請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99462完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝淑貞 | zh_TW |
| dc.contributor.advisor | Shu-Chen Hsieh | en |
| dc.contributor.author | 董庭君 | zh_TW |
| dc.contributor.author | Ting-Chun Tung | en |
| dc.date.accessioned | 2025-09-10T16:21:49Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-28 | - |
| dc.identifier.citation | 1. Baker, R. E.; Mahmud, A. S.; Miller, I. F.; Rajeev, M.; Rasambainarivo, F.; Rice, B. L.; Takahashi, S.; Tatem, A. J.; Wagner, C. E.; Wang, L. F.; et al. Infectious disease in an era of global change. Nat Rev Microbiol 2022, 20 (4), 193-205. DOI: 10.1038/s41579-021-00639-z
2. Adeosun, W. B.; Loots, D. T. Medicinal Plants against Viral Infections: A Review of Metabolomics Evidence for the Antiviral Properties and Potentials in Plant Sources. Viruses 2024, 16 (2), 218-237. DOI: 10.3390/v16020218 3. Azam, M. S.; Islam, M. N.; Wahiduzzaman, M.; Alam, M.; Dhrubo, A. A. K. Antiviral foods in the battle against viral infections: Understanding the molecular mechanism. Food Sci Nutr 2023, 11 (8), 4444-4459. DOI: 10.1002/fsn3.3454 4. Srivastava, R.; Dubey, N. K.; Sharma, M.; Kharkwal, H.; Bajpai, R.; Srivastava, R. Boosting the human antiviral response in conjunction with natural plant products. Frontiers in Natural Products 2025, 3, 1-19. DOI: 10.3389/fntpr.2024.1470639 5. Sharifi-Rad, J.; Salehi, B.; Schnitzler, P.; Ayatollahi, S. A.; Kobarfard, F.; Fathi, M.; Eisazadeh, M.; Sharifi-Rad, M. Susceptibility of herpes simplex virus type 1 to monoterpenes thymol, carvacrol, p-cymene and essential oils of Sinapis arvensis L., Lallemantia royleana Benth. and Pulicaria vulgaris Gaertn. Cell Mol Biol (Noisy-le-grand) 2017, 63 (8), 42-47. DOI: 10.14715/cmb/2017.63.8.10 6. Civitelli, L.; Panella, S.; Marcocci, M. E.; De Petris, A.; Garzoli, S.; Pepi, F.; Vavala, E.; Ragno, R.; Nencioni, L.; Palamara, A. T.; Angiolella, L. In vitro inhibition of herpes simplex virus type 1 replication by Mentha suaveolens essential oil and its main component piperitenone oxide. Phytomedicine 2014, 21 (6), 857-865. DOI: 10.1016/j.phymed.2014.01.013 7. Ibrahim, N.; Moussa, A. Y. A comparative volatilomic characterization of Florence fennel from different locations: antiviral prospects. Food & Function 2021, 12 (4), 1498-1515, 10.1039/D0FO02897E. DOI: 10.1039/D0FO02897E 8. Nichols, D. B.; Leão, R. A.; Basu, A.; Chudayeu, M.; de Moraes Pde, F.; Talele, T. T.; Costa, P. R.; Kaushik-Basu, N. Evaluation of coumarin and neoflavone derivatives as HCV NS5B polymerase inhibitors. Chem Biol Drug Des 2013, 81 (5), 607-614. DOI: 10.1111/cbdd.12105 9. Javed, T.; Ashfaq, U. A.; Riaz, S.; Rehman, S.; Riazuddin, S. In-vitro antiviral activity of Solanum nigrum against Hepatitis C Virus. Virology Journal 2011, 8 (1), 26 - 32. DOI:10.1186/1743-422X-8-26 10. Sánchez-Rodríguez, C.; Peraza Cruces, K. R.; Rodrigáñez Riesco, L.; García-Vela, J. A.; Sanz-Fernández, R. Immunomodulatory effect of Polypodium leucotomos (Anapsos) in child palatine tonsil model. Int J Pediatr Otorhinolaryngol 2018, 107, 56-61. DOI: 10.1016/j.ijporl.2018.01.030 11. Verma, S.; M, S. Aloe vera their chemicals composition and applications: A review. International journal of Biological & Medical Research 2011, 2 (1), 466-471. 12. Khan, A.; Khan, T.; Ali, S.; Aftab, S.; Wang, Y.; Qiankun, W.; Khan, M.; Suleman, M.; Ali, S.; Heng, W.; et al. SARS-CoV-2 new variants: Characteristic features and impact on the efficacy of different vaccines. Biomed Pharmacother 2021, 143, 112176. DOI: 10.1016/j.biopha.2021.112176 13. Li, J.; Xu, D.; Wang, L.; Zhang, M.; Zhang, G.; Li, E.; He, S. Glycyrrhizic Acid Inhibits SARS-CoV-2 Infection by Blocking Spike Protein-Mediated Cell Attachment. Molecules 2021, 26 (20), 6090. DOI: 10.3390/molecules26206090 14. An, X.; Zhang, Y.; Duan, L.; Jin, D.; Zhao, S.; Zhou, R.; Duan, Y.; Lian, F.; Tong, X. The direct evidence and mechanism of traditional Chinese medicine treatment of COVID-19. Biomed Pharmacother 2021, 137, 111267. DOI: 10.1016/j.biopha.2021.111267 15. van de Sand, L.; Bormann, M.; Alt, M.; Schipper, L.; Heilingloh, C. S.; Steinmann, E.; Todt, D.; Dittmer, U.; Elsner, C.; Witzke, O.; Krawczyk, A. Glycyrrhizin Effectively Inhibits SARS-CoV-2 Replication by Inhibiting the Viral Main Protease. Viruses 2021, 13 (4), 6090. DOI: 10.3390/v130406090 16. Ngwe Tun, M. M.; Toume, K.; Luvai, E.; Nwe, K. M.; Mizukami, S.; Hirayama, K.; Komatsu, K.; Morita, K. The discovery of herbal drugs and natural compounds as inhibitors of SARS-CoV-2 infection in vitro. J Nat Med 2022, 76 (2), 402-409. DOI: 10.1007/s11418-021-01596-w 17. Emam, M. H.; Mahmoud, M. I.; El-Guendy, N.; Loutfy, S. A. Establishment of in-house assay for screening of anti-SARS-CoV-2 protein inhibitors. AMB Express 2024, 14 (1), 104. DOI: 10.1186/s13568-024-01739-8 18. Khandoker Minu, M.; Enamul Kabir Talukder, M.; Mothana, R. A.; Injamamul Islam, S.; Alanzi, A. R.; Hasson, S.; Irfan Sadique, M.; Arfat Raihan Chowdhury, M.; Shajid Khan, M.; Ahammad, F.; Mohammad, F. In-vitro and in-silico evaluation of rue herb for SARS-CoV-2 treatment. Int Immunopharmacol 2024, 143 (1), 113318. DOI: 10.1016/j.intimp.2024.113318 19. Simovic, A.; Radomirovic, M.; Gligorijevic, N.; Milcic, M.; Bicanin, M.; Minic, S.; Stojanovic, M.; Stanic-Vucinic, D.; Cirkovic Velickovic, T. Food-derived bioactive pigment phycocyanobilin binds to SARS-CoV-2 spike protein both covalently and noncovalently affecting its conformation and functionality. Archives of Biochemistry and Biophysics 2025, 770, 110475. DOI: 10.1016/j.abb.2025.110475 20. Tang, W. F.; Tsai, H. P.; Chang, Y. H.; Chang, T. Y.; Hsieh, C. F.; Lin, C. Y.; Lin, G. H.; Chen, Y. L.; Jheng, J. R.; Liu, P. C.; et al. Perilla (Perilla frutescens) leaf extract inhibits SARS-CoV-2 via direct virus inactivation. Biomed J 2021, 44 (3), 293-303. DOI: 10.1016/j.bj.2021.01.005 21. Bojadzic, D.; Alcazar, O.; Buchwald, P. Methylene Blue Inhibits the SARS-CoV-2 Spike-ACE2 Protein-Protein Interaction-a Mechanism that can Contribute to its Antiviral Activity Against COVID-19. Front Pharmacol 2020, 11, 600372. DOI: 10.3389/fphar.2020.600372 22. Rehman, S.; Antonovic, A. K.; McIntire, I. E.; Zheng, H.; Cleaver, L.; Baczynska, M.; Adams, C. O.; Portlock, T.; Richardson, K.; Shaw, R.; Oregioni, A.; Mastroianni, G.; Whittaker, S. B.; Kelly, G.; Lorenz, C. D.; Fornili, A.; Cianciotto, N. P.; Garnett, J. A. The Legionella collagen-like protein employs a distinct binding mechanism for the recognition of host glycosaminoglycans. Nature communications 2024,15(1), 4912. DOI: 10.1038/s41467-024-49255-4 23. Zhao, Y.; Qu, H.; Wang, X.; Zhang, Y.; Cheng, J.; Zhao, Y.; Wang, Q. Development of Fluorescence-Linked Immunosorbent Assay for Paeoniflorin. J Fluoresc 2015, 25 (4), 885-890. DOI: 10.1007/s10895-015-1568-3 24. Rosano, G. L.; Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 2014, 5, 172. DOI: 10.3389/fmicb.2014.00172 25. Baneyx, F. Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 1999, 10 (5), 411-421. DOI: 10.1016/s0958-1669(99)00003-8 26. Pan, S. H.; Malcolm, B. A. Reduced background expression and improved plasmid stability with pET vectors in BL21 (DE3). Biotechniques 2000, 29 (6), 1234-1238. DOI: 10.2144/00296st03 27. Hansen, L. H.; Knudsen, S.; Sørensen, S. J. The effect of the lacY gene on the induction of IPTG inducible promoters, studied in Escherichia coli and Pseudomonas fluorescens. Curr Microbiol 1998, 36 (6), 341-347. DOI: 10.1007/s002849900320 28. Wang, M. Y.; Zhao, R.; Gao, L. J.; Gao, X. F.; Wang, D. P.; Cao, J. M. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front Cell Infect Microbiol 2020, 10, 587269. DOI: 10.3389/fcimb.2020.587269 29. 郭詩筠(2022)。建立高表達抗原之益生菌疫苗平台(碩士論文)。國立臺灣大學,臺北市。http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89689. 30. Santacroce, L.; Charitos, I. A.; Bottalico, L. A successful history: probiotics and their potential as antimicrobials. Expert Rev Anti Infect Ther 2019, 17 (8), 635-645. DOI: 10.1080/14787210.2019.1645597 31. Giraffa, G.; Chanishvili, N.; Widyastuti, Y. Importance of lactobacilli in food and feed biotechnology. Res Microbiol 2010, 161 (6), 480-487. DOI: 10.1016/j.resmic.2010.03.001 32. Salminen, S.; von Wright, A.; Morelli, L.; Marteau, P.; Brassart, D.; de Vos, W. M.; Fondén, R.; Saxelin, M.; Collins, K.; Mogensen, G.; et al. Demonstration of safety of probiotics -- a review. Int J Food Microbiol 1998, 44 (1-2), 93-106. DOI: 10.1016/s0168-1605(98)00128-7 33. Hougee, S.; Vriesema, A. J.; Wijering, S. C.; Knippels, L. M.; Folkerts, G.; Nijkamp, F. P.; Knol, J.; Garssen, J. Oral treatment with probiotics reduces allergic symptoms in ovalbumin-sensitized mice: a bacterial strain comparative study. Int Arch Allergy Immunol 2010, 151 (2), 107-117. DOI: 10.1159/000236000 34. Dahiya, D.; Nigam, P. S. Use of Characterized Microorganisms in Fermentation of Non-Dairy-Based Substrates to Produce Probiotic Food for Gut-Health and Nutrition. Fermentation 2023, 9 (1), 1. DOI: 10.3390/fermentation9010001 35. Rwubuzizi, R.; Kim, H.; Holzapfel, W. H.; Todorov, S. D. Beneficial, safety, and antioxidant properties of lactic acid bacteria: A next step in their evaluation as potential probiotics. Heliyon 2023, 9 (4), e15610. DOI: 10.1016/j.heliyon.2023.e15610 36. Wang, Z.; Li, L.; Wang, S.; Wei, J.; Qu, L.; Pan, L.; Xu, K. The role of the gut microbiota and probiotics associated with microbial metabolisms in cancer prevention and therapy. Front Pharmacol 2022, 13, 1025860. DOI: 10.3389/fphar.2022.1025860 37. Wang, Y.; Zheng, Y.; Kuang, L.; Yang, K.; Xie, J.; Liu, X.; Shen, S.; Li, X.; Wu, S.; Yang, Y.; et al. Effects of probiotics in patients with morbid obesity undergoing bariatric surgery: a systematic review and meta-analysis. Int J Obes (Lond) 2023, 47 (11), 1029-1042. DOI: 10.1038/s41366-023-01375-5 38. Hasanpour, A.; Babajafari, S.; Mazloomi, S. M.; Shams, M. The effects of soymilk plus probiotics supplementation on cardiovascular risk factors in patients with type 2 diabetes mellitus: a randomized clinical trial. BMC Endocr Disord 2023, 23 (1), 36. DOI: 10.1186/s12902-023-01290-w 39. Pyo, Y.; Kwon, K. H.; Jung, Y. J. Probiotic Functions in Fermented Foods: Anti-Viral, Immunomodulatory, and Anti-Cancer Benefits. Foods 2024, 13 (15), 2386. DOI: 10.3390/foods13152386 40. Akhgarjand, C.; Vahabi, Z.; Shab-Bidar, S.; Anoushirvani, A.; Djafarian, K. The effects of probiotic supplements on oxidative stress and inflammation in subjects with mild and moderate Alzheimer's disease: a randomized, double-blind, placebo-controlled study. Inflammopharmacology 2024, 32 (2), 1413-1420. DOI: 10.1007/s10787-023-01427-2 41. Chen, K.; Jin, S.; Ma, Y.; Cai, L.; Xu, P.; Nie, Y.; Luo, L.; Yu, Q.; Shen, Y.; Ma, W.; et al. Adjunctive efficacy of Lactis XLTG11 for Acute diarrhea in children: A randomized, blinded, placebo-controlled study. Nutrition 2023, 111, 112052. DOI: 10.1016/j.nut.2023.112052 42. Sasso, C. V.; Lhamyani, S.; Hevilla, F.; Padial, M.; Blanca, M.; Barril, G.; Jiménez-Salcedo, T.; Martínez, E. S.; Nogueira, Á.; Lago-Sampedro, A. M.; Olveira, G. Modulation of miR-29a and miR-29b Expression and Their Target Genes Related to Inflammation and Renal Fibrosis by an Oral Nutritional Supplement with Probiotics in Malnourished Hemodialysis Patients. Int J Mol Sci 2024, 25 (2), 1132. DOI: 10.3390/ijms25021132 43. Wang, Y.; Song, H.; Du, F.; Yang, Z.; Wang, Y. [Long-term lung protection of probiotics in children with sepsis and its mechanism]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2023, 35 (12), 1268-1273. DOI: 10.3760/cma.j.cn121430-20230313-00172 44. Soukka, J.; Polari, L.; Kalliomäki, M.; Saros, L.; Laajala, T. D.; Vahlberg, T.; Toivola, D. M.; Laitinen, K. The Effect of a Fish Oil and/or Probiotic Intervention from Early Pregnancy Onwards on Colostrum Immune Mediators: A Randomized, Placebo-Controlled, Double-Blinded Clinical Trial in Overweight/Obese Mothers. Mol Nutr Food Res 2023, 67 (15), e2200446. DOI: 10.1002/mnfr.202200446 45. Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.; Harris, H. M. B.; Mattarelli, P.; O'Toole, P. W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020, 70 (4), 2782-2858. DOI: 10.1099/ijsem.0.004107 46. Nordström, E. A.; Teixeira, C.; Montelius, C.; Jeppsson, B.; Larsson, N. Lactiplantibacillus plantarum 299v (LP299V(®)): three decades of research. Benef Microbes 2021, 12 (5), 441-465. DOI: 10.3920/bm2020.0191 47. Tobias, J.; Heinl, S.; Dendinovic, K.; Ramić, A.; Schmid, A.; Daniel, C.; Wiedermann, U. The benefits of Lactiplantibacillus plantarum: From immunomodulator to vaccine vector. Immunol Lett 2025, 272, 106971. DOI: 10.1016/j.imlet.2025.106971 48. Rather, I. A.; Kamli, M. R.; Sabir, J. S. M.; Paray, B. A. Potential Antiviral Activity of Lactiplantibacillus plantarum KAU007 against Influenza Virus H1N1. Vaccines (Basel) 2022, 10 (3), 456. DOI: 10.3390/vaccines10030456 49. Rather, I. A.; Kamli, M. R.; Sabir, J. S. M.; Ali, S. Evaluation of Lactiplantibacillus plantarum KAU007 against Low-Pathogenic Avian Influenza Virus (H9N2). Pathogens 2022, 11 (11), 1246. DOI: 10.3390/pathogens11111246 50. Park, M. K.; Ngo, V.; Kwon, Y. M.; Lee, Y. T.; Yoo, S.; Cho, Y. H.; Hong, S. M.; Hwang, H. S.; Ko, E. J.; Jung, Y. J.; et al. Lactobacillus plantarum DK119 as a probiotic confers protection against influenza virus by modulating innate immunity. PLoS One 2013, 8 (10), e75368. DOI: 10.1371/journal.pone.0075368 51. Islam, M. A.; Albarracin, L.; Tomokiyo, M.; Valdez, J. C.; Sacur, J.; Vizoso-Pinto, M. G.; Andrade, B. G. N.; Cuadrat, R. R. C.; Kitazawa, H.; Villena, J. Immunobiotic Lactobacilli Improve Resistance of Respiratory Epithelial Cells to SARS-CoV-2 Infection. Pathogens 2021, 10 (9), 1197. DOI: 10.3390/pathogens10091197 52. Rocha, C. S.; Alexander, K. L.; Herrera, C.; Weber, M. G.; Grishina, I.; Hirao, L. A.; Kramer, D. J.; Arredondo, J.; Mende, A.; Crakes, K. R.; et al. Microbial remodeling of gut tryptophan metabolism and indole-3-lactate production regulate epithelial barrier repair and viral suppression in human and simian immunodeficiency virus infections. Mucosal Immunol 2025, 18 (3), 583-595. DOI: 10.1016/j.mucimm.2025.01.011 53. Chao, S.-H.; Wu, R.-J.; Watanabe, K.; Tsai, Y.-C. Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan. International Journal of Food Microbiology 2009, 135 (3), 203-210. DOI: 10.1016/j.ijfoodmicro.2009.07.032 54. Liu, Y. W.; Su, Y. W.; Ong, W. K.; Cheng, T. H.; Tsai, Y. C. Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities. Int Immunopharmacol 2011, 11 (12), 2159-2166. DOI: 10.1016/j.intimp.2011.09.013 55. Huang, H. Y.; Korivi, M.; Tsai, C. H.; Yang, J. H.; Tsai, Y. C. Supplementation of Lactobacillus plantarum K68 and Fruit-Vegetable Ferment along with High Fat-Fructose Diet Attenuates Metabolic Syndrome in Rats with Insulin Resistance. Evid Based Complement Alternat Med 2013, 2013, 943020. DOI: 10.1155/2013/943020 56. Liu, W. H.; Yang, C. H.; Lin, C. T.; Li, S. W.; Cheng, W. S.; Jiang, Y. P.; Wu, C. C.; Chang, C. H.; Tsai, Y. C. Genome architecture of Lactobacillus plantarum PS128, a probiotic strain with potential immunomodulatory activity. Gut Pathog 2015, 7, 22. DOI: 10.1186/s13099-015-0068-y 57. Chen, C. M.; Wu, C. C.; Huang, C. L.; Chang, M. Y.; Cheng, S. H.; Lin, C. T.; Tsai, Y. C. Lactobacillus plantarum PS128 Promotes Intestinal Motility, Mucin Production, and Serotonin Signaling in Mice. Probiotics Antimicrob Proteins 2022, 14 (3), 535-545. DOI: 10.1007/s12602-021-09814-3 58. Liu, Y. W.; Wang, Y. P.; Yen, H. F.; Liu, P. Y.; Tzeng, W. J.; Tsai, C. F.; Lin, H. C.; Lee, F. Y.; Jeng, O. J.; Lu, C. L.; Tsai, Y. C. Lactobacillus plantarum PS128 Ameliorated Visceral Hypersensitivity in Rats Through the Gut-Brain Axis. Probiotics Antimicrob Proteins 2020, 12 (3), 980-993. DOI: 10.1007/s12602-019-09595-w 59. Ma, Y. F.; Lin, Y. A.; Huang, C. L.; Hsu, C. C.; Wang, S.; Yeh, S. R.; Tsai, Y. C. Lactiplantibacillus plantarum PS128 Alleviates Exaggerated Cortical Beta Oscillations and Motor Deficits in the 6-Hydroxydopamine Rat Model of Parkinson's Disease. Probiotics Antimicrob Proteins 2023, 15 (2), 312-325. DOI: 10.1007/s12602-021-09828-x 60. Huang, H. J.; Chen, J. L.; Liao, J. F.; Chen, Y. H.; Chieu, M. W.; Ke, Y. Y.; Hsu, C. C.; Tsai, Y. C.; Hsieh-Li, H. M. Lactobacillus plantarum PS128 prevents cognitive dysfunction in Alzheimer's disease mice by modulating propionic acid levels, glycogen synthase kinase 3 beta activity, and gliosis. BMC Complement Med Ther 2021, 21 (1), 259. DOI: 10.1186/s12906-021-03426-8 61. Chen, C. M.; Wu, C. C.; Kim, Y.; Hsu, W. Y.; Tsai, Y. C.; Chiu, S. L. Enhancing social behavior in an autism spectrum disorder mouse model: investigating the underlying mechanisms of Lactiplantibacillus plantarum intervention. Gut Microbes 2024, 16 (1), 2359501. DOI: 10.1080/19490976.2024.2359501 62. Wu, S. I.; Wu, C. C.; Tsai, P. J.; Cheng, L. H.; Hsu, C. C.; Shan, I. K.; Chan, P. Y.; Lin, T. W.; Ko, C. J.; Chen, W. L.; Tsai, Y. C. Psychobiotic Supplementation of PS128(TM) Improves Stress, Anxiety, and Insomnia in Highly Stressed Information Technology Specialists: A Pilot Study. Front Nutr 2021, 8, 614105. DOI: 10.3389/fnut.2021.614105 63. Chen, H. M.; Kuo, P. H.; Hsu, C. Y.; Chiu, Y. H.; Liu, Y. W.; Lu, M. L.; Chen, C. H. Psychophysiological Effects of Lactobacillus plantarum PS128 in Patients with Major Depressive Disorder: A Preliminary 8-Week Open Trial. Nutrients 2021, 13 (11), 3731. DOI: 10.3390/nu13113731 64. Ho, Y. T.; Tsai, Y. C.; Kuo, T. B. J.; Yang, C. C. H. Effects of Lactobacillus plantarum PS128 on Depressive Symptoms and Sleep Quality in Self-Reported Insomniacs: A Randomized, Double-Blind, Placebo-Controlled Pilot Trial. Nutrients 2021, 13 (8). DOI: 10.3390/nu13082820 65. Lu, C. S.; Chang, H. C.; Weng, Y. H.; Chen, C. C.; Kuo, Y. S.; Tsai, Y. C. The Add-On Effect of Lactobacillus plantarum PS128 in Patients With Parkinson's Disease: A Pilot Study. Front Nutr 2021, 8, 650053. DOI: 10.3389/fnut.2021.650053 66. Molenaar, D.; Bringel, F.; Schuren, F. H.; de Vos, W. M.; Siezen, R. J.; Kleerebezem, M. Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol 2005, 187 (17), 6119-6127. DOI: 10.1128/jb.187.17.6119-6127.2005 67. Villena, J.; Li, C.; Vizoso-Pinto, M. G.; Sacur, J.; Ren, L.; Kitazawa, H. Lactiplantibacillus plantarum as a Potential Adjuvant and Delivery System for the Development of SARS-CoV-2 Oral Vaccines. Microorganisms 2021, 9 (4), 683. DOI: 10.3390/microorganisms9040683 68. Blanch-Asensio, M.; Dey, S.; Tadimarri, V. S.; Sankaran, S. Expanding the genetic programmability of Lactiplantibacillus plantarum. Microbial Biotechnology 2024, 17 (1), e14335. DOI: 10.1111/1751-7915.14335 69. Lamers, M. M.; Beumer, J.; van der Vaart, J.; Knoops, K.; Puschhof, J.; Breugem, T. I.; Ravelli, R. B. G.; Paul van Schayck, J.; Mykytyn, A. Z.; Duimel, H. Q.; et al. SARS-CoV-2 productively infects human gut enterocytes. Science 2020, 369 (6499), 50-54. DOI: 10.1126/science.abc1669 70. Vela Ramirez, J. E.; Sharpe, L. A.; Peppas, N. A. Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev 2017, 114, 116-131. DOI: 10.1016/j.addr.2017.04.008 71. Garcia-Gonzalez, N.; Comas, J. C.; Harris, H. M. B.; Strain, C.; Stanton, C.; Hill, C.; Corsetti, A.; Gahan, C. G. M. Impact of Food Origin Lactiplantibacillus plantarum Strains on the Human Intestinal Microbiota in an in vitro System. Front Microbiol 2022, 13, 832513. DOI: 10.3389/fmicb.2022.832513 72. Mathiesen, G.; Sveen, A.; Brurberg, M. B.; Fredriksen, L.; Axelsson, L.; Eijsink, V. G. Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1. BMC Genomics 2009, 10, 425. DOI: 10.1186/1471-2164-10-425 73. Sørvig, E.; Mathiesen, G.; Naterstad, K.; Eijsink, V. G. H.; Axelsson, L. High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology (Reading) 2005, 151 (7), 2439-2449. DOI: 10.1099/mic.0.28084-0 74. Nguyen, H. L.; Pham, D. L.; O’Brien, E. P.; Li, M. S. Erythromycin leads to differential protein expression through differences in electrostatic and dispersion interactions with nascent proteins. Scientific Reports 2018, 8 (1), 6460. DOI: 10.1038/s41598-018-24344-9 75. Weisblum, B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 1995, 39 (3), 577-585. DOI: 10.1128/aac.39.3.577 76. Gupta, P.; Sothiselvam, S.; Vázquez-Laslop, N.; Mankin, A. S. Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible. Nature Communications 2013, 4 (1), 1984. DOI: 10.1038/ncomms2984. 77. Di Conza, J. A.; Badaracco, A.; Ayala, J.; Rodríguez, C.; Famiglietti, A.; Gutkind, G. O. β-lactamases produced by amoxicillin-clavulanate-resistant enterobacteria isolated in Buenos Aires, Argentina: a new blaTEM gene. Rev Argent Microbiol 2014, 46 (3), 210-217. DOI: 10.1016/s0325-7541(14)70075-6 78. Brurberg, M. B.; Nes, I. F.; Eijsink, V. G. Pheromone-induced production of antimicrobial peptides in Lactobacillus. Mol Microbiol 1997, 26 (2), 347-360. DOI: 10.1046/j.1365-2958.1997.5821951.x 79. Rud, I.; Jensen, P. R.; Naterstad, K.; Axelsson, L. A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiology (Reading) 2006, 152 (Pt 4), 1011-1019. DOI: 10.1099/mic.0.28599-0 80. Freudl, R. Signal peptides for recombinant protein secretion in bacterial expression systems. Microbial Cell Factories 2018, 17 (1), 52. DOI: 10.1186/s12934-018-0901-3. 81. Ashiuchi, M.; Nawa, C.; Kamei, T.; Song, J. J.; Hong, S. P.; Sung, M. H.; Soda, K.; Misono, H. Physiological and biochemical characteristics of poly gamma-glutamate synthetase complex of Bacillus subtilis. Eur J Biochem 2001, 268 (20), 5321-5328. DOI: 10.1046/j.0014-2956.2001.02475.x 82. Li, R.; Chowdhury, M. Y.; Kim, J. H.; Kim, T. H.; Pathinayake, P.; Koo, W. S.; Park, M. E.; Yoon, J. E.; Roh, J. B.; Hong, S. P.; et al. Mucosally administered Lactobacillus surface-displayed influenza antigens (sM2 and HA2) with cholera toxin subunit A1 (CTA1) Induce broadly protective immune responses against divergent influenza subtypes. Vet Microbiol 2015, 179 (3-4), 250-263. DOI: 10.1016/j.vetmic.2015.07.020 83. Lei, H.; Gao, T.; Cen, Q. Cross-protective immunity of the haemagglutinin stalk domain presented on the surface of Lactococcus lactis against divergent influenza viruses in mice. Virulence 2021, 12 (1), 12-19. DOI: 10.1080/21505594.2020.1857162 84. Lei, H.; Peng, X.; Jiao, H.; Zhao, D.; Ouyang, J. Broadly protective immunity against divergent influenza viruses by oral co-administration of Lactococcus lactis expressing nucleoprotein adjuvanted with cholera toxin B subunit in mice. Microb Cell Fact 2015, 14, 111. DOI: 10.1186/s12934-015-0287-4 85. Shonyela, S. M.; Shi, C.; Yang, W.; Cao, X.; Yang, G.; Wang, C. Recombinant Lactobacillus plantarum NC8 strain expressing porcine rotavirus VP7 induces specific antibodies in BALB/c mice. Acta Biochim Biophys Sin (Shanghai) 2021, 53 (6), 707-718. DOI: 10.1093/abbs/gmab050 86. Lei, H.; Sheng, Z.; Ding, Q.; Chen, J.; Wei, X.; Lam, D. M.; Xu, Y. Evaluation of oral immunization with recombinant avian influenza virus HA1 displayed on the Lactococcus lactis surface and combined with the mucosal adjuvant cholera toxin subunit B. Clin Vaccine Immunol 2011, 18 (7), 1046-1051. DOI: 10.1128/cvi.00050-11 87. Mays, Z. J.; Nair, N. U. Synthetic biology in probiotic lactic acid bacteria: At the frontier of living therapeutics. Curr Opin Biotechnol 2018, 53, 224-231. DOI: 10.1016/j.copbio.2018.01.028 88. Xie, Z.; Jin, Y.-S.; Klaenhammer, T. R.; Miller, M. J. The insertion of the inverted repeat of an insertion sequence (IS) element from Lacticaseibacillus rhamnosus changes the host range and stability of pGK12, a shuttle vector for lactic acid bacteria. Applied and Environmental Microbiology 2025, 91 (4), e01908-01924. DOI: doi:10.1128/aem.01908-24 89. Alegre, M. T.; Rodríguez, M. C.; Mesas, J. M. Transformation of Lactobacillus plantarum by electroporation with in vitro modified plasmid DNA. FEMS Microbiol Lett 2004, 241 (1), 73-77. DOI: 10.1016/j.femsle.2004.10.006 90. Wang, C.; Cui, Y.; Qu, X. Optimization of electrotransformation (ETF) conditions in lactic acid bacteria (LAB). J Microbiol Methods 2020, 174, 105944. DOI: 10.1016/j.mimet.2020.105944 91. Jang, K. H.; Han, W. C.; Ji, S. H.; Kang, S.; Shah, N. Effect of Glycine on the Growth of Leuconostoc mesenteroides and Lactobacillus plantarum in Kimchi Fermentation. Food Science and Biotechnology 2009, 18, 1180-1185 92. Kim, S. J.; Chang, J.; Singh, M. Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. Biochim Biophys Acta 2015, 1848 (1 Pt B), 350-362. DOI: 10.1016/j.bbamem.2014.05.031 93. Garde, S.; Chodisetti, P. K.; Reddy, M. Peptidoglycan: Structure, Synthesis, and Regulation. EcoSal Plus 2021, 9 (2), eESP-0010-2020. DOI: doi:10.1128/ecosalplus.ESP-0010-2020. 94. Fristot, E.; Bessede, T.; Camacho Rufino, M.; Mayonove, P.; Chang, H. J.; Zuniga, A.; Michon, A. L.; Godreuil, S.; Bonnet, J.; Cambray, G. An optimized electrotransformation protocol for Lactobacillus jensenii. PLoS One 2023, 18 (2), e0280935. DOI: 10.1371/journal.pone.0280935 95. Hernandez-Rodriguez, Y.; Bullard, A. M.; Busch, R. J.; Marshall, A.; Vargas-Muñiz, J. M. Strategies for genetic manipulation of the halotolerant black yeast Hortaea werneckii: ectopic DNA integration and marker-free CRISPR/Cas9 transformation. Microbiol Spectr 2025, 13 (1), e0243024. DOI: 10.1128/spectrum.02430-24 96. Wang, X.; Li, Y.; Zheng, S.; He, F.; Yang, Y.; Yang, W.; Pan, J.; Liang, Y.; Mei, Y. Polysaccharide biosynthetic pathway profiling and homologous expression of the phosphomannomutase gene in Sanghuangporus sanghuang based on multi-omics analysis. International Journal of Biological Macromolecules 2025, 315, 144578. DOI: 10.1016/j.ijbiomac.2025.144578 97. Kumar, P.; Rajput, V. D.; Singh, A. K.; Agrawal, S.; Das, R.; Minkina, T.; Shukla, P. K.; Wong, M. H.; Kaushik, A.; Albukhaty, S.; et al. Nano-assisted delivery tools for plant genetic engineering: a review on recent developments. Environ Sci Pollut Res Int 2025, 32 (2), 469-484. DOI: 10.1007/s11356-024-35806-1 98. Novickij, V.; Rembiałkowska, N.; Szlasa, W.; Kulbacka, J. Does the shape of the electric pulse matter in electroporation? Front Oncol 2022, 12, 958128. DOI: 10.3389/fonc.2022.958128 99. Young, J. L.; Dean, D. A. Electroporation-mediated gene delivery. Adv Genet 2015, 89, 49-88. DOI: 10.1016/bs.adgen.2014.10.003 100. MicroPulser Electroporator: Instruction Manual and Applications Guide. BIORAD, Ed. https://www.bio-rad.com/webroot/web/pdf/lsr/literature/4006174B.pdf 101. Choi, J. H.; Lee, S. Y. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 2004, 64 (5), 625-635. DOI: 10.1007/s00253-004-1559-9 102. Sun, J.; Rutherford, S. T.; Silhavy, T. J.; Huang, K. C. Physical properties of the bacterial outer membrane. Nat Rev Microbiol 2022, 20 (4), 236-248. DOI: 10.1038/s41579-021-00638-0 103. Ragland, S. A.; Criss, A. K. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog 2017, 13 (9), e1006512. DOI: 10.1371/journal.ppat.1006512 104. Roshdy, W. H.; Rashed, H. A.; Kandeil, A.; Mostafa, A.; Moatasim, Y.; Kutkat, O.; Abo Shama, N. M.; Gomaa, M. R.; El-Sayed, I. H.; El Guindy, N. M.; et al. EGYVIR: An immunomodulatory herbal extract with potent antiviral activity against SARS-CoV-2. PLoS One 2020, 15 (11), e0241739. DOI: 10.1371/journal.pone.0241739 105. Chen, J.; Li, S.; Lei, Z.; Tang, Q.; Mo, L.; Zhao, X.; Xie, F.; Zi, D.; Tan, J. Inhibition of SARS-CoV-2 pseudovirus invasion by ACE2 protecting and Spike neutralizing peptides: An alternative approach to COVID19 prevention and therapy. Int J Biol Sci 2021, 17 (11), 2957-2969. DOI: 10.7150/ijbs.61476 106. Woo, H. J.; Roux, B. Calculation of absolute protein-ligand binding free energy from computer simulations. Proc Natl Acad Sci U S A 2005, 102 (19), 6825-6830. DOI: 10.1073/pnas.0409005102 107. Wang, S.; Chou, T. H.; Sakhatskyy, P. V.; Huang, S.; Lawrence, J. M.; Cao, H.; Huang, X.; Lu, S. Identification of two neutralizing regions on the severe acute respiratory syndrome coronavirus spike glycoprotein produced from the mammalian expression system. J Virol 2005, 79 (3), 1906-1910. DOI: 10.1128/jvi.79.3.1906-1910.2005 108. Vetráková, A.; Chovanová, R. K.; Rechtoríková, R.; Krajčíková, D.; Barák, I. Bacillus subtilis spores displaying RBD domain of SARS-CoV-2 spike protein. Comput Struct Biotechnol J 2023, 21, 1550-1556. DOI: 10.1016/j.csbj.2023.02.007 109. Li, L.; Hao, J.; Jiang, Y.; Hao, P.; Gao, Y.; Chen, J.; Zhang, G.; Jin, N.; Wang, M.; Li, C. A micro-sized vaccine based on recombinant Lactiplantibacillus plantarum fights against SARS-CoV-2 infection via intranasal immunization. Acta Pharm Sin B 2023, 13 (7), 3168-3176. DOI: 10.1016/j.apsb.2023.01.005 110. Si, C.; Bai, J.; Li, Y.; Li, Y.; Liu, Y.; Zhou, X.; Shi, J.; Nakanishi, H.; Li, Z. Establishment of a Novel Platform for Developing Oral Vaccines Based on the Surface Display System of Yeast Spores. Int J Mol Sci 2025, 26 (8), 3615. DOI: 10.3390/ijms26083615 111. Lang, Q.; Huang, N.; Li, L.; Liu, K.; Chen, H.; Liu, X.; Ge, L.; Yang, X. Novel and efficient yeast-based strategies for subunit vaccine delivery against COVID-19. Int J Biol Macromol 2025, 294, 139254. DOI: 10.1016/j.ijbiomac.2024.139254 112. Cai, R.; Jiang, Y.; Yang, W.; Yang, W.; Shi, S.; Shi, C.; Hu, J.; Gu, W.; Ye, L.; Zhou, F.; et al. Surface-Displayed IL-10 by Recombinant Lactobacillus plantarum Reduces Th1 Responses of RAW264.7 Cells Stimulated with Poly(I:C) or LPS. J Microbiol Biotechnol 2016, 26 (2), 421-431. DOI: 10.4014/jmb.1509.09030 113. Golani-Armon, A.; Golan, M.; Shamay, Y.; Raviv, L.; David, A. DC3-decorated polyplexes for targeted gene delivery into dendritic cells. Bioconjug Chem 2015, 26 (2), 213-224. DOI: 10.1021/bc500529d 114. Tseng, Y. H.; Hsieh, C. C.; Kuo, T. Y.; Liu, J. R.; Hsu, T. Y.; Hsieh, S. C. Construction of a Lactobacillus plantarum Strain Expressing the Capsid Protein of Porcine Circovirus Type 2d (PCV2d) as an Oral Vaccine. Indian J Microbiol 2019, 59 (4), 490-499. DOI: 10.1007/s12088-019-00827-9 115. Toth, M.; Antunes, N. T.; Stewart, N. K.; Frase, H.; Bhattacharya, M.; Smith, C. A.; Vakulenko, S. B. Class D β-lactamases do exist in Gram-positive bacteria. Nat Chem Biol 2016, 12 (1), 9-14. DOI: 10.1038/nchembio.1950 116. Wiull, K.; Kjos, M.; Eijsink, V. G. H.; Mathiesen, G. An inverse relationship between fitness and secretion efficiency in a gram-positive bacterium. PNAS Nexus 2025, 4 (5), 131. DOI: 10.1093/pnasnexus/pgaf131 117. Narita, J.; Okano, K.; Kitao, T.; Ishida, S.; Sewaki, T.; Sung, M. H.; Fukuda, H.; Kondo, A. Display of alpha-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch. Appl. Environ. Microbiol. 2006, 72(1), 269–275. DOI: 10.1128/AEM.72.1.269-275.2006 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99462 | - |
| dc.description.abstract | 隨著COVID-19等病毒傳染病威脅日益嚴峻,藥物治療與疫苗防疫策略逐漸式微,促使天然食物因子與次世代黏膜疫苗佐劑成為研究焦點。然而,食物因子之抗病毒活性缺乏高效、快速且安全的驗證方式;乳酸菌作為黏膜疫苗載體雖具潛力,但前人研究因設計與技術層面的限制,始終無法成功實現抗原表現。本研究旨在建構一套能快速驗證抗病毒分子活性的細菌平台,並克服乳酸菌轉形與抗原表現的技術障礙。在篩選平台建立部分,本研究將病毒抗原片段表現於大腸桿菌 (Escherichia coli) 內部,並經外膜處理後與抗病毒候選因子反應。隨後藉由免疫螢光標定及顯微鏡影像分析,驗證候選因子競爭性抑制抗原-抗體結合的潛力,作為活性評估的依據。乳酸菌表現部分,則針對質體轉形失敗與蛋白未表現的瓶頸進行深入分析,逐步釐清原因並透過篩選合適抗生素選殖系統(由ampR改為ermR)、電穿孔緩衝液改良(使用PEG-1500)、DNA來源菌株優化(選用E. coli JM110未甲基化修飾質體)及質體序列修正等方式,大幅提升植物乳桿菌 (L. plantarum K68) 轉形效率。最終,由Western blot確認重組菌株在誘導條件下可穩定表現目標Spike抗原。本研究建立的篩選平台具快速且成本低的優勢,適合作為抗病毒功能性食品開發的前期篩選工具;而優化後之乳酸菌轉形與抗原表現系統,則可作為未來益生菌疫苗研發的重要基礎,具延伸應用潛力。 | zh_TW |
| dc.description.abstract | With the increasing threat of infectious diseases such as COVID-19, the efficacy of conventional therapeutics and vaccines are diminishing, which has led to the focus on natural food factors and next-generation mucosal vaccine adjuvants. However, there is a lack of efficient, rapid and safe ways to validate the antiviral activity of food factors, and although lactic acid bacteria (LAB) have the potential to be used as mucosal vaccine carriers, previous studies have been unable to achieve antigenic performance due to design and technical constraints. This study aimed to establish a bacterial platform for rapid screening of antiviral compounds, and to overcome technical barriers related to plasmid transformation and antigen expression in lactic acid bacteria. For the screening platform, viral antigen fragments were expressed in Escherichia coli and subjected to permeabilization treatment, enabling them to interact with candidate antiviral agents. Immunofluorescence labeling and microscopic image analysis were performed to verify the ability of the candidate factors to competitively inhibit antigen-antibody binding, which was used as the basis for the preliminary evaluation of their activity. For the LAB expression system, we identified key bottlenecks in transformation failure and low expression. Through systematic optimization—including switching the selection marker from ampR to ermR selection, replacing electroporation buffer with PEG-1500, using methylation-deficient E. coli JM110 for plasmid preparation, and correcting sequence design errors—we significantly improved transformation efficiency in L. plantarum K68. Finally, we confirmed stable expression of transformants by Western blot. In summary, this study presents a rapid, cost-effective bacterial screening tool for functional food preliminary evaluation. The optimized transformation and antigen expression system in L. plantarum K68 further lays a solid foundation for future applications in probiotic vaccine development. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:21:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:21:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III Abstract IV 目次 VI 圖次 XI 表次 XIII 縮寫表 XIV 第一章、研究目的 1 第二章、實驗架構 2 一、抗病毒食物因子平台發展 2 二、乳酸菌抗原呈現優化策略 3 第三章、文獻探討 4 第一節、大腸桿菌細菌平台發展 4 一、病毒傳染病的威脅與食品預防 4 二、天然藥草對 SARS-CoV-2 活性抑制 5 三、分子對接與其驗證的挑戰 7 四、食物因子篩選方法 8 五、pET20b(+) 大腸桿菌表現系統 8 六、Spike protein 目標基因片段 9 第二節、乳酸菌發展成益生菌疫苗介紹 10 一、乳酸菌對人體益處 10 二、植物乳桿菌於益生菌的應用潛力 10 三、植物乳桿菌載體應用與益生菌疫苗 12 四、抗原呈現基因設計與表達困境 12 五、乳酸菌的質體轉形挑戰 15 第四章、大腸桿菌抗病毒食物因子篩選平台建構 19 第一節、實驗材料 19 一、菌株和質體 19 二、培養基與溶液 19 三、藥品與試劑 22 四、抗體 23 五、儀器設備 24 第二節、實驗方法 25 一、製備 E. coli Competent cell 25 二、pET20b(+)-BA2S 質體構建 25 三、質體轉形至 E. coli Competent cell 26 四、含質體 E. coli 菌株保存 26 五、誘導 E. coli BL21(DE3) pLysS Spike 蛋白表達 27 六、Western blot 檢測 E. coli BL21(DE3) pLysS 表現的 Spike 蛋白 27 七、Coomassie blue 蛋白質電泳膠片染色 28 八、螢光顯微鏡觀察表現 Spike 蛋白的 E. coli BL21(DE3) pLysS 28 九、分光光度計讀值對應大腸桿菌活菌計數實驗 30 十、E. coli BL21(DE3) pLysS 於塑膠培養盤的貼附實驗 30 十一、以顯微螢光酶聯免疫吸附觀察法分析細菌貼附實驗 31 十二、驗證食物因子抑制螢光酶聯免疫吸附分析實驗 31 十三、統計方法 31 第三節、結果與分析 32 一、Western blot 分析 E. coli 重組菌之Spike 抗原表現 32 二、免疫螢光顯微鏡 (IF) 觀察E. coli 重組菌之抗原表現與外膜處理方法評估 33 三、E. coli BL21(DE3) pLysS 細胞密度與 OD600 值關係分析 35 四、不同細菌貼附密度與螢光強度的關係分析 36 五、不同濃度薑黃素 (Curcumin) 處理對重組菌螢光強度抑制效果之分析 38 第四節、小結與討論 40 第五章、Lactiplantibacillus plantarum 質體轉形技術與抗原表現之挑戰與對策 42 第一節、實驗材料 42 一、菌株和質體 42 二、引子 43 三、培養基與溶液 44 四、藥品與試劑 45 五、抗體 46 六、儀器設備 46 第二節、實驗方法 47 一、spike-his6 與 pgsA’基因設計 47 二、用於 Lactiplantibacillus plantarum 表達Spike 蛋白的質體構建 48 三、誘導 L. plantarum 重組菌株蛋白表達 50 四、L. plantarum 重組蛋白之萃取 50 五、Western blot 分析 L. plantarum 重組菌之 Spike 抗原表達 51 六、螢光顯微鏡觀察表現 Spike 蛋白的 L. plantarum 重組菌 52 七、抗生素濃度篩選含質體 Lactiplantibacillus plantarum 52 八、質體酵素酶切試驗 52 九、製備 L. plantarum Competent cell 53 十、質體電穿孔轉形至 L. plantarum 方法 54 十一、PCR 確認 L. plantarum 質體內含 55 十二、質體克隆流程 55 1. 限制酶切試驗 55 2. 電泳與切膠純化 56 3. DNA 片段混合連接 56 4. 轉形連接產物至E. coli competent cell 57 5. PCR 篩選正確轉形株 (transformant) 57 十三、生長曲線 58 十四、統計分析 58 第三節、結果與分析 59 一、Western blot 分析L. plantarum 重組凍存菌之抗原表現 59 二、抗生素重新篩選與PCR 確認L. plantarum 重組菌質體存在 61 三、免疫螢光顯微鏡 (IF) 觀察 pA-p11-NS L. plantarum 重組菌之表面抗原表現63 四、L. plantarum 重組菌之不同抗生素選殖系統篩選 65 五、不同電穿孔緩衝液對L. plantarum 重組菌質體轉形之影響 67 六、pE-sppA-NS 質體克隆結果確認 68 七、不同電穿孔條件對L. plantarum 重組菌質體轉形之影響 71 八、L. plantarum K68 重組菌之PCR 鑑定 72 九、L. plantarum K68 重組菌於誘導與非誘導條件下之生長曲線分析 73 十、Western blot 分析 pE-sppA-NS 與 pE-sppA-AS L. plantarum K68 重組菌之抗原表現 74 第四節、小結與討論 77 第六章、總結與未來展望 78 第八章、參考文獻 79 第七章、附錄 92 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | SARS-CoV-2 | zh_TW |
| dc.subject | 棘突蛋白 | zh_TW |
| dc.subject | 大腸桿菌 | zh_TW |
| dc.subject | 抗病毒 | zh_TW |
| dc.subject | 植物乳桿菌 | zh_TW |
| dc.subject | 電穿孔 | zh_TW |
| dc.subject | Lactiplantibacillus plantarum | en |
| dc.subject | SARS-CoV-2 | en |
| dc.subject | antiviral | en |
| dc.subject | electroporation | en |
| dc.subject | Spike protein | en |
| dc.subject | Escherichia coli | en |
| dc.title | 大腸桿菌抗病毒食物因子篩選平台建構與植物乳桿菌抗原表現系統優化之研究 | zh_TW |
| dc.title | Development of a Plasmid-Based E. coli Platform for Screening Antiviral Food Factors and Optimization of Antigen Expression in Lactiplantibacillus plantarum | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭靜娟;廖憶純;謝松源 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Chuan Kuo;Yi-Chun Liao;Sung-Yuan Hsieh | en |
| dc.subject.keyword | SARS-CoV-2,棘突蛋白,大腸桿菌,抗病毒,植物乳桿菌,電穿孔, | zh_TW |
| dc.subject.keyword | SARS-CoV-2,Spike protein,Escherichia coli,antiviral,Lactiplantibacillus plantarum,electroporation, | en |
| dc.relation.page | 93 | - |
| dc.identifier.doi | 10.6342/NTU202501841 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-29 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2030-07-22 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
