystallinity, thereby reducing enzymatic digestibility. At a 30% substitution level, the hydrolysis index (HI) of breads made with debranched rice flour and debranched-HMT rice flour decreased to 81.85% and 77.98%, respectively, shifting their predicted glycemic index (eGI) classification from high to medium. Additionally, RS content in the final product significantly increased. These findings suggest that high-resistant debranched rice flour is a promising functional ingredient for developing bakery products with improved metabolic health profiles and enhanced storage stability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:27:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:27:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iv Abstract v 縮寫檢索表 vii 目次 viii 圖次 xii 表次 xiv 第一章、 前言 1 第二章、 文獻回顧 3 一、 稻米 3 1.1 基本介紹 3 1.2 分類 4 1.3 碎米 4 二、 澱粉 5 2.1 澱粉的基本組成與結構 5 2.2 結晶分型 7 2.3 糊化回凝生成 9 2.4 澱粉修飾 10 三、 抗性澱粉 14 3.1 抗性澱粉分類 14 3.2 影響因子 16 3.3 抗性澱粉功效 20 3.4 抗性澱粉限制 22 3.5 升糖指數GI 23 3.6 升糖指數體外試驗 23 3.7 澱粉水解動力學 24 四、 加工技術 25 4.1 去支鏈系統 25 4.2 溫度循環式濕熱處理 25 五、 麵包 27 5.1 麵包消費量 27 5.2 麵包營養成分與缺點 27 5.3 麵包品質影響因素 28 5.4 麵包品質評估 29 5.5 米麵包 31 5.6 抗性澱粉麵包 32 第三章、 實驗架構 34 一、 研究動機與目標 34 二、 去支米穀粉製程優化 34 三、 去支-濕熱米穀粉製備 36 四、 麵包製備 37 4.1 麵包優化流程 38 4.2 米穀粉取代度確認 39 4.3 米麵包中米穀粉糊化比例確認 40 4.4 去支米麵包與去支-濕熱米麵包之配方(乾粉組) 41 4.5 去支米麵包與去支-濕熱米麵包之配方(加熱成膠組) 42 第四章、 材料與方法 43 一、 實驗材料 43 二、 實驗試藥 43 三、 儀器設備 44 四、 實驗方法 45 4.1 去支米穀粉製備 45 4.2 去支-濕熱米穀粉製備 46 4.3 麵包製備方法 46 4.4 體積測量 47 4.5 高度測量 48 4.6 色澤分析 48 4.7 質地分析 48 4.8 儲存性試驗 49 4.9 視直鏈澱粉含量(apparent amylose content)測定 49 4.10 基本成分分析 49 4.11 酵素水解實驗 51 4.12 數據統計分析 53 第五章、 結果與討論 54 一、 原料粉末性質分析 54 1.1 視直鏈澱粉含量差異 54 1.2 米穀粉體外消化性質分析 56 二、 米穀粉取代度確認 59 2.1 外觀性質 59 2.2 質地分析 60 2.3 色澤分析 62 三、 米穀粉糊化比例確認 63 3.1 外觀性質 63 3.2 質地分析 65 3.3 色澤分析 66 四、 去支米麵包優化(水沉澱組,DBH2O) 67 4.1 外觀性質 67 4.2 質地分析 70 4.3 色澤分析 72 五、 去支米麵包優化(酒精沉澱組,DBEtOH) 73 5.1 外觀性質 73 5.2 質地分析 76 5.3 色澤分析 78 六、 去支-濕熱米麵包(DHB)優化 79 6.1 外觀性質 79 6.2 質地分析 84 6.3 色澤分析 85 七、 儲藏性實驗 86 八、 基本成分分析 89 九、 麵包體外消化性質分析 90 十、 米麵包配方統整 95 第六章、 結論與未來展望 96 第七章、 參考文獻 98 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 抗性澱粉 | zh_TW |
| dc.subject | 高抗性米穀粉 | zh_TW |
| dc.subject | 麵包 | zh_TW |
| dc.subject | 濕熱處理 | zh_TW |
| dc.subject | 酵素去支 | zh_TW |
| dc.subject | enzymatic debranching | en |
| dc.subject | heat moisture treatment | en |
| dc.subject | bread | en |
| dc.subject | resistant starch | en |
| dc.subject | high-resistant rice flour | en |
| dc.title | 應用高抗性米穀粉於土司之配方開發 及其物化與消化性質之分析 | zh_TW |
| dc.title | Development of white bread formula with high-resistant rice flour: evaluation of its physicochemical and digestibility characteristics | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳輝煌;吳俊毅;林華宗 | zh_TW |
| dc.contributor.oralexamcommittee | Hui-Huang Chen;Jiumn-Yih Wu;Hua-Tsung Lin | en |
| dc.subject.keyword | 高抗性米穀粉,抗性澱粉,酵素去支,濕熱處理,麵包, | zh_TW |
| dc.subject.keyword | high-resistant rice flour,resistant starch,enzymatic debranching,heat moisture treatment,bread, | en |
| dc.relation.page | 108 | - |
| dc.identifier.doi | 10.6342/NTU202501723 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-16 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2030-07-15 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.36 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
