請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99478| 標題: | 共軛高分子/奈米碳管複合材料應用於軟性熱電穿戴式裝置應用 Conjugated Polymer/Carbon Nanotube Nanocomposites for Thermoelectric Application and Flexible/Wearable Device |
| 作者: | 林柏伸 Po-Shen Lin |
| 指導教授: | 劉振良 Cheng-Liang Liu |
| 關鍵字: | 共軛高分子,奈米複合材,奈米碳管,熱電,軟性電子元件, Conjugated polymer,Nanocomposite,Carbon nanotube,Thermoelectric,Flexible electronic, |
| 出版年 : | 2025 |
| 學位: | 博士 |
| 摘要: | 軟性熱電材料被視為為新一代穿戴式電子裝置提供電力的潛在解決方案,因其具備無需機械運動部件、可於嚴苛環境中穩定運作,以及僅需利用溫度梯度即可發電等多種優勢。然而,針對不同應用需求最大化功能性時,往往需在發電性能與機械性能間取得平衡。因此,本論文首先透過設計高分子側鏈化學結構,開發出高分子/單壁碳奈米管(SWCNT)複合材料(Chapter 3)。特別是合成了含有硫烷基側鏈的聚[3-(烷基硫)噻吩] (P3ATTs),如P3EHTT與P3HDTT,以引入高分子與SWCNT間的硫–π作用,增進奈米管分散性並提升導電度,最終使P3HDTT/SWCNT複合材料達到最高功率因子307.7 µW m–1 K–2。接著於Chapter 4探討透過調控能階來提升功率效率並開發n型熱電材料。製作方法為將以萘酰亞胺(NDI)或異靛藍(IID)為主鏈的共軛高分子與SWCNT混合,並經小分子N-DMBI進行序列式摻雜,賦予n型熱電特性。進一步透過製程控制與製備工程,成功製作出p–n串聯之原型熱電元件,於20 K溫度差下實現27.2 nW功率輸出。最後,本論文設計了一系列本徵可延展的金屬超分子區段共聚物,應用於可拉伸高分子/SWCNT熱電材料。該共聚物藉由交替排列含terpyridine (TPY)官能基的聚(3-己基噻吩)(P3HT)與聚(n-丁基丙烯酸酯) (PnBA)區段,並透過異配型ZnII-TPY金屬-配位作用進行組裝。所得金屬高分子/SWCNT複合材料展現優異的機械性能,在拉伸至100%應變時仍能保有初始功率因子約50% (46.2 µW m–1 K–2)。綜上所述,本論文系統性地探討並實現了高功率因子、高p型與n型熱電性能,以及本質可拉伸的高分子/SWCNT複合材料設計,進一步推進軟性熱電材料於次世代穿戴式電子裝置中的應用潛力。 Flexible thermoelectrics offer a promising solution for powering next-generation wearable electronics, thanks to their advantages such as solid-state, stable performance under extreme enviorments, and electricity generation driven by temperature gradients. However, maximizing functionality often requires balancing power generation with mechanical flexibility. In this thesis, we first developed polymer/single-walled carbon nanotube (SWCNT) composites (Chapter 3) by designing polymer side chains to introduce sulfur–π interactions, improving SWCNT dispersion and electrical conductivity. As a result, the P3HDTT/SWCNT nanocomposite achieved a excellent power factor of 307.7 μW m–1 K–2. Chapter 4 focuses on tuning energy levels to enhance power efficiency and develop n-type thermoelectric materials. By blending naphthalene-diimide (NDI)- or isoindigo (IID)- based conjugated polymers with SWCNTs and sequentially doping with 4-[2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl]-N,N-dimethylbenzenamine (N-DMBI), nanocomposite devices with n-type behavior was achieved. Process optimization enabled the fabrication of a p–n prototype device, delivering a power output of 27.2 nW under a 20 K temperature gradient. Lastly, in Chapter 5, intrinsically stretchable metallo-supramolecular block copolymers were designed by alternating terpyridine (TPY)-modified P3HT and PnBA segments, assembled via ZnII–TPY coordination. These metallopolymer/SWCNT composites exhibited excellent mechanical properties, sustaining up to 100 % strain while retaining ~50 % of their initial power factor (46.2 μW m–1 K–2). In summary, this thesis presents a systematic approach to designing high-performance, p- and n-type, and stretchable polymer/SWCNT thermoelectrics, advancing the practical potential of flexible thermoelectric devices for wearable applications in the future. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99478 |
| DOI: | 10.6342/NTU202502374 |
| 全文授權: | 同意授權(限校園內公開) |
| 電子全文公開日期: | 2030-07-23 |
| 顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
