請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99425完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉振良 | zh_TW |
| dc.contributor.advisor | Cheng-Liang Liu | en |
| dc.contributor.author | 吳維妮 | zh_TW |
| dc.contributor.author | Wei-Ni Wu | en |
| dc.date.accessioned | 2025-09-10T16:15:00Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-24 | - |
| dc.identifier.citation | 1. Bell, L. E., Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321 (5895), 1457-1461.
2. He, J.; Tritt, T. M., Advances in Thermoelectric Materials Research: Looking Back and Moving Forward. Science 2017, 357 (6358), eaak9997. 3. Tianyi, C.; Xiao-Lei, S.; Jin, Z.; Zhi-Gang, C., Advances in Conducting Polymer-Based Thermoelectric Materials and Devices. Microstructures 2021, 1 (1), 2021007. 4. Hur, S.; Kim, S.; Kim, H.-S.; Kumar, A.; Kwon, C.; Shin, J.; Kang, H.; Sung, T. H.; Ryu, J.; Baik, J. M.; Song, H.-C., Low-Grade Waste Heat Recovery Scenarios: Pyroelectric, Thermomagnetic, and Thermogalvanic Thermal Energy Harvesting. Nano Energy 2023, 114, 108596. 5. Forman, C.; Muritala, I. K.; Pardemann, R.; Meyer, B., Estimating the Global Waste Heat Potential. Renew. Sustain. Energy Rev. 2016, 57, 1568-1579. 6. Snyder, G. J.; Toberer, E. S., Complex Thermoelectric Materials. Nat. Mater 2008, 7 (2), 105-114. 7. Zhang, Q.; Sun, Y.; Xu, W.; Zhu, D., Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently. Adv. Mater. 2014, 26 (40), 6829-6851. 8. Kroon, R.; Mengistie, D. A.; Kiefer, D.; Hynynen, J.; Ryan, J. D.; Yu, L.; Müller, C., Thermoelectric Plastics: From Design to Synthesis, Processing and Structure–Property Relationships. Chem. Soc. Rev. 2016, 45 (22), 6147-6164. 9. Yao, C.-J.; Zhang, H.-L.; Zhang, Q. Recent Progress in Thermoelectric Materials Based on Conjugated Polymers Polymers [Online], 2019, p. 107. 10. Lee, S.; Kim, S.; Pathak, A.; Tripathi, A.; Qiao, T.; Lee, Y.; Lee, H.; Woo, H. Y., Recent Progress in Organic Thermoelectric Materials and Devices. Macromol. Res. 2020, 28 (6), 531-552. 11. Wang, D.; Liu, L.; Gao, X.; Di, C.-a.; Zhu, D., Recent Advances in Molecular Design of Organic Thermoelectric Materials. CCS Chem. 2021, 3 (10), 2212-2225. 12. Wang, S.; Zuo, G.; Kim, J.; Sirringhaus, H., Progress of Conjugated Polymers as Emerging Thermoelectric Materials. Prog. Polym. Sci. 2022, 129, 101548. 13. Deng, L.; Liu, Y.; Zhang, Y.; Wang, S.; Gao, P., Organic Thermoelectric Materials: Niche Harvester of Thermal Energy. Adv. Funct. Mater. 2023, 33 (3), 2210770. 14. Peterson, K. A.; Thomas, E. M.; Chabinyc, M. L., Thermoelectric Properties of Semiconducting Polymers. Annu. Rev. Mater. Res. 2020, 50 (Volume 50, 2020), 551-574. 15. Massetti, M.; Jiao, F.; Ferguson, A. J.; Zhao, D.; Wijeratne, K.; Würger, A.; Blackburn, J. L.; Crispin, X.; Fabiano, S., Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chem. Rev. 2021, 121 (20), 12465-12547. 16. Zaia, E. W.; Gordon, M. P.; Yuan, P.; Urban, J. J., Progress and Perspective: Soft Thermoelectric Materials for Wearable and Internet-of-Things Applications. Adv. Electron. Mater. 2019, 5 (11), 1800823. 17. Wang, Y.; Yang, L.; Shi, X.-L.; Shi, X.; Chen, L.; Dargusch, M. S.; Zou, J.; Chen, Z.-G., Flexible Thermoelectric Materials and Generators: Challenges and Innovations. Adv. Mater. 2019, 31 (29), 1807916. 18. Masoumi, S.; O'Shaughnessy, S.; Pakdel, A., Organic-Based Flexible Thermoelectric Generators: From Materials to Devices. Nano Energy 2022, 92, 106774. 19. Zhang, Y.; Wang, W.; Zhang, F.; Dai, K.; Li, C.; Fan, Y.; Chen, G.; Zheng, Q., Soft Organic Thermoelectric Materials: Principles, Current State of the Art and Applications. Small 2022, 18 (12), 2104922. 20. Zhao, W.; Ding, J.; Zou, Y.; Di, C.-a.; Zhu, D., Chemical Doping of Organic Semiconductors for Thermoelectric Applications. Chem. Soc. Rev. 2020, 49 (20), 7210-7228. 21. Scaccabarozzi, A. D.; Basu, A.; Aniés, F.; Liu, J.; Zapata-Arteaga, O.; Warren, R.; Firdaus, Y.; Nugraha, M. I.; Lin, Y.; Campoy-Quiles, M.; Koch, N.; Müller, C.; Tsetseris, L.; Heeney, M.; Anthopoulos, T. D., Doping Approaches for Organic Semiconductors. Chem. Rev. 2022, 122 (4), 4420-4492. 22. Wu, W.-N.; Zheng, Q.-B.; Liu, C.-L., Recent Progress in P-Type Doped Conjugated Polymer-Based Thermoelectric Thin Films. Synth. Met. 2024, 307, 117682. 23. Stanfield, D. A.; Wu, Y.; Tolbert, S. H.; Schwartz, B. J., Controlling the Formation of Charge Transfer Complexes in Chemically Doped Semiconducting Polymers. Chem. Mater. 2021, 33 (7), 2343-2356. 24. Ma, T.; Dong, B. X.; Onorato, J. W.; Niklas, J.; Poluektov, O.; Luscombe, C. K.; Patel, S. N., Correlating Conductivity and Seebeck Coefficient to Doping within Crystalline and Amorphous Domains in Poly(3-(Methoxyethoxyethoxy)Thiophene). J. Polym. Sci. 2021, 59 (22), 2797-2808. 25. Liang, Z.; Zhang, Y.; Souri, M.; Luo, X.; Boehm, Alex M.; Li, R.; Zhang, Y.; Wang, T.; Kim, D.-Y.; Mei, J.; Marder, S. R.; Graham, K. R., Influence of Dopant Size and Electron Affinity on the Electrical Conductivity and Thermoelectric Properties of a Series of Conjugated Polymers. J. Mater. Chem. A 2018, 6 (34), 16495-16505. 26. Yurash, B.; Cao, D. X.; Brus, V. V.; Leifert, D.; Wang, M.; Dixon, A.; Seifrid, M.; Mansour, A. E.; Lungwitz, D.; Liu, T.; Santiago, P. J.; Graham, K. R.; Koch, N.; Bazan, G. C.; Nguyen, T.-Q., Towards Understanding the Doping Mechanism of Organic Semiconductors by Lewis Acids. Nat. Mater 2019, 18 (12), 1327-1334. 27. Suh, E. H.; Kim, S. B.; Yang, H. S.; Jang, J., Regulating Competitive Doping in Solution-Mixed Conjugated Polymers for Dramatically Improving Thermoelectric Properties. Adv. Funct. Mater. 2022, 32 (46), 2207413. 28. Suh, E. H.; Oh, J. G.; Jung, J.; Noh, S. H.; Lee, T. S.; Jang, J., Brønsted Acid Doping of P3ht with Largely Soluble Tris(Pentafluorophenyl)Borane for Highly Conductive and Stable Organic Thermoelectrics Via One-Step Solution Mixing. Adv. Energy Mater. 2020, 10 (47), 2002521. 29. Ding, J.; Liu, Z.; Zhao, W.; Jin, W.; Xiang, L.; Wang, Z.; Zeng, Y.; Zou, Y.; Zhang, F.; Yi, Y.; Diao, Y.; McNeill, C. R.; Di, C.-a.; Zhang, D.; Zhu, D., Selenium-Substituted Diketopyrrolopyrrole Polymer for High-Performance P-Type Organic Thermoelectric Materials. Angew. Chem. Int. Ed. 2019, 58 (52), 18994-18999. 30. Lee, H.; Li, H.; Kim, Y.-S.; Park, S. M.; Lee, D.; Lee, S.; Lee, H. S.; Kim, Y.-H.; Kang, B., Novel Dithienopyrrole-Based Conjugated Copolymers: Importance of Backbone Planarity in Achieving High Electrical Conductivity and Thermoelectric Performance. Macromol. Rapid Commun. 2022, 43 (19), 2200277. 31. Suh, E. H.; Jeong, Y. J.; Oh, J. G.; Lee, K.; Jung, J.; Kang, Y. S.; Jang, J., Doping of Donor-Acceptor Polymers with Long Side Chains Via Solution Mixing for Advancing Thermoelectric Properties. Nano Energy 2019, 58, 585-595. 32. Zhang, Y.; Deng, L.; Cho, Y.; Lee, J.; Shibayama, N.; Zhang, Z.; Wang, C.; Hu, Z.; Wang, J.; Wu, F.; Chen, L.; Du, Y.; Ren, F.; Yang, C.; Gao, P., Revealing the Enhanced Thermoelectric Properties of Controllably Doped Donor-Acceptor Copolymer: The Impact of Regioregularity. Small 2023, 19 (12), 2206233. 33. Tripathi, A.; Ko, Y.; Kim, M.; Lee, Y.; Lee, S.; Park, J.; Kwon, Y.-W.; Kwak, J.; Woo, H. Y., Optimization of Thermoelectric Properties of Polymers by Incorporating Oligoethylene Glycol Side Chains and Sequential Solution Doping with Preannealing Treatment. Macromolecules 2020, 53 (16), 7063-7072. 34. Tsai, C.-H.; Lin, Y.-C.; Wu, W.-N.; Tung, S.-H.; Chen, W.-C.; Liu, C.-L., Optimizing the Doping Efficiency and Thermoelectric Properties of Isoindigo-Based Conjugated Polymers Using Side Chain Engineering. J. Mater. Chem. C 2023, 11 (21), 6874-6883. 35. Lim, E.; Peterson, K. A.; Su, G. M.; Chabinyc, M. L., Thermoelectric Properties of Poly(3-Hexylthiophene) (P3ht) Doped with 2,3,5,6-Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane (F4tcnq) by Vapor-Phase Infiltration. Chem. Mater. 2018, 30 (3), 998-1010. 36. Yoon, S. E.; Kang, Y.; Jeon, G. G.; Jeon, D.; Lee, S. Y.; Ko, S.-J.; Kim, T.; Seo, H.; Kim, B.-G.; Kim, J. H., Exploring Wholly Doped Conjugated Polymer Films Based on Hybrid Doping: Strategic Approach for Optimizing Electrical Conductivity and Related Thermoelectric Properties. Adv. Funct. Mater. 2020, 30 (42), 2004598. 37. Wu, L.; Li, H.; Chai, H.; Xu, Q.; Chen, Y.; Chen, L., Anion-Dependent Molecular Doping and Charge Transport in Ferric Salt-Doped P3ht for Thermoelectric Application. ACS Appl. Electron. Mater. 2021, 3 (3), 1252-1259. 38. Kang, Y. H.; Ko, S.-J.; Lee, M.-H.; Lee, Y. K.; Kim, B. J.; Cho, S. Y., Highly Efficient and Air Stable Thermoelectric Devices of Poly(3-Hexylthiophene) by Dual Doping of Au Metal Precursors. Nano Energy 2021, 82, 105681. 39. Li, H.; DeCoster, M. E.; Ming, C.; Wang, M.; Chen, Y.; Hopkins, P. E.; Chen, L.; Katz, H. E., Enhanced Molecular Doping for High Conductivity in Polymers with Volume Freed for Dopants. Macromolecules 2019, 52 (24), 9804-9812. 40. Kroon, R.; Kiefer, D.; Stegerer, D.; Yu, L.; Sommer, M.; Müller, C., Polar Side Chains Enhance Processability, Electrical Conductivity, and Thermal Stability of a Molecularly P-Doped Polythiophene. Adv. Mater. 2017, 29 (24), 1700930. 41. Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A., Organic Thermoelectric Materials for Energy Harvesting and Temperature Control. Nat. Rev. Mater. 2016, 1 (10), 16050. 42. Chen, G.; Xu, W.; Zhu, D., Recent Advances in Organic Polymer Thermoelectric Composites. J. Mater. Chem. C 2017, 5 (18), 4350-4360. 43. Zhang, Y.; Zhang, Q.; Chen, G., Carbon and Carbon Composites for Thermoelectric Applications. Carbon Energy 2020, 2 (3), 408-436. 44. Yang, J.; Zhang, H.; Hu, N.; Zhu, F.; Zhang, Y.; Yang, M.; Li, P.; Li, H., Recent Advances in Carbon Nanotubes-Based Organic Thermoelectric Composites-a Mini Review. Mater. Today Nano 2025, 29, 100590. 45. Zhou, S.; Shi, X.-L.; Li, L.; Liu, Q.; Hu, B.; Chen, W.; Zhang, C.; Liu, Q.; Chen, Z.-G., Advances and Outlooks for Carbon Nanotube-Based Thermoelectric Materials and Devices. Adv. Mater. 2025, n/a (n/a), 2500947. 46. Choi, Y. J.; Nacpil, E. J. C.; Han, J.; Zhu, C.; Kim, I. S.; Jeon, I., Recent Advances in Dispersant Technology for Carbon Nanotubes toward Energy Device Applications. Adv. Energy Sustainability Res. 2024, 5 (4), 2300219. 47. Pramanik, C.; Gissinger, J. R.; Kumar, S.; Heinz, H., Carbon Nanotube Dispersion in Solvents and Polymer Solutions: Mechanisms, Assembly, and Preferences. ACS Nano 2017, 11 (12), 12805-12816. 48. Barman, S. N.; LeMieux, M. C.; Baek, J.; Rivera, R.; Bao, Z., Effects of Dispersion Conditions of Single-Walled Carbon Nanotubes on the Electrical Characteristics of Thin Film Network Transistors. ACS Appl. Mater. Interfaces 2010, 2 (9), 2672-2678. 49. Kharisov, B. I.; Kharissova, O. V.; Dimas, A. V., The Dispersion, Solubilization and Stabilization in “Solution” of Single-Walled Carbon Nanotubes. RSC Adv. 2016, 6 (73), 68760-68787. 50. Chung, W.; Nobusawa, K.; Kamikubo, H.; Kataoka, M.; Fujiki, M.; Naito, M., Time-Resolved Observation of Chiral-Index-Selective Wrapping on Single-Walled Carbon Nanotube with Non-Aromatic Polysilane. J. Am. Chem. Soc. 2013, 135 (6), 2374-2383. 51. Jung, J.; Suh, E. H.; Jeong, Y. J.; Yang, H. S.; Lee, T.; Jang, J., Efficient Debundling of Few-Walled Carbon Nanotubes by Wrapping with Donor–Acceptor Polymers for Improving Thermoelectric Properties. ACS Appl. Mater. Interfaces 2019, 11 (50), 47330-47339. 52. Kang, Y. H.; Lee, U.-H.; Jung, I. H.; Yoon, S. C.; Cho, S. Y., Enhanced Thermoelectric Performance of Conjugated Polymer/Cnt Nanocomposites by Modulating the Potential Barrier Difference between Conjugated Polymer and Cnt. ACS Appl. Electron. Mater. 2019, 1 (7), 1282-1289. 53. Kim, S. H.; Jeong, S.; Kim, D.; Son, C. Y.; Cho, K., Effects of Connecting Polymer Structure and Morphology at Inter-Tube Junctions on the Thermoelectric Properties of Conjugated Polymer/Carbon Nanotube Composites. Adv. Electron. Mater. 2023, 9 (7), 2201293. 54. Wang, K.-C.; Lin, P.-S.; Lin, Y.-C.; Tung, S.-H.; Chen, W.-C.; Liu, C.-L., Tunable Thermoelectric Performance of the Nanocomposites Formed by Diketopyrrolopyrrole/Isoindigo-Based Donor–Acceptor Random Conjugated Copolymers and Carbon Nanotubes. ACS Appl. Mater. Interfaces 2023, 15 (48), 56116-56126. 55. Zheng, Q.-B.; Tseng, C.-C.; Lin, M.-H.; Lin, J.-M.; Tung, S.-H.; Cheng, Y.-J.; Liu, C.-L., High-Performance Ladder-Type Conjugated Polymer/Carbon Nanotube Nanocomposites Blended with Elastomers for Stretchable Thermoelectric Thin Films. J. Mater. Chem. C 2024, 12 (20), 7446-7455. 56. Hao, L.; Kang, J.; Shi, J.; Xu, J.; Cao, J.; Wang, L.; Liu, Y.; Pan, C., Enhanced Thermoelectric Performance of Poly(3-Substituted Thiophene)/Single-Walled Carbon Nanotube Composites Via Polar Side Chain Modification. Compos. Sci. Technol. 2020, 199, 108359. 57. Lin, P.-S.; Inagaki, S.; Liu, J.-H.; Chen, M.-C.; Higashihara, T.; Liu, C.-L., The Role of Branched Alkylthio Side Chain on Dispersion and Thermoelectric Properties of Regioregular Polythiophene/Carbon Nanotubes Nanocomposites. Chem. Eng. J. 2023, 458, 141366. 58. Hwang, J.-Y.; Nish, A.; Doig, J.; Douven, S.; Chen, C.-W.; Chen, L.-C.; Nicholas, R. J., Polymer Structure and Solvent Effects on the Selective Dispersion of Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2008, 130 (11), 3543-3553. 59. Wang, H.; Hsieh, B.; Jiménez-Osés, G.; Liu, P.; Tassone, C. J.; Diao, Y.; Lei, T.; Houk, K. N.; Bao, Z., Solvent Effects on Polymer Sorting of Carbon Nanotubes with Applications in Printed Electronics. Small 2015, 11 (1), 126-133. 60. Ouyang, J.; Ding, J.; Lefebvre, J.; Li, Z.; Guo, C.; Kell, A. J.; Malenfant, P. R. L., Sorting of Semiconducting Single-Walled Carbon Nanotubes in Polar Solvents with an Amphiphilic Conjugated Polymer Provides General Guidelines for Enrichment. ACS Nano 2018, 12 (2), 1910-1919. 61. Yao, Q.; Wang, Q.; Wang, L.; Chen, L., Abnormally Enhanced Thermoelectric Transport Properties of Swnt/Pani Hybrid Films by the Strengthened Pani Molecular Ordering. Energy Environ. Sci. 2014, 7 (11), 3801-3807. 62. Ding, Z.; Liu, D.; Zhao, K.; Han, Y., Optimizing Morphology to Trade Off Charge Transport and Mechanical Properties of Stretchable Conjugated Polymer Films. Macromolecules 2021, 54 (9), 3907-3926. 63. Tang, K.; Shaw, A.; Upreti, S.; Zhao, H.; Wang, Y.; Mason, G. T.; Aguinaga, J.; Guo, K.; Patton, D.; Baran, D.; Rondeau-Gagné, S.; Gu, X., Impact of Sequential Chemical Doping on the Thin Film Mechanical Properties of Conjugated Polymers. Chem. Mater. 2025, 37 (2), 756-765. 64. Tang, X.; Wu, Y.; He, G.; Wu, J.; Zhong, F.; Ren, Z.; Cao, G.; Liu, F.; Gao, C.; Wang, L., Simultaneously Enhancing the Mechanical and Thermoelectric Properties of Diketopyrrolopyrrole-Thiophene Based Conjugated Polymers through Dynamic Hydrogen-Bonding. Chem. Eng. J. 2024, 495, 153358. 65. Zhong, F.; Li, H.; Xu, Z.; Luo, S.; Song, J.; Chen, L., Elucidating the Role of Polymer–Dopant Interaction in the Electrical Properties of Polymers with Non-Conjugated Spacers. ACS Appl. Polym. Mater. 2024, 6 (24), 15323-15331. 66. Tseng, C.-C.; Wang, K.-C.; Lin, P.-S.; Chang, C.; Yeh, L.-L.; Tung, S.-H.; Liu, C.-L.; Cheng, Y.-J., Intrinsically Stretchable Organic Thermoelectric Polymers Enabled by Incorporating Fused-Ring Conjugated Breakers. Small 2024, 20 (37), 2401966. 67. Jeong, Y. J.; Jung, J.; Suh, E. H.; Yun, D.-J.; Oh, J. G.; Jang, J., Self-Healable and Stretchable Organic Thermoelectric Materials: Electrically Percolated Polymer Nanowires Embedded in Thermoplastic Elastomer Matrix. Adv. Funct. Mater. 2020, 30 (9), 1905809. 68. Chang, Y.; Huang, Y.-H.; Lin, P.-S.; Hong, S.-H.; Tung, S.-H.; Liu, C.-L., Enhanced Electrical Conductivity and Mechanical Properties of Stretchable Thermoelectric Generators Formed by Doped Semiconducting Polymer/Elastomer Blends. ACS Appl. Mater. Interfaces 2024, 16 (3), 3764-3777. 69. Wang, G.-J. N.; Gasperini, A.; Bao, Z., Stretchable Polymer Semiconductors for Plastic Electronics. Adv. Electron. Mater. 2018, 4 (2), 1700429. 70. Higashihara, T., Strategic Design and Synthesis of Π-Conjugated Polymers Suitable as Intrinsically Stretchable Semiconducting Materials. Polym. J. 2021, 53 (10), 1061-1071. 71. Tien, H.-C.; Huang, Y.-W.; Chiu, Y.-C.; Cheng, Y.-H.; Chueh, C.-C.; Lee, W.-Y., Intrinsically Stretchable Polymer Semiconductors: Molecular Design, Processing and Device Applications. J. Mater. Chem. C 2021, 9 (8), 2660-2684. 72. Zheng, Q.-B.; Lin, Y.-C.; Lin, Y.-T.; Chang, Y.; Wu, W.-N.; Lin, J.-M.; Tung, S.-H.; Chen, W.-C.; Liu, C.-L., Investigating the Stretchability of Doped Poly(3-Hexylthiophene)-Block-Poly(Butyl Acrylate) Conjugated Block Copolymer Thermoelectric Thin Films. Chem. Eng. J. 2023, 472, 145121. 73. Higashihara, T.; Fukuta, S.; Ochiai, Y.; Sekine, T.; Chino, K.; Koganezawa, T.; Osaka, I., Synthesis and Deformable Hierarchical Nanostructure of Intrinsically Stretchable Aba Triblock Copolymer Composed of Poly(3-Hexylthiophene) and Polyisobutylene Segments. ACS Appl. Polym. Mater. 2019, 1 (3), 315-320. 74. Kim, H.-C.; Park, S.-M.; Hinsberg, W. D., Block Copolymer Based Nanostructures: Materials, Processes, and Applications to Electronics. Chem. Rev. 2010, 110 (1), 146-177. 75. Baeza, G. P., Recent Advances on the Structure–Properties Relationship of Multiblock Copolymers. J. Polym. Sci. 2021, 59 (21), 2405-2433. 76. Peng, R.; Pang, B.; Hu, D.; Chen, M.; Zhang, G.; Wang, X.; Lu, H.; Cho, K.; Qiu, L., An Aba Triblock Copolymer Strategy for Intrinsically Stretchable Semiconductors. J. Mater. Chem. C 2015, 3 (15), 3599-3606. 77. Chiang, Y.-C.; Kobayashi, S.; Isono, T.; Shih, C.-C.; Shingu, T.; Hung, C.-C.; Hsieh, H.-C.; Tung, S.-H.; Satoh, T.; Chen, W.-C., Effect of a Conjugated/Elastic Block Sequence on the Morphology and Electronic Properties of Polythiophene Based Stretchable Block Copolymers. Polym. Chem. 2019, 10 (40), 5452-5464. 78. Hsu, L.-C.; Kobayashi, S.; Isono, T.; Chiang, Y.-C.; Ree, B. J.; Satoh, T.; Chen, W.-C., Highly Stretchable Semiconducting Polymers for Field-Effect Transistors through Branched Soft–Hard–Soft Type Triblock Copolymers. Macromolecules 2020, 53 (17), 7496-7510. 79. Ditte, K.; Perez, J.; Chae, S.; Hambsch, M.; Al-Hussein, M.; Komber, H.; Formanek, P.; Mannsfeld, S. C. B.; Fery, A.; Kiriy, A.; Lissel, F., Ultrasoft and High-Mobility Block Copolymers for Skin-Compatible Electronics. Adv. Mater. 2021, 33 (4), 2005416. 80. Yamamoto, S.; Matsuda, M.; Lin, C.-Y.; Enomoto, K.; Lin, Y.-C.; Chen, W.-C.; Higashihara, T., Intrinsically Stretchable Block Copolymer Composed of Polyisobutene and Naphthalenediimide–Bithiophene-Based Π-Conjugated Polymer Segments for Field-Effect Transistors. ACS Appl. Polym. Mater. 2022, 4 (12), 8942-8951. 81. Yun, J.-S.; Choi, S.; Im, S. H., Advances in Carbon-Based Thermoelectric Materials for High-Performance, Flexible Thermoelectric Devices. Carbon Energy 2021, 3 (5), 667-708. 82. Zhang, C.; Zhang, Q.; Zhang, D.; Wang, M.; Bo, Y.; Fan, X.; Li, F.; Liang, J.; Huang, Y.; Ma, R.; Chen, Y., Highly Stretchable Carbon Nanotubes/Polymer Thermoelectric Fibers. Nano Letters 2021, 21 (2), 1047-1055. 83. Abdelsamie, M.; Zhao, K.; Niazi, M. R.; Chou, K. W.; Amassian, A., In Situ Uv-Visible Absorption During Spin-Coating of Organic Semiconductors: A New Probe for Organic Electronics and Photovoltaics. J. Mater. Chem. C 2014, 2 (17), 3373-3381. 84. Kwon, E. H.; Kim, G. W.; Kim, M.; Park, Y. D., Effect of Alcohol Polarity on the Aggregation and Film-Forming Behaviors of Poly(3-Hexylthiophene). ACS Appl. Polym. Mater. 2020, 2 (7), 2980-2986. 85. Lee, Y. R.; Moon, Y.; Kim, D.-Y., Irradiating P3ht Solution with Various Wavelengths of Light: Effects on Preaggregation and Film Morphology. ACS Appl. Polym. Mater. 2025, 7 (3), 1249-1256. 86. Nagarjuna, G.; Baghgar, M.; Labastide, J. A.; Algaier, D. D.; Barnes, M. D.; Venkataraman, D., Tuning Aggregation of Poly(3-Hexylthiophene) within Nanoparticles. ACS Nano 2012, 6 (12), 10750-10758. 87. Dou, F.; Li, J.; Men, H.; Zhang, X. Controlling Molecule Aggregation and Electronic Spatial Coherence in the H-Aggregate and J-Aggregate Regime at Room Temperature Polymers [Online], 2020, p. 786. 88. Park, S. Y.; Kwon, E. H.; Park, Y. D., Effect of Localized Uv Irradiation on the Crystallinity and Electrical Properties of Dip-Coated Polythiophene Thin Films. RSC Adv. 2020, 10 (56), 34130-34136. 89. Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P., Effect of Contact Deformations on the Adhesion of Particles. J. Colloid Interface Sci. 1975, 53 (2), 314-326. 90. Johnson, K. L.; Kendall, K.; Roberts, A. D.; Tabor, D., Surface Energy and the Contact of Elastic Solids. Proc. R. Soc. A: Math. Phys. Eng. Sci. 1997, 324 (1558), 301-313. 91. Dokukin, M. E.; Sokolov, I., Quantitative Mapping of the Elastic Modulus of Soft Materials with Harmonix and Peakforce Qnm Afm Modes. Langmuir 2012, 28 (46), 16060-16071. 92. O’Connor, B.; Chan, E. P.; Chan, C.; Conrad, B. R.; Richter, L. J.; Kline, R. J.; Heeney, M.; McCulloch, I.; Soles, C. L.; DeLongchamp, D. M., Correlations between Mechanical and Electrical Properties of Polythiophenes. ACS Nano 2010, 4 (12), 7538-7544. 93. Wu, W.-N.; Tu, T.-H.; Pai, C.-H.; Cheng, K.-H.; Tung, S.-H.; Chan, Y.-T.; Liu, C.-L., Metallo-Supramolecular Rod–Coil Block Copolymer Thin Films for Stretchable Organic Field Effect Transistor Application. Macromolecules 2022, 55 (23), 10670-10681. 94. Untilova, V.; Zeng, H.; Durand, P.; Herrmann, L.; Leclerc, N.; Brinkmann, M., Intercalation and Ordering of F6tcnnq and F4tcnq Dopants in Regioregular Poly(3-Hexylthiophene) Crystals: Impact on Anisotropic Thermoelectric Properties of Oriented Thin Films. Macromolecules 2021, 54 (13), 6073-6084. 95. Jacobs, I. E.; Aasen, E. W.; Oliveira, J. L.; Fonseca, T. N.; Roehling, J. D.; Li, J.; Zhang, G.; Augustine, M. P.; Mascal, M.; Moulé, A. J., Comparison of Solution-Mixed and Sequentially Processed P3ht:F4tcnq Films: Effect of Doping-Induced Aggregation on Film Morphology. J. Mater. Chem. C 2016, 4 (16), 3454-3466. 96. Ma, L.; Hu, P.; Jiang, H.; Kloc, C.; Sun, H.; Soci, C.; Voityuk, A. A.; Michel-Beyerle, M. E.; Gurzadyan, G. G., Single Photon Triggered Dianion Formation in Tcnq and F4tcnq Crystals. Sci. Rep. 2016, 6 (1), 28510. 97. Fontana, M. T.; Stanfield, D. A.; Scholes, D. T.; Winchell, K. J.; Tolbert, S. H.; Schwartz, B. J., Evaporation Vs Solution Sequential Doping of Conjugated Polymers: F4tcnq Doping of Micrometer-Thick P3ht Films for Thermoelectrics. J. Phys. Chem. C 2019, 123 (37), 22711-22724. 98. Kiefer, D.; Kroon, R.; Hofmann, A. I.; Sun, H.; Liu, X.; Giovannitti, A.; Stegerer, D.; Cano, A.; Hynynen, J.; Yu, L.; Zhang, Y.; Nai, D.; Harrelson, T. F.; Sommer, M.; Moulé, A. J.; Kemerink, M.; Marder, S. R.; McCulloch, I.; Fahlman, M.; Fabiano, S.; Müller, C., Double Doping of Conjugated Polymers with Monomer Molecular Dopants. Nat. Mater 2019, 18 (2), 149-155. 99. Watts, K. E.; Neelamraju, B.; Ratcliff, E. L.; Pemberton, J. E., Stability of Charge Transfer States in F4tcnq-Doped P3ht. Chem. Mater. 2019, 31 (17), 6986-6994. 100. Duong, D. T.; Wang, C.; Antono, E.; Toney, M. F.; Salleo, A., The Chemical and Structural Origin of Efficient P-Type Doping in P3ht. Org. Electron. 2013, 14 (5), 1330-1336. 101. Cochran, J. E.; Junk, M. J. N.; Glaudell, A. M.; Miller, P. L.; Cowart, J. S.; Toney, M. F.; Hawker, C. J.; Chmelka, B. F.; Chabinyc, M. L., Molecular Interactions and Ordering in Electrically Doped Polymers: Blends of Pbttt and F4tcnq. Macromolecules 2014, 47 (19), 6836-6846. 102. Kiefer, D.; Yu, L.; Fransson, E.; Gómez, A.; Primetzhofer, D.; Amassian, A.; Campoy-Quiles, M.; Müller, C., A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics. Adv. Sci. 2017, 4 (1), 1600203. 103. Kroon, R.; Lenes, M.; Hummelen, J. C.; Blom, P. W. M.; de Boer, B., Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years). Polym. Rev. 2008, 48 (3), 531-582. 104. Eckhardt, H.; Shacklette, L. W.; Jen, K. Y.; Elsenbaumer, R. L., The Electronic and Electrochemical Properties of Poly(Phenylene Vinylenes) and Poly(Thienylene Vinylenes): An Experimental and Theoretical Study. J. Chem. Phys. 1989, 91 (2), 1303-1315. 105. Huitema, H. E. A.; Gelinck, G. H.; van der Putten, J. B. P. H.; Kuijk, K. E.; Hart, C. M.; Cantatore, E.; Herwig, P. T.; van Breemen, A. J. J. M.; de Leeuw, D. M., Plastic Transistors in Active-Matrix Displays. Nature 2001, 414 (6864), 599-599. 106. Speros, J. C.; Martinez, H.; Paulsen, B. D.; White, S. P.; Bonifas, A. D.; Goff, P. C.; Frisbie, C. D.; Hillmyer, M. A., Effects of Olefin Content and Alkyl Chain Placement on Optoelectronic and Morphological Properties in Poly(Thienylene Vinylenes). Macromolecules 2013, 46 (13), 5184-5194. 107. Zhang, Z.; Qin, Y., Structurally Diverse Poly(Thienylene Vinylene)S (Ptvs) with Systematically Tunable Properties through Acyclic Diene Metathesis (Admet) and Postpolymerization Modification. Macromolecules 2016, 49 (9), 3318-3327. 108. Spano, F. C.; Silva, C., H- and J-Aggregate Behavior in Polymeric Semiconductors. Annu. Rev. Phys. Chem. 2014, 65 (1), 477-500. 109. Boudouris, B. W.; Ho, V.; Jimison, L. H.; Toney, M. F.; Salleo, A.; Segalman, R. A., Real-Time Observation of Poly(3-Alkylthiophene) Crystallization and Correlation with Transient Optoelectronic Properties. Macromolecules 2011, 44 (17), 6653-6658. 110. Yu, L.; Davidson, E.; Sharma, A.; Andersson, M. R.; Segalman, R.; Müller, C., Isothermal Crystallization Kinetics and Time–Temperature–Transformation of the Conjugated Polymer: Poly(3-(2′-Ethyl)Hexylthiophene). Chem. Mater. 2017, 29 (13), 5654-5662. 111. Zhang, L.; Rose, B. D.; Liu, Y.; Nahid, M. M.; Gann, E.; Ly, J.; Zhao, W.; Rosa, S. J.; Russell, T. P.; Facchetti, A.; McNeill, C. R.; Brédas, J.-L.; Briseno, A. L., Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units. Chem. Mater. 2016, 28 (23), 8580-8590. 112. Park, J.-J.; Kim, Y.-A.; Lee, S.-H.; Kim, J.; Kim, Y.; Lim, D.-H.; Kim, D.-Y., Chlorinated Isoindigo-Based Conjugated Polymers: Effect of Rotational Freedom of Conjugated Segment on Crystallinity and Charge-Transport Characteristics. ACS Appl. Polym. Mater. 2019, 1 (1), 27-35. 113. Fu, B.; Baltazar, J.; Sankar, A. R.; Chu, P.-H.; Zhang, S.; Collard, D. M.; Reichmanis, E., Enhancing Field-Effect Mobility of Conjugated Polymers through Rational Design of Branched Side Chains. Adv. Funct. Mater. 2014, 24 (24), 3734-3744. 114. Bergquist, C.; Bridgewater, B. M.; Harlan, C. J.; Norton, J. R.; Friesner, R. A.; Parkin, G., Aqua, Alcohol, and Acetonitrile Adducts of Tris(Perfluorophenyl)Borane: Evaluation of Brønsted Acidity and Ligand Lability with Experimental and Computational Methods. J. Am. Chem. Soc. 2000, 122 (43), 10581-10590. 115. Beringhelli, T.; Maggioni, D.; D'Alfonso, G., 1h and 19f Nmr Investigation of the Reaction of B(C6f5)3 with Water in Toluene Solution. Organometallics 2001, 20 (23), 4927-4938. 116. Massonnet, N.; Carella, A.; Jaudouin, O.; Rannou, P.; Laval, G.; Celle, C.; Simonato, J.-P., Improvement of the Seebeck Coefficient of Pedot:Pss by Chemical Reduction Combined with a Novel Method for Its Transfer Using Free-Standing Thin Films. J. Mater. Chem. C 2014, 2 (7), 1278-1283. 117. Enengl, C.; Enengl, S.; Pluczyk, S.; Havlicek, M.; Lapkowski, M.; Neugebauer, H.; Ehrenfreund, E., Doping-Induced Absorption Bands in P3ht: Polarons and Bipolarons. ChemPhysChem 2016, 17 (23), 3836-3844. 118. Zozoulenko, I.; Singh, A.; Singh, S. K.; Gueskine, V.; Crispin, X.; Berggren, M., Polarons, Bipolarons, and Absorption Spectroscopy of Pedot. ACS Appl. Polym. Mater. 2019, 1 (1), 83-94. 119. Wang, X.-Y.; Liu, Y.; Wang, Z.-Y.; Lu, Y.; Yao, Z.-F.; Ding, Y.-F.; Yu, Z.-D.; Wang, J.-Y.; Pei, J., Revealing the Effect of Oligo(Ethylene Glycol) Side Chains on N-Doping Process in Fbdppv-Based Polymers. J. Polym. Sci. 2022, 60 (3), 538-547. 120. Genoud, F.; Guglielmi, M.; Nechtschein, M.; Genies, E.; Salmon, M., Esr Study of Electrochemical Doping in the Conducting Polymer Polypyrrole. Phys. Rev. Lett. 1985, 55 (1), 118-121. 121. Yang, C.-Y.; Jin, W.-L.; Wang, J.; Ding, Y.-F.; Nong, S.; Shi, K.; Lu, Y.; Dai, Y.-Z.; Zhuang, F.-D.; Lei, T.; Di, C.-A.; Zhu, D.; Wang, J.-Y.; Pei, J., Enhancing the N-Type Conductivity and Thermoelectric Performance of Donor–Acceptor Copolymers through Donor Engineering. Adv. Mater. 2018, 30 (43), 1802850. 122. Gao, J.; Thomas, A. K.; Yang, J.; Aldaz, C.; Yang, G.; Qin, Y.; Grey, J. K., Polythienylene–Vinylene Structure–Function Correlations Revealed from Resonance Raman Spectroscopy and Photocurrent Imaging. J. Phys. Chem. C 2015, 119 (16), 8980-8990. 123. Yamamoto, J.; Furukawa, Y., Electronic and Vibrational Spectra of Positive Polarons and Bipolarons in Regioregular Poly(3-Hexylthiophene) Doped with Ferric Chloride. J. Phys. Chem. B 2015, 119 (13), 4788-4794. 124. Mansour, A. E.; Valencia, A. M.; Lungwitz, D.; Wegner, B.; Tanaka, N.; Shoji, Y.; Fukushima, T.; Opitz, A.; Cocchi, C.; Koch, N., Understanding the Evolution of the Raman Spectra of Molecularly P-Doped Poly(3-Hexylthiophene-2,5-Diyl): Signatures of Polarons and Bipolarons. Phys. Chem. Chem. Phys. 2022, 24 (5), 3109-3118. 125. Nightingale, J.; Wade, J.; Moia, D.; Nelson, J.; Kim, J.-S., Impact of Molecular Order on Polaron Formation in Conjugated Polymers. J. Phys. Chem. C 2018, 122 (51), 29129-29140. 126. Burkhart, B.; Khlyabich, P. P.; Thompson, B. C., Influence of the Ethylhexyl Side-Chain Content on the Open-Circuit Voltage in Rr-Poly(3-Hexylthiophene-Co-3-(2-Ethylhexyl)Thiophene) Copolymers. Macromolecules 2012, 45 (9), 3740-3748. 127. Chu, J.-Y.; Lin, C.-Y.; Tu, T.-H.; Hong, S.-H.; Chang, Y.-Y.; Yang, C.-W.; Chan, Y.-T.; Liu, C.-L.; Komarov, P. V.; Tung, S.-H., Methyl-Branched Side Chains on Polythiophene Suppress Chain Mobility and Crystallization to Enhance Photovoltaic Performance. Macromolecules 2021, 54 (8), 3689-3699. 128. Yu, S. H.; Park, K. H.; Kim, Y.-H.; Chung, D. S.; Kwon, S.-K., Fine Molecular Tuning of Diketopyrrolopyrrole-Based Polymer Semiconductors for Efficient Charge Transport: Effects of Intramolecular Conjugation Structure. Macromolecules 2017, 50 (11), 4227-4234. 129. Yoon, S. E.; Kang, Y.; Noh, S. Y.; Park, J.; Lee, S. Y.; Park, J.; Lee, D. W.; Whang, D. R.; Kim, T.; Kim, G.-H.; Seo, H.; Kim, B.-G.; Kim, J. H., High Efficiency Doping of Conjugated Polymer for Investigation of Intercorrelation of Thermoelectric Effects with Electrical and Morphological Properties. ACS Appl. Mater. Interfaces 2020, 12 (1), 1151-1158. 130. Duan, J.; Ding, J.; Wang, D.; Zhu, X.; Chen, J.; Zhu, G.; Chen, C.; Yu, Y.; Liao, H.; Li, Z.; Di, C.-a.; Yue, W., Enhancing the Performance of N-Type Thermoelectric Devices Via Tuning the Crystallinity of Small Molecule Semiconductors. Adv. Sci. 2023, 10 (3), 2204872. 131. Tsokkou, D.; Cavassin, P.; Rebetez, G.; Banerji, N., Bipolarons Rule the Short-Range Terahertz Conductivity in Electrochemically Doped P3ht. Mater. Horiz. 2022, 9 (1), 482-491. 132. Glaudell, A. M.; Cochran, J. E.; Patel, S. N.; Chabinyc, M. L., Impact of the Doping Method on Conductivity and Thermopower in Semiconducting Polythiophenes. Adv. Energy Mater. 2015, 5 (4), 1401072. 133. Gregory, S. A.; Ponder, J. F., Jr.; Pittelli, S. L.; Losego, M. D.; Reynolds, J. R.; Yee, S. K., Thermoelectric and Charge Transport Properties of Solution-Processable and Chemically Doped Dioxythienothiophene Copolymers. ACS Appl. Polym. Mater. 2021, 3 (5), 2316-2324. 134. Zhong, F.; Yin, X.; Chen, Z.; Gao, C.; Wang, L., Significantly Reduced Thermal-Activation Energy for Hole Transport Via Simple Donor Engineering: Understanding the Role of Molecular Parameters for Thermoelectric Behaviors. ACS Appl. Mater. Interfaces 2020, 12 (23), 26276-26285. 135. Darko, C.; Botiz, I.; Reiter, G.; Breiby, D. W.; Andreasen, J. W.; Roth, S. V.; Smilgies, D. M.; Metwalli, E.; Papadakis, C. M., Crystallization in Diblock Copolymer Thin Films at Different Degrees of Supercooling. Phys. Rev. E 2009, 79 (4), 041802. 136. Zhang, Z.; Ding, J.; Ocko, B. M.; Lhermitte, J.; Strzalka, J.; Choi, C.-H.; Fisher, F. T.; Yager, K. G.; Black, C. T., Nanoconfinement and Salt Synergistically Suppress Crystallization in Polyethylene Oxide. Macromolecules 2020, 53 (4), 1494-1501. 137. Shih, W.-C.; Matsuda, M.; Konno, K.; Lin, P.-S.; Higashihara, T.; Liu, C.-L., Tailored Thermoelectric Performance of Poly(Phenylene Butadiynylene)S/Carbon Nanotubes Nanocomposites Towards Wearable Thermoelectric Generator Application. Compos. B: Eng. 2024, 286, 111779. 138. Gavrilenko, A. V.; Matos, T. D.; Bonner, C. E.; Sun, S. S.; Zhang, C.; Gavrilenko, V. I., Optical Absorption of Poly(Thienylene Vinylene)-Conjugated Polymers: Experiment and First Principle Theory. J. Phys. Chem. C 2008, 112 (21), 7908-7912. 139. Wang, J.-T.; Takshima, S.; Wu, H.-C.; Shih, C.-C.; Isono, T.; Kakuchi, T.; Satoh, T.; Chen, W.-C., Stretchable Conjugated Rod–Coil Poly(3-Hexylthiophene)-Block-Poly(Butyl Acrylate) Thin Films for Field Effect Transistor Applications. Macromolecules 2017, 50 (4), 1442-1452. 140. Beaucage, G., Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering. J. Appl. Cryst. 1995, 28 (6), 717-728. 141. Spitzer, M.; Sabadini, E.; Loh, W., Entropically Driven Partitioning of Ethylene Oxide Oligomers and Polymers in Aqueous/Organic Biphasic Systems. J. Phys. Chem. B 2002, 106 (48), 12448-12452. 142. Filippov, S. K.; Khusnutdinov, R.; Murmiliuk, A.; Inam, W.; Zakharova, L. Y.; Zhang, H.; Khutoryanskiy, V. V., Dynamic Light Scattering and Transmission Electron Microscopy in Drug Delivery: A Roadmap for Correct Characterization of Nanoparticles and Interpretation of Results. Mater. Horiz. 2023, 10 (12), 5354-5370. 143. Yan, Y.; Cui, J.; Pötschke, P.; Voit, B., Dispersion of Pristine Single-Walled Carbon Nanotubes Using Pyrene-Capped Polystyrene and Its Application for Preparation of Polystyrene Matrix Composites. Carbon 2010, 48 (9), 2603-2612. 144. Oliveras-Santos, S.; Li, S.; Maity, N.; Arnold, M. S.; Gopalan, P., Emergent Dispersion and Sorting Behaviors of Carbon Nanotubes When Combining Short Conjugated Oligomers with Nonconjugated Coil Segments. Macromolecules 2024, 57 (8), 3588-3594. 145. Wang, S.; Wu, J.; Yang, F.; Xin, H.; Wang, L.; Gao, C., Oxygen-Rich Polymer Polyethylene Glycol-Functionalized Single-Walled Carbon Nanotubes toward Air-Stable N-Type Thermoelectric Materials. ACS Appl. Mater. Interfaces 2021, 13 (22), 26482-26489. 146. Das, A.; Sood, A. K.; Govindaraj, A.; Saitta, A. M.; Lazzeri, M.; Mauri, F.; Rao, C. N. R., Doping in Carbon Nanotubes Probed by Raman and Transport Measurements. Phys. Rev. Lett. 2007, 99 (13), 136803. 147. Lin, P.-S.; Lin, J.-M.; Tung, S.-H.; Higashihara, T.; Liu, C.-L., Synergistic Interactions in Sequential Process Doping of Polymer/Single-Walled Carbon Nanotube Nanocomposites for Enhanced N-Type Thermoelectric Performance. Small 2024, 20 (9), 2306166. 148. Lin, M.-H.; Mohamed, M. G.; Lin, C.-J.; Sheng, Y.-J.; Kuo, S.-W.; Liu, C.-L., Achieving High Zt with Carbon Nanotube/Conjugated Microporous Polymer Thermoelectric Nanohybrids by Meticulous Molecular Geometry Design. Adv. Funct. Mater. 2024, 34 (45), 2406165. 149. Zapata-Arteaga, O.; Perevedentsev, A.; Prete, M.; Busato, S.; Floris, P. S.; Asatryan, J.; Rurali, R.; Martín, J.; Campoy-Quiles, M., A Universal, Highly Stable Dopant System for Organic Semiconductors Based on Lewis-Paired Dopant Complexes. ACS Energy Lett. 2024, 9 (7), 3567-3577. 150. Zhang, F.; Di, C.-a., Exploring Thermoelectric Materials from High Mobility Organic Semiconductors. Chem. Mater. 2020, 32 (7), 2688-2702. 151. Yan, X.; Xiong, M.; Li, J.-T.; Zhang, S.; Ahmad, Z.; Lu, Y.; Wang, Z.-Y.; Yao, Z.-F.; Wang, J.-Y.; Gu, X.; Lei, T., Pyrazine-Flanked Diketopyrrolopyrrole (Dpp): A New Polymer Building Block for High-Performance N-Type Organic Thermoelectrics. J. Am. Chem. Soc. 2019, 141 (51), 20215-20221. 152. Wang, Y.; Takimiya, K., Naphthodithiophenediimide–Bithiopheneimide Copolymers for High-Performance N-Type Organic Thermoelectrics: Significant Impact of Backbone Orientation on Conductivity and Thermoelectric Performance. Adv. Mater. 2020, 32 (30), 2002060. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99425 | - |
| dc.description.abstract | 熱電材料可直接將熱能轉換為電能,為收集低階廢熱提供了一項相當具有前途的解決途徑。在各種熱電材料系統中,有機共軛高分子因其固有的柔軟性和低熱傳導係數受到越來越多的關注。然而,目前尚對其分子結構與各項性質(如材料的介面性質、熱電性能、與機械性能)之間的關係瞭解不足,導致這類材料的應用仍受到限制。本論文透過三個研究項目,探討分子設計策略對於熱電性能及薄膜拉伸性的影響,期望提供對於分子層面的瞭解。
第一項研究利用由共軛的聚(3-己基噻吩) (P3HT)與絕緣的聚(丙烯酸正丁酯) (PnBA)組成的金屬超分子嵌段高分子,著重探討嵌段結構如何影響高分子奈米級形貌、摻雜效率以及摻雜高分子薄膜的拉伸性。 第二項研究為拓展對於三(五氟苯基)硼烷(BCF)布忍斯特酸摻雜效果的應用與瞭解,利用聚[3,4-二(2-乙基己基)噻吩乙烯] (P3,4EHTV)、聚[3-(2-乙基己基)噻吩乙烯] (P3EHTV)和聚[3-(乙基己基)噻吩] (P3EHT)三種共軛高分子,以探討高分子共軛主鏈和側鏈工程對於摻雜行為和電荷傳輸的影響。 第三項研究開發了一系列以P3,4EHTV為基礎的二嵌段高分子,其中結合了不同極性的絕緣鏈段(聚環氧乙烷(PEO)、聚苯乙烯(PS)和聚五氟苯乙烯(PFS)),以控制高分子的聚集結構並改善單壁奈米碳管(SWCNT)在高分子溶液中的分散。本研究利用溶液態散射和光譜分析,探討高分子聚集結構對於材料介面的相互作用及奈米碳管分散性,以及進一步探討介面作用力對於複合物薄膜的拉伸性。 這些研究共同為下一代軟性熱電材料應用提供了結構與性能相互關係的觀點,以及提供了開發高性能和可拉伸的有機熱電材料的材料設計準則及方向。 | zh_TW |
| dc.description.abstract | Thermoelectric materials, which enable direct conversion of heat into electricity, offer a promising route for harvesting low-grade thermal energy. Among various thermoelectric systems, organic conjugated polymers (CPs) have attracted increasing attention due to their intrinsic mechanical flexibility and low thermal conductivity. However, their widespread application remains limited by insufficient molecular-level understanding of the structure–property relationships that govern thermoelectric performance, mechanical stretchability, and interfacial behavior across diverse material systems. This thesis addresses these challenges through three thematically connected studies that explore molecular design strategies to improve the performance and understanding of polymer-based thermoelectric systems.
The first study investigates metallo-supramolecular block copolymers composed of poly(3-hexylthiophene) (P3HT) and poly(n-butyl acrylate) (PnBA), focusing on how block architecture modulates nanoscale morphology, doping efficiency, and mechanical deformability of the doped polymer thin films. The second study examines Brønsted acid doping effect using tris(pentafluorophenyl)borane (BCF) in poly[3,4-di(2-ethylhexyl)thienylene vinylene] (P3,4EHTV), and compares its behavior to poly[3-(2-ethylhexyl)thienylene vinylene] (P3EHTV) and poly[3-(ethylhexyl)thiophene] (P3EHT). This project amins to reveal how molecular engineering in polymer backbone and side chain influence doping behavior and charge transport property. The third study develops a series of P3,4EHTV-based diblock copolymers incorporating insulating blocks of varying hydrophobicity (poly(ethylene oxide) (PEO), polystyrene (PS), and poly(pentafluorostyrene) (PFS)) to control polymer aggregation and enhance single-walled carbon nanotube (SWCNT) dispersion. Using solution-state scattering and spectroscopic analysis, this work establishes how aggregation structure impacts interfacial interactions, SWCNT dispersion, and strain tolerance in composite thin films. Together, these studies offer structure–property perspectives and guiding principles for the rational design of high-performance, stretchable organic thermoelectric materials for next-generation soft energy harvesting applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:15:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:15:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
Acknowledgements iii 摘要 v Abstract vii Table of Contents ix Lists of Figures xii Lists of Tables xviii Chapter 1 Introduction 1 1.1 Introduction of Thermoelectricity 1 1.2 Doping of Conjugated Polymers 7 1.2.1 Doping Mechanisms 7 1.2.2 Common p-type Dopants 9 1.2.3 Doping Methods 11 1.2.4 Polymer Design Strategies for Doping 13 1.3 Incorporation of Carbon Nanotubes in Conjugated Polymers 20 1.3.1 Polymer Design Strategies for CP/CNT Composites 22 1.3.2 Role of Polymer Aggregation in CNT Dispersion 24 1.4 Development of Stretchable Thermoelectrics 27 1.4.1 Molecular Design Strategies for Stretchable Doped Polymers 27 1.4.2 Strategies for Stretchable CNT-Based Composites 30 1.5 Research Objectives 32 Chapter 2 General Methods 35 2.1 Materials 35 2.1.1 Conjugated Polymers 35 2.1.2 Other Chemicals and Materials 38 2.2 Fabrication Procedures 39 2.2.1 Project 1: Stretchable Block Copolymer Thin Films 39 2.2.2 Project 2: BCF-Doped Polythiophene Derivatives 40 2.2.3 Project 3: CP/SWCNT Composite Thin Films 41 2.2.4 Fabrication of Stretchable Thermoelectric Films 42 2.3 Characterization Methods 43 2.3.1 Thermoelectric Property Measurements 43 2.3.2 Spectroscopic Characterizations 44 2.3.3 Morphological Characterization 45 2.3.4 Scattering Analyses 46 Chapter 3 Developing Stretchable Multiblock Copolymers Based on Conjugated Poly(3-hexylthiophene) and Insulating Poly(n-butyl acrylate) 47 3.1 Research Background 47 3.2 Results and Discussion 50 3.2.1 Characterizations of Pristine Polymers 50 3.2.2 Thermoelectric Properties of Doped Polymer Thin Films 58 3.2.3 Spectroscopic Studies on Doping Behaviors 60 3.2.4 Morphology and Microstructure of Doped Polymer Thin Films. 68 3.2.5 Stretchability Evaluation of Doped Polymer Films. 75 3.2.6 Thermoelectric Properties under Mechanical Strain 80 3.3 Conclusion 85 Chapter 4 Investigating Brønsted Acid Doping in Poly(thienylene vinylene) 87 4.1 Research Background 87 4.2 Results and Discussion 89 4.2.1 Characterizations of Undoped Polymers 89 4.2.2 Spectroscopic Studies on Doping Behavior 92 4.2.3 Morphology and Microstructure of Doped Polymer Films 100 4.2.4 Thermoelectric Properties of Doped Polymer Films 105 4.2.5 Comparison with Low-Molecular-Weight Analogue P3EHTV 112 4.3 Conclusion 115 Chapter 5 Controlling Aggregation of Poly(thienylene vinylene)-Based Diblock Copolymers for Improved Single-Walled Carbon Nanotube Dispersion 117 5.1 Research Background 117 5.2 Results and Discussion 120 5.2.1 Morphology and Microstructure of CP/SWCNT Composite Thin Films 120 5.2.2 Characterization of Solution-State Polymer Aggregation 125 5.2.3 Characterization of SWCNT Suspension Stability 129 5.2.4 Proposed Mechanisms of SWCNT Debundling 131 5.2.5 Spectroscopic Studies on CP/SWCNT Composites 133 5.2.6 Thermoelectric Properties of Composite Thin Films 139 5.2.7 Polarity Switching in the P1/SWCNT 141 5.2.8 Effect of PS Block Length on CP/SWCNT Composites 144 5.2.9 Stretchability Assessment of Composite Thin Films 150 5.3 Conclusion 154 Chapter 6 Conclusion and Future Outlook 157 6.1 Overall Conclusion 157 6.2 Future Outlook 160 References 165 Biography 177 Publications and Presentations 178 | - |
| dc.language.iso | en | - |
| dc.subject | 有機熱電材料 | zh_TW |
| dc.subject | 共軛高分子 | zh_TW |
| dc.subject | 分子摻雜 | zh_TW |
| dc.subject | 奈米碳管複合物 | zh_TW |
| dc.subject | 結構-性能相互關係 | zh_TW |
| dc.subject | 可拉伸電子元件 | zh_TW |
| dc.subject | molecular doping | en |
| dc.subject | organic thermoelectric materials | en |
| dc.subject | stretchable electronics | en |
| dc.subject | structure–property relationships | en |
| dc.subject | carbon nanotube composites | en |
| dc.subject | conjugated polymers | en |
| dc.title | 共軛高分子熱電材料的結構設計與機制探討 | zh_TW |
| dc.title | Structural Design and Mechanistic Insights for Conjugated Polymer-Based Thermoelectrics | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 詹益慈;童世煌;陳銘洲;鄭彥如 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Tsu Chan;Shih-Huang Tung;Ming-Chou Chen;Yen-Ju Cheng | en |
| dc.subject.keyword | 有機熱電材料,共軛高分子,分子摻雜,奈米碳管複合物,結構-性能相互關係,可拉伸電子元件, | zh_TW |
| dc.subject.keyword | organic thermoelectric materials,conjugated polymers,molecular doping,carbon nanotube composites,structure–property relationships,stretchable electronics, | en |
| dc.relation.page | 180 | - |
| dc.identifier.doi | 10.6342/NTU202502187 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-28 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2030-07-23 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 10.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
