請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99372| 標題: | 以深紫外光微影術製備大面積TiO₂超穎介面暨裸眼3D全彩顯示應用 Fabrication of Large-Area Titanium Dioxide Metasurfaces via Deep Ultraviolet Lithography for Full-Color Naked-Eye 3D Display Applications |
| 作者: | 謝汶晉 Wen-Chin Hsieh |
| 指導教授: | 吳忠幟 Chung-Chih Wu |
| 關鍵字: | 超穎介面,裸眼3D顯示,深紫外光微影術,FDTD模擬, Metasurface,Autostereoscopic 3D Display,Deep Ultraviolet Lithography,Finite-Difference Time-Domain Simulation, |
| 出版年 : | 2025 |
| 學位: | 碩士 |
| 摘要: | 本論文聚焦於開發大面積超穎介面技術並用於裸眼3D顯示器,藉由精密的光學設計與製程實現高解析度、多視角、低串擾的3D顯示技術,並改善傳統透鏡在解析度與視角分配上的限制。過去的裸眼3D顯示器多使用斜向柱狀透鏡分光,但隨視角數增加,解析度會被稀釋,且存在視覺疲勞與聚散調節衝突(Vergence-Accommodation Conflict, VAC)問題。本研究引入超穎介面(Metasurface)作為光場操控元件,利用其奈米級結構對不同極化光進行偏折,實現視角密集配置與解析度翻倍,並結合二氧化鈦(Titanium Dioxide, TiO₂)高折射率材料,提升整體穿透效率與相位調控能力。
因應超穎介面之大面積製程需求,本研究採用深紫外光微影技術(DUV Lithography),搭配感應耦合電漿乾式蝕刻(ICP)與高溫退火製程,在8吋玻璃基板上成功製作1500 nm高的奈米柱陣列,實現結構均勻的大面積超穎介面。設計方面,本研究針對波長450 nm、532 nm與630 nm三原色進行奈米柱尺寸參數掃描,並以FDTD (Finite-Difference Time-Domain)模擬其偏折效率與相位涵蓋能力,確保結構能精確控制光束方向與分佈。在RGB三波長下均獲得良好的方向偏折效率,紅光與綠光效率達90%以上,藍光則因材料吸收影響略低但仍具應用潛力。 本研究進一步整合超穎介面與4K液晶顯示模組之裸眼3D顯示架構,結合具均勻指向性的背光源,實驗上成功展現18個視角的3D影像顯示。初步成果驗證此系統具備高解析、多視角與低功耗等設計潛力,為未來應用於AR/VR、3D醫療影像與智慧顯示技術提供一可行之技術路徑。 This study focuses on the development of the metasurface technology and its application in the large-area naked-eye 3D display. Through precise optical design and advanced fabrication processes, it is aimed to achieve high resolution, multi-view, and low-crosstalk 3D imaging and to overcome the limitations of conventional lenticular lens systems in terms of resolution and angular distribution. Traditional naked-eye 3D displays commonly employ slanted lenticular lenses for light field separation; however, increasing the number of viewing angles leads to resolution degradation and induces visual fatigue as well as the vergence-accommodation conflict (VAC). To address these issues, this research introduces metasurfaces as optical field modulation elements. By leveraging the polarization-dependent deflection capabilities of nanoscale structures, the proposed system enables dense angular allocation and resolution doubling. Metasurfaces based on high-refractive-index titanium dioxide (TiO₂) are employed to enhance both transmission efficiency and phase modulation capabilities. In response to large-area fabrication requirements of metasurfaces, deep ultraviolet (DUV) lithography is utilized in conjunction with inductively coupled plasma (ICP) dry etching. This process successfully produces uniform arrays of 1500 nm-high nanopillars on 8-inch glass substrates, demonstrating large-area structural uniformity. The metasurface design is optimized for RGB wavelengths (450 nm, 532 nm, and 630 nm) through parameter sweeps of nanopillar dimensions, with Finite-Difference Time-Domain (FDTD) simulations employed to evaluate deflection efficiency and phase coverage. High deflection efficiency is achieved across all three wavelengths, with red and green channels exceeding 90%, and the blue channel demonstrating slightly lower performance due to material absorption, though still viable for practical applications. This work further demonstrated an integrated naked-eye 3D display system combining a metasurface with a 4K liquid crystal display (LCD) module and a collimated backlight source. Experimental results demonstrated the successful rendering of 3D images with 18 distinct viewing angles. The preliminary findings validate the system's potential for high resolution, multi-view capability, and low power consumption, offering a promising technological pathway for future applications in augmented/virtual reality (AR/VR), 3D medical imaging, and next-generation smart display technologies. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99372 |
| DOI: | 10.6342/NTU202503063 |
| 全文授權: | 同意授權(限校園內公開) |
| 電子全文公開日期: | 2030-07-30 |
| 顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.63 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
