請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99389完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝淑貞 | zh_TW |
| dc.contributor.advisor | Shu-Chen Hsieh | en |
| dc.contributor.author | 李姿葭 | zh_TW |
| dc.contributor.author | Tzu-Chia Li | en |
| dc.date.accessioned | 2025-09-10T16:08:17Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | 葉昱德。 2018。 中國橄欖萃取物對脂質與醣類代謝相關機制的探討。 國立臺灣大學食品科技所博士論文。 台北。
練冠霆。 2020。 運用熱穩定分析探討中國橄欖萃取物在大腸直腸癌細胞株的蛋白質標的與促進細胞凋亡機制。 國立臺灣大學食品科技所碩士論文。 台北。 蔡宇柔。 2023。 利用細胞平台與化學分析以及電腦模擬探討中國橄欖的攝食應用。 國立臺灣大學食品科技所碩士論文。 台北。 龍孟專。 2021。 中國橄欖萃取物及其主要成分對大腸直腸癌細胞的抑制功效。 國立臺灣大學食品科技所碩士論文。 台北。 Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. Baek, S.-J., Lee, H., Park, S.-M., Park, M., Yi, J.-M., Kim, N. S., Kim, A., & Cha, S. (2022). Identification of a novel anticancer mechanism of Paeoniae Radix extracts based on systematic transcriptome analysis. Biomedicine & Pharmacotherapy, 148, 112748. Bartha, Á., & Győrffy, B. (2021). TNMplot.com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic Tissues. International Journal of Molecular Sciences, 22(5). Bellio, H., Fumet, J. D., & Ghiringhelli, F. (2021). Targeting BRAF and RAS in Colorectal Cancer. Cancers, 13(9). Bruunsgaard, H., Pedersen, A. N., Schroll, M., Skinhøj, P., & Pedersen, B. K. (2001). Decreased natural killer cell activity is associated with atherosclerosis in elderly humans. Experimental Gerontology, 37(1), 127-136. Butterfield, D. A., & Halliwell, B. (2019). Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nature Reviews Neuroscience, 20(3), 148-160. Capasso, A. (2012). Vinorelbine in Cancer Therapy. CURRENT DRUG TARGETS, 13(8), 1065-1071. Chen, F., Huang, G., Yang, Z., & Hou, Y. (2019). Antioxidant activity of Momordica charantia polysaccharide and its derivatives. International Journal of Biological Macromolecules, 138, 673-680. Christou, N., Blondy, S., David, V., Verdier, M., Lalloué, F., Jauberteau, M.-O., Mathonnet, M., & Perraud, A. (2020). Neurotensin pathway in digestive cancers and clinical applications: an overview. Cell Death & Disease, 11(12), 1027. Eibes, S., Lakshmi, R. B., Rajendraprasad, G., Weinert, B. T., Kamounah, F. S., Gamon, L. F., Rodriguez-Calado, S., Meldal, M., Davies, M. J., Pittelkow, M., Choudhary, C., & Barisic, M. (2025). Parthenolide disrupts mitosis by inhibiting ZNF207/BUGZ-promoted kinetochore-microtubule attachment. The EMBO Journal, 1-30-30. Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol, 35(4), 495-516. Fan, J., Zhu, J., Zhu, H., Zhang, Y., & Xu, H. (2024). Potential therapeutic target for polysaccharide inhibition of colon cancer progression. Frontiers in Medicine, 10, 1325491. Giacconi, R., Muti, E., Malavolta, M., Cipriano, C., Costarelli, L., Bernardini, G., Gasparini, N., Mariani, E., Saba, V., Boccoli, G., & Mocchegiani, E. (2007). The +838 C/G MT2A Polymorphism, Metals, and the Inflammatory/Immune Response in Carotid Artery Stenosis in Elderly People. Molecular Medicine, 13(7), 388-395. Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: ten years of next-generation sequencing technologies. Nature reviews geneticst, 17(6), 333-351. Gu, L., Lai, Z., Zhang, C., Liu, Z., Huo, Y., Qian, Y., Wang, B., Wang, Z., Zhao, Z., Hu, W., & Ma, M. (2025). (−) – (11R, 12S)-mefloquine ameliorates neuropathic pain by modulating Cx36-ER stress interaction in the pain-related central nervous system in rats. Life Sciences, 363, 123405. Guo, H., Su, Y., Guo, C., Chen, Q., Liu, Z., Geng, H., Mu, K., Wang, J., & Chen, D. (2022). Polysaccharide based drug delivery systems for Chinese medicines. Biocatalysis and Agricultural Biotechnology, 44, 102441. Hosain, N. A., Ghosh, R., Bryant, D. L., Arivett, B. A., Farone, A. L., & Kline, P. C. (2019). Isolation, structure elucidation, and immunostimulatory activity of polysaccharide fractions from Boswellia carterii frankincense resin. International Journal of Biological Macromolecules, 133, 76-85. Hou, X. X., Liu, J. Y., Li, Z. Y., Chang, M. C., Guo, M., Feng, C. P., & Shi, J.Y. (2020). Fruiting body polysaccharides of Hericium erinaceus induce apoptosis in human colorectal cancer cells via ROS generation mediating caspase-9-dependent signaling pathways. Food & Function, 11(7), 6128-6138. Ito, M., Shimura, H., Watanabe, N., Tamai, M., Hanada, K., Takahashi, A., Tanaka, Y., Arai, I., Zhang, P. L., Rao, C., Chen, W. M., Yang, J. S., Su, Y. L., & Wang, Y. L. (1990). Hepatorotective Compounds from Canarium album and Euphorbia nematocypha. Chemical and pharmaceutical bulletin, 38(8), 2201-2203. Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., Lerner, J., Brunet, J.-P., Subramanian, A., Ross, K. N., Reich, M., Hieronymus, H., Wei, G., Armstrong, S. A., Haggarty, S. J., Clemons, P. A., Wei, R., Carr, S. A., Lander, E. S., & Golub, T. R. (2006). The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science, 313(5795), 1929-1935. Lim, N., & Pavlidis, P. (2021). Evaluation of connectivity map shows limited reproducibility in drug repositioning. Scientific Reports, 11(1), 17624. Liu, J. Y., Hou, X. X., Li, Z. Y., Shan, S. H., Chang, M. C., Feng, C. P., & Wei, Y. (2020). Isolation and structural characterization of a novel polysaccharide from Hericium erinaceus fruiting bodies and its arrest of cell cycle at S-phage in colon cancer cells. International Journal of Biological Macromolecules, 157, 288-295. Mao, Z., Sun, J., Feng, B., Ma, J., Zang, L., Dong, F., Zhang, D., & Zheng, M. (2013). The Metastasis Suppressor, N-myc Downregulated Gene 1 (NDRG1), Is a Prognostic Biomarker for Human Colorectal Cancer. PLOS ONE, 8(7), e68206. Martins, F., Machado, A. L., Carvalho, J., Almeida, C. R., Beck, H. C., Carvalho, A. S., Backman, V., Matthiesen, R., & Velho, S. (2025). Differential unfolded protein response regulation in KRAS silencing sensitive and innately resistant colorectal cancer cells. Scientific Reports, 15(1), 14329. Mi, L., Zhu, F., Yang, X., Lu, J., Zheng, Y., Zhao, Q., Wen, X., Lu, A., Wang, M., Zheng, M., Ji, J., & Sun, J. (2017). The metastatic suppressor NDRG1 inhibits EMT, migration and invasion through interaction and promotion of caveolin-1 ubiquitylation in human colorectal cancer cells. Oncogene, 36(30), 4323-4335. Monteiro, P., Remy, D., Lemerle, E., Routet, F., Macé, A.-S., Guedj, C., Ladoux, B., Vassilopoulos, S., Lamaze, C., & Chavrier, P. (2023). A mechanosensitive caveolae–invadosome interplay drives matrix remodelling for cancer cell invasion. Nature Cell Biology, 25(12), 1787-1803. Palmiter, R. D. (1998). The elusive function of metallothioneins. Proceedings of the National Academy of Sciences, 95(15), 8428-8430. Ren, D., Jiao, Y., Yang, X., Yuan, L., Guo, J., & Zhao, Y. (2015). Antioxidant and antitumor effects of polysaccharides from the fungus Pleurotus abalonus. Chemico-Biological interactions 237, 166-174. Schriml, L. M., Arze, C., Nadendla, S., Chang, Y.-W. W., Mazaitis, M., Felix, V., Feng, G., & Kibbe, W. A. (2012). Disease Ontology: a backbone for disease semantic integration. Nucleic Acids Research, 40(D1), D940-D946. Song, H., Yu, J., Yang, Y., Zhou, L., Liu, X., Yu, J., Huang, Q., Wang, S., Zhang, X., Liu, Y., Zhang, D., Meng, J., Han, T., Li, W., & Niu, X. (2025). Exploring molecular mechanism of Panlongqi Tablet (PLQT) against RA: Integrated network pharmacology, molecular docking and experiment validation. International Immunopharmacology, 144, 113639. Song, H., Zhang, Y., Huang, Q., Wang, F., Wang, L., Xiong, L., & Shen, X. (2025). Extraction optimization, purification, characterization, and hypolipidemic activities of polysaccharide from pumpkin. International Journal of Biological Macromolecules, 307, 141907. Su, F., Song, Q., Zhang, C., Xu, X., Li, M., Yao, D., Wu, L., Qu, X., Guan, H., Yu, G., Yang, J., & Zhao, C. (2019). A β-1,3/1,6-glucan from Durvillaea Antarctica inhibits tumor progression in vivo as an immune stimulator. Carbohydrate Polymers, 222, 114993. The Gene Ontology Consortium. (2019). The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Research, 47(D1), D330-D338. Vecchione, L., Gambino, V., Raaijmakers, J., Schlicker, A., Fumagalli, A., Russo, M., Villanueva, A., Beerling, E., Bartolini, A., Mollevi, David G., El-Murr, N., Chiron, M., Calvet, L., Nicolazzi, C., Combeau, C., Henry, C., Simon, Iris M., Tian, S., in ‘t Veld, S., …& Bernards, R. (2016). A Vulnerability of a Subset of Colon Cancers with Potential Clinical Utility. Cell, 165(2), 317-330. Wada, H., Sato, Y., Fujimoto, S., Okamoto, K., Bando, M., Kawaguchi, T., Miyamoto, H., Muguruma, N., Horimoto, K., Matsuzawa, Y., Mutoh, M., & Takayama, T. (2022). Resveratrol inhibits development of colorectal adenoma via suppression of LEF1; comprehensive analysis with connectivity map. Cancer Science, 113(12), 4374-4384. Wang, X., Jackson, L. N., Johnson, S. M., Wang, Q., & Evers, B. M. (2010). Suppression of Neurotensin Receptor Type 1 Expression and Function by Histone Deacetylase Inhibitors in Human Colorectal Cancers. Molecular Cancer Therapeutics, 9(8), 2389-2398. Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57-63. Williams, T. M., & Lisanti, M. P. (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. American Journal of Physiology-Cell Physiology, 288(3), C494-C506. Wu, Z., Zeng, W., Zhang, X., & Yang, J. (2022). Characterization of Acidic Tea Polysaccharides from Yellow Leaves of Wuyi Rock Tea and Their Hypoglycemic Activity via Intestinal Flora Regulation in Rats. Foods, 11(4). Xiao, M., Lim-Ho Kong, B., Zhang, Y., Yang, Y., Lu, J., Lee, H. K., Cao, F., & Shaw, P. C. (2022). Anti-influenza mechanism of phenolic phytochemicals from Canarium album (Lour.) DC. leaf extract. Journal of Ethnopharmacology, 292, 115175. Xiao, M., Xu, J., Wang, W., Zhang, B., Liu, J., Li, J., Xu, H., Zhao, Y., Yu, X., & Shi, S. (2023). Functional significance of cholesterol metabolism in cancer: from threat to treatment. Experimental & Molecular Medicine, 55(9), 1982-1995. Xu, X., Wang, L., Zhang, K., Zhang, Y., & Fan, G. (2023). Managing metabolic diseases: The roles and therapeutic prospects of herb-derived polysaccharides. Biomedicine & Pharmacotherapy, 161, 114538. Yang, G., Ding, C., Yang, X., Jiang, J., He, S., Shao, Y., Zhang, E., Fan, X., Zhou, X., Huang, L., Xinyu Zhang, C., Sun, J., Wang, Y., Zang, L., Zheng, M., & Ma, J. (2025). NDRG1 enhances the sensitivity to Cetuximab by promoting Stat1 ubiquitylation in colorectal cancer. Journal of Advanced Research, 72, 555-569. Yang, M., Zhou, D., Xiao, H., Fu, X., Kong, Q., Zhu, C., Han, Z., & Mou, H. (2022). Marine-derived uronic acid-containing polysaccharides: Structures, sources, production, and nutritional functions. Trends in Food Science & Technology, 122, 1-12. Yao, W., Qiu, H.-M., Cheong, K.-L., & Zhong, S. (2022). Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. International Journal of Biological Macromolecules, 221, 472-485. Yeh, Y. T., Chiang, A. N., & Hsieh, S. C. (2017). Chinese Olive (Canarium album L.) Fruit Extract Attenuates Metabolic Dysfunction in Diabetic Rats. Nutrients, 9(10). Yu, F., Li, H., Meng, Y., & Yang, D. (2013). Extraction optimization of Angelica sinensis polysaccharides and its antioxidant activity in vivo. Carbohydrate Polymers, 94(1), 114-119. Yu, K., Wang, Y., Hu, W. J., Zhang, Z. J., Zhou, G. Y., Sun, S., Kuang, H. X., & Wang, M. (2023). Chinese olive (Canarium album Rauesch.): a critical review on its nutritional value, phytochemical composition, health benefits, and practical applications. Frontiers in Pharmacology, 14, 1275113. Zeng, H., Miao, S., Zheng, B., Lin, S., Jian, Y., Chen, S., & Zhang, Y. (2015). Molecular Structural Characteristics of Polysaccharide Fractions from Canarium album (Lour.) Raeusch and Their Antioxidant Activities. Journal of Food Science, 80(11), H2585-2596. Zhang, K., Xu, Q., Gao, Y., Cao, H., Lian, Y., Li, Z., Xu, J., Zhong, M., Li, J., Wei, R., Dong, J., & Jin, L. (2020). Polysaccharides from Dicliptera chinensis ameliorate liver disturbance by regulating TLR-4/NF-κB and AMPK/Nrf2 signalling pathways. Journal of Cellular and Molecular Medicine, 24(11), 6397-6409. Zhang, Y., Yao, L., Liu, Y., Chen, B., Wang, C., Gong, K., Wang, F., & Qiao, Y. (2023). Acidic polysaccharide from corn silk: Structural & conformational properties and hepatoprotective activity. International Journal of Biological Macromolecules, 236, 123851. Zhao, X.-H., Qian, L., Yin, D.-L., & Zhou, Y. (2014). Hypolipidemic effect of the polysaccharides extracted from pumpkin by cellulase-assisted method on mice. International Journal of Biological Macromolecules, 64, 137-138. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99389 | - |
| dc.description.abstract | 中國橄欖(Canarium album L.)為一種藥食兩用植物,富含多種具生理活性的天然成分,兼具營養與藥用價值。本研究目的為結合細胞實驗與生物資訊分析系統性探討中國橄欖葉片多醣 (Chinese olive leaf polysaccharides, COLP) 潛在生物活性及抑制大腸癌細胞的分子機制。實驗結果顯示,COLP 擁有更高的產率與總糖含量,且展現最顯著的抗癌活性。為進一步挖掘其生物功能潛力,本研究結合轉錄體分析,發現 COLP 調控的差異表現基因主要富集於氧化壓力反應、膽固醇代謝與細胞週期等關鍵生物過程。在疾病關聯分析中,這些基因不僅與癌症高度相關,也涉及心血管疾病與失智症等多種病理機制。Connectivity Map結果亦顯示,COLP 誘導的基因特徵與多種抗癌藥物和神經精神類藥物(如多巴胺與血清素受體拮抗劑)高度相似,顯示其具多面向的潛能。基於上述生物資訊結果,我們進一步聚焦於三大疾病模組:失智症、動脈粥樣硬化與大腸癌,進行交集分析與蛋白質交互作用網絡構建。分析結果指出,COLP 可能透過調控細胞週期、氧化還原平衡及細胞外基質重塑等路徑,參與多種疾病的分子機制調控。之後考量到 COLP 對癌症的強烈關聯性,本研究後續對大腸癌細胞的功能評估。實驗證實COLP 處理可顯著促使大腸癌細胞進入 sub-G1 期,並上調 cleaved-caspase-9 與 cleaved-PARP 的表現,顯示其具誘導內源性細胞凋亡之作用。此外,亦發現抗腫瘤相關基因 NDRG1 在 COLP 處理後顯著上調。資料庫分析進一步驗證 NDRG1 在臨床大腸癌組織中表現降低,佐證其作為 COLP 潛在凋亡標靶的可能性。整體而言,本研究證實 COLP 透過生物資料庫顯示具多重生物活性的應用潛能並且具備抑制大腸癌的潛力。 | zh_TW |
| dc.description.abstract | The Chinese olive (Canarium album L.) is a traditional edible and medicinal plant known for its rich content of bioactive compounds with nutritional and pharmacological value. This study investigates the inhibitory potential of Chinese olive leaf polysaccharides (COLP) against colorectal cancer cells and explores their underlying molecular mechanisms. Transcriptomic and bioinformatic analyses were further conducted to uncover additional biological functions of COLP. Preliminary evaluation showed that COLP exhibited the most potent anticancer activity. Further analysis found that COLP significantly increased the proportion of cells in the sub-G1 phase of the cell cycle and upregulate cleaved-caspase-9 and cleaved-PARP expression, indicating its ability to trigger intrinsic apoptosis in colorectal cancer cells. Through TNMplot database analysis, the clinically relevant gene NDRG1 was identified and found to be significantly upregulated upon COLP treatment, suggesting its role as a potential apoptosis-related target of COLP. In addition, Gene Ontology enrichment analysis revealed that COLP-regulated differentially expressed genes were mainly involved in oxidative stress response, cholesterol metabolism, and cell cycle regulation. Connectivity Map analysis showed that the gene expression profile induced by COLP closely resembled those of various anticancer and neuroactive drugs, including dopamine and serotonin receptor antagonists. Furthermore, Disease Ontology enrichment analysis indicated that COLP-regulated genes were not only associated with cancer but also implicated in metabolic syndrome, cardiovascular diseases, and dementia. To explore the disease relevance of COLP, its regulated genes were compared with gene sets associated with dementia, atherosclerosis, and colorectal cancer. Protein-protein interaction analysis revealed that overlapping genes formed tightly connected networks within functional modules such as cell cycle regulation, redox processes, and extracellular matrix remodeling, suggesting COLP’s potential role in multi-disease modulation. Collectively, this study confirms the anticancer potential of COLP and highlights the value of using public transcriptomic resources to investigate the multitarget bioactivities of natural products. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:08:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:08:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 I
摘要 II ABSTRACT III 目次 V 圖次 IX 表次 X 縮寫對照表 XI 第一章 文獻回顧 1 1.1 中國橄欖 1 1.1.1 中國橄欖簡介與藥用背景 1 1.1.2 中國橄欖不同部位的化學成分與活性 1 1.1.3 植物多醣之功能性研究 4 1.2 RNA定序 與生物資訊平台 6 1.2.1 次世代定序與轉錄體分析技術概述 6 1.2.2 Gene Ontology (GO) 7 1.2.3 Disease Ontology (DO) 7 1.2.4 Connectivity Map (CMAP) 7 1.2.5 STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) 8 1.2.6 天然物結合生資分析之研究案例與應用潛力 9 1.3 大腸直腸癌 11 1.3.1 大腸直腸癌的流行病學 11 1.3.2 天然物多醣對大腸直腸癌之影響 11 第二章 研究目的與架構 14 2.1 研究目的 14 2.2 實驗架構 14 第三章 材料與方法 15 3.1 實驗材料 15 3.1.1 化學藥品與試劑 15 3.1.2 細胞培養相關試劑 16 3.1.3 試劑盒與商品化套組 16 3.1.4 抗體 16 3.1.5 細胞株 17 3.1.6 儀器與設備 17 3.1.7 耗材 18 3.2 實驗方法 18 3.2.1 中國橄欖多醣萃取 18 3.2.2 細胞培養 20 3.2.3 RNA 萃取 21 3.2.4 蛋白質萃取與免疫分析 (Western blot) 21 3.2.5 生物資訊分析流程 23 3.2.6 資料處理 26 第四章 實驗結果 27 4.1 中國橄欖多醣萃取 27 4.1.1 中國橄欖多醣萃取產率 27 4.1.2 中國橄欖多醣 (COLP、COFP、COPP) 總糖含量分析 28 4.1.3 中國橄欖多醣 (COLP、COFP、COPP)對大腸癌細胞存活率分析 29 4.2 轉錄體層級分析 COLP 對WIDR 細胞基因表現之影響 31 4.2.1 定序條件測定 31 4.2.2 COLP 處理下 WiDr細胞之基因表現分析 32 4.2.3 COLP 誘導基因變化之功能富集分析 35 4.2.4 COLP 誘導基因變化於疾病資料庫對比分析(DO) 39 4.2.5 COLP 誘導基因變化於藥物資料庫之比對分析(CMAP) 42 4.3 COLP 調控差異基因於疾病關聯模組之蛋白質交互作用分析 45 4.3.1 COLP 調控與失智症相關基因之蛋白質交互作用網絡分析 45 4.3.2 COLP 調控與粥狀動脈硬化相關基因之蛋白質交互作用網絡分析 49 4.3.3 COLP調控與大腸癌標靶基因之網絡模組探討 52 4.3.4 中國橄欖葉片多醣對 WiDr 、HCT116 細胞株的存活率分析 56 4.4 COLP 誘導 HCT116 細胞進行細胞凋亡 57 4.4.1 COLP 促進細胞週期中sub G1階段之細胞增加 57 4.4.2 COLP 促進cleaved-caspase-9 和cleaved-PARP增加 59 4.5 以TNMPLOT尋找COLP 與標靶基因 NDRG1 的關係 61 第五章 討論 66 5.1 中國橄欖多醣的來源及初步篩選 66 5.2 COLP對WIDR細胞的基因調控潛力與生物意涵 66 5.3 基於蛋白質交互作用模組預測 COLP疾病調節潛能 67 5.4 COLP對 WIDR 、HCT116 細胞株的存活率分析 69 5.5 COLP 誘導 HCT116 細胞進行細胞凋亡 70 5.6 NDRG1 在大腸癌中的表現趨勢與潛在預後意義 70 5.7 研究限制 70 第六章 結論 72 第七章 參考文獻 74 附錄 83 1. COLP的半抑制濃度IC50 83 2. RNA定序數據品質評估 83 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 大腸直腸癌 | zh_TW |
| dc.subject | 中國橄欖 | zh_TW |
| dc.subject | 生物資訊學 | zh_TW |
| dc.subject | 轉錄體學 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | Apoptosis | en |
| dc.subject | Transcriptomic analysis | en |
| dc.subject | Bioinformatics | en |
| dc.subject | Colorectal cancer | en |
| dc.subject | Canarium album L. | en |
| dc.title | 基於轉錄體與生物資訊網絡分析探討中國橄欖多醣之抗大腸癌活性與潛在多疾病調控作用 | zh_TW |
| dc.title | Transcriptomic and bioinformatic network analysis of the anticancer activity and potential multi-disease regulatory effects of Chinese olive polysaccharides | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭靜娟 ;廖憶純 ;蘇純立;謝松源 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Chuan Kuo;Yi-Chun Liao;Chun-Li Su ;Sung-Yuan Hsieh | en |
| dc.subject.keyword | 中國橄欖,大腸直腸癌,細胞凋亡,轉錄體學,生物資訊學, | zh_TW |
| dc.subject.keyword | Canarium album L.,Colorectal cancer,Apoptosis,Transcriptomic analysis,Bioinformatics, | en |
| dc.relation.page | 84 | - |
| dc.identifier.doi | 10.6342/NTU202500915 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2030-07-30 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 8.89 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
