Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99372
標題: 以深紫外光微影術製備大面積TiO₂超穎介面暨裸眼3D全彩顯示應用
Fabrication of Large-Area Titanium Dioxide Metasurfaces via Deep Ultraviolet Lithography for Full-Color Naked-Eye 3D Display Applications
作者: 謝汶晉
Wen-Chin Hsieh
指導教授: 吳忠幟
Chung-Chih Wu
關鍵字: 超穎介面,裸眼3D顯示,深紫外光微影術,FDTD模擬,
Metasurface,Autostereoscopic 3D Display,Deep Ultraviolet Lithography,Finite-Difference Time-Domain Simulation,
出版年 : 2025
學位: 碩士
摘要: 本論文聚焦於開發大面積超穎介面技術並用於裸眼3D顯示器,藉由精密的光學設計與製程實現高解析度、多視角、低串擾的3D顯示技術,並改善傳統透鏡在解析度與視角分配上的限制。過去的裸眼3D顯示器多使用斜向柱狀透鏡分光,但隨視角數增加,解析度會被稀釋,且存在視覺疲勞與聚散調節衝突(Vergence-Accommodation Conflict, VAC)問題。本研究引入超穎介面(Metasurface)作為光場操控元件,利用其奈米級結構對不同極化光進行偏折,實現視角密集配置與解析度翻倍,並結合二氧化鈦(Titanium Dioxide, TiO₂)高折射率材料,提升整體穿透效率與相位調控能力。
因應超穎介面之大面積製程需求,本研究採用深紫外光微影技術(DUV Lithography),搭配感應耦合電漿乾式蝕刻(ICP)與高溫退火製程,在8吋玻璃基板上成功製作1500 nm高的奈米柱陣列,實現結構均勻的大面積超穎介面。設計方面,本研究針對波長450 nm、532 nm與630 nm三原色進行奈米柱尺寸參數掃描,並以FDTD (Finite-Difference Time-Domain)模擬其偏折效率與相位涵蓋能力,確保結構能精確控制光束方向與分佈。在RGB三波長下均獲得良好的方向偏折效率,紅光與綠光效率達90%以上,藍光則因材料吸收影響略低但仍具應用潛力。
本研究進一步整合超穎介面與4K液晶顯示模組之裸眼3D顯示架構,結合具均勻指向性的背光源,實驗上成功展現18個視角的3D影像顯示。初步成果驗證此系統具備高解析、多視角與低功耗等設計潛力,為未來應用於AR/VR、3D醫療影像與智慧顯示技術提供一可行之技術路徑。
This study focuses on the development of the metasurface technology and its application in the large-area naked-eye 3D display. Through precise optical design and advanced fabrication processes, it is aimed to achieve high resolution, multi-view, and low-crosstalk 3D imaging and to overcome the limitations of conventional lenticular lens systems in terms of resolution and angular distribution. Traditional naked-eye 3D displays commonly employ slanted lenticular lenses for light field separation; however, increasing the number of viewing angles leads to resolution degradation and induces visual fatigue as well as the vergence-accommodation conflict (VAC). To address these issues, this research introduces metasurfaces as optical field modulation elements. By leveraging the polarization-dependent deflection capabilities of nanoscale structures, the proposed system enables dense angular allocation and resolution doubling. Metasurfaces based on high-refractive-index titanium dioxide (TiO₂) are employed to enhance both transmission efficiency and phase modulation capabilities.
In response to large-area fabrication requirements of metasurfaces, deep ultraviolet (DUV) lithography is utilized in conjunction with inductively coupled plasma (ICP) dry etching. This process successfully produces uniform arrays of 1500 nm-high nanopillars on 8-inch glass substrates, demonstrating large-area structural uniformity. The metasurface design is optimized for RGB wavelengths (450 nm, 532 nm, and 630 nm) through parameter sweeps of nanopillar dimensions, with Finite-Difference Time-Domain (FDTD) simulations employed to evaluate deflection efficiency and phase coverage. High deflection efficiency is achieved across all three wavelengths, with red and green channels exceeding 90%, and the blue channel demonstrating slightly lower performance due to material absorption, though still viable for practical applications.
This work further demonstrated an integrated naked-eye 3D display system combining a metasurface with a 4K liquid crystal display (LCD) module and a collimated backlight source. Experimental results demonstrated the successful rendering of 3D images with 18 distinct viewing angles. The preliminary findings validate the system's potential for high resolution, multi-view capability, and low power consumption, offering a promising technological pathway for future applications in augmented/virtual reality (AR/VR), 3D medical imaging, and next-generation smart display technologies.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99372
DOI: 10.6342/NTU202503063
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2030-07-30
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.63 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved