Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99372
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳忠幟zh_TW
dc.contributor.advisorChung-Chih Wuen
dc.contributor.author謝汶晉zh_TW
dc.contributor.authorWen-Chin Hsiehen
dc.date.accessioned2025-09-10T16:04:50Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citationAkeley, K., Watt, S. J., Girshick, A. R., & Banks, M. S. (2004). A stereo display prototype with multiple focal distances. ACM Transactions on Graphics, 23(3), 804-813.
Banks, M. S., & Read, J. C. A. (2015). Stereoscopy and the human visual system. Annual Review of Vision Science, 1, 197-223.
Qingchen, L., & Haiming, L. (2017). Light field display: An adaptive weighted dual-layer LCD display for multiple views. 2017 International Conference on Virtual Reality and Visualization (ICVRV), 387-388.
Vienne, C., Sorin, L., Blondé, L., Huynh-Thu, Q., & Mamassian, P. (2014). Effect of the accommodation-vergence conflict on vergence eye movements. Vision Research, 100, 124-133.
Kang, D., Choi, J.-H., & Hwang, H. (2022). Autostereoscopic 3D display system for 3D medical images. Applied Sciences, 12(9), 4288.
Jee Hoon Sim, Junoh Kim, Cheoljoong Kim, Dooseub Shin, Junsik Lee, Gyohyun Koo, Gyu Suk Jung and Yong Hyub Won. (2018). Novel biconvex structure electrowetting liquid lenticular lens for 2D/3D convertible display. Scientific Reports, 8, 15416.
Kim, J., Shin, D., Lee, J., Koo, G., Kim, C., Sim, J. H., Jung, G., & Won, Y. H. (2018). Electro-wetting lenticular lens with improved diopter for 2D and 3D conversion using lens-shaped ETPTA chamber. Optics Express, 26, 19614-19626.
Holloway, C. L., Kuester, E. F., Gordon, J. A., O'Hara, J., Booth, J., & Smith, D. R. (2012). An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas and Propagation Magazine, 54(2), 10-35.
Wenye Ji, Jin Chang, He-Xiu Xu, Jian Rong Gao, Simon Gröblacher, H. Paul Urbach and Aurèle J. L. Adam. (2023). Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods. Light Science and Applications, 12, 169.
Guan, R., Xu, H., Lou, Z., Zhao, Z., & Wang, L. (2024). Design and development of metasurface materials for enhancing photodetector properties. Advanced Science, 11(34), e2402530.
Leng, B., Zhang, Y., Tsai, D. P., & Xiao, S. (2024). Meta-device: Advanced manufacturing. Light Advanced Manufacturing, 5(1), 117-132.
Joon-Suh Park, Shuyan Zhang, Alan She, Wei Ting Chen, Peng Lin, Kerolos M. A. Yousef, Ji-Xin Cheng and Federico Capasso. (2019). All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Letters, 19, 8673-8682.
Lidan Zhang, Shengyuan Chang, Xi Chen, Yimin Ding, Md Tarek Rahman, Yao Duan, Mark Stephen and Xingjie Ni. (2023). High-efficiency, 80 mm aperture metalens telescope. Nano Letters, 23, 51-57.
Ting Hu, Qize Zhong, Nanxi Li, Yuan Dong, Zhengji Xu, Yuan Hsing Fu, Dongdong Li, Vladimir Bliznetsov, Yanyan Zhou, Keng Heng Lai, Qunying Lin, Shiyang Zhu and Navab Singh. (2020). CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics, 9, 823-830.
Rao, L., Argaman, N., Zhuang, J., Ninan, A., Kim, C., & Wang, D. (2024). Display and optics architecture for Meta’s AR/VR development. IEEE Open Journal on Immersive Displays, 1, 71-78.
Chen, Q., Zhou, J., Pian, S., Xu, J., Li, X., Li, B., Lu, C., Wang, Z., Jiang, Q., Qin, S., Zhan, H., Zhang, B., Liu, X., Wang, K., & Ma, Y. (2024). Hybrid meta-optics enabled compact augmented reality display with computational image reinforcement. ACS Photonics, 11(9), 3794-3803.
Lee, J., Gwak, J., Badloe, T., Palomba, S., & Rho, J. (2020). Metasurfaces-based imaging and applications: From miniaturized optical components to functional imaging platforms. Nanoscale Advances, 2, 605.
Hawkins, M. L. (1990). A generalization of Snell's law. Doctoral dissertation, Naval Postgraduate School, Monterey, CA.
Su, G., Du, Z., Jiang, P., & Liu, Y. (2022). High-efficiency wavefront manipulation in thin plates using elastic metasurfaces beyond the generalized Snell’s law. Mechanical Systems and Signal Processing, 179, 109391.
Rousseau, E., & Felbacq, D. (2023). Detailed derivation of the generalized Snell-Descartes laws from Fermat’s principle. Journal of the Optical Society of America A, 40(4), 676-681.
Yee, K. S., & Chen, J. S. (1997). The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations. IEEE Transactions on Antennas and Propagation, 45(3), 354-363.
Yang, J., & Fan, J. A. (2017). Analysis of material selection on dielectric metasurface performance. Optics Express, 25(20), 23899-23909.
Wu, P. C., Zhu, W., Shen, Z. X., Chong, P. H. J., Ser, W., Tsai, D. P., & Liu, A. Q. (2017). Broadband wide‐angle multifunctional polarization converter via liquid‐metal‐based metasurface. Advanced Optical Materials, 5(7), 1600938.
De Galarreta, C. R., Carrillo, S. G., Au, Y. Y., Gemo, E., Trimby, L., Shields, J., ... & Wright, C. D. (2020). Tunable optical metasurfaces enabled by chalcogenide phase-change materials: From the visible to the THz. Journal of Optics, 22(11), 114001.
Challagulla, S., Tarafder, K., Ganesan, R., & Roy, S. (2017). Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Scientific Reports, 7, 8783.
Hardcastle, F. D. (2011). Raman spectroscopy of titania (TiO₂) nanotubular water-splitting catalysts. Journal of the Arkansas Academy of Science, 65, 9.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99372-
dc.description.abstract本論文聚焦於開發大面積超穎介面技術並用於裸眼3D顯示器,藉由精密的光學設計與製程實現高解析度、多視角、低串擾的3D顯示技術,並改善傳統透鏡在解析度與視角分配上的限制。過去的裸眼3D顯示器多使用斜向柱狀透鏡分光,但隨視角數增加,解析度會被稀釋,且存在視覺疲勞與聚散調節衝突(Vergence-Accommodation Conflict, VAC)問題。本研究引入超穎介面(Metasurface)作為光場操控元件,利用其奈米級結構對不同極化光進行偏折,實現視角密集配置與解析度翻倍,並結合二氧化鈦(Titanium Dioxide, TiO₂)高折射率材料,提升整體穿透效率與相位調控能力。
因應超穎介面之大面積製程需求,本研究採用深紫外光微影技術(DUV Lithography),搭配感應耦合電漿乾式蝕刻(ICP)與高溫退火製程,在8吋玻璃基板上成功製作1500 nm高的奈米柱陣列,實現結構均勻的大面積超穎介面。設計方面,本研究針對波長450 nm、532 nm與630 nm三原色進行奈米柱尺寸參數掃描,並以FDTD (Finite-Difference Time-Domain)模擬其偏折效率與相位涵蓋能力,確保結構能精確控制光束方向與分佈。在RGB三波長下均獲得良好的方向偏折效率,紅光與綠光效率達90%以上,藍光則因材料吸收影響略低但仍具應用潛力。
本研究進一步整合超穎介面與4K液晶顯示模組之裸眼3D顯示架構,結合具均勻指向性的背光源,實驗上成功展現18個視角的3D影像顯示。初步成果驗證此系統具備高解析、多視角與低功耗等設計潛力,為未來應用於AR/VR、3D醫療影像與智慧顯示技術提供一可行之技術路徑。
zh_TW
dc.description.abstractThis study focuses on the development of the metasurface technology and its application in the large-area naked-eye 3D display. Through precise optical design and advanced fabrication processes, it is aimed to achieve high resolution, multi-view, and low-crosstalk 3D imaging and to overcome the limitations of conventional lenticular lens systems in terms of resolution and angular distribution. Traditional naked-eye 3D displays commonly employ slanted lenticular lenses for light field separation; however, increasing the number of viewing angles leads to resolution degradation and induces visual fatigue as well as the vergence-accommodation conflict (VAC). To address these issues, this research introduces metasurfaces as optical field modulation elements. By leveraging the polarization-dependent deflection capabilities of nanoscale structures, the proposed system enables dense angular allocation and resolution doubling. Metasurfaces based on high-refractive-index titanium dioxide (TiO₂) are employed to enhance both transmission efficiency and phase modulation capabilities.
In response to large-area fabrication requirements of metasurfaces, deep ultraviolet (DUV) lithography is utilized in conjunction with inductively coupled plasma (ICP) dry etching. This process successfully produces uniform arrays of 1500 nm-high nanopillars on 8-inch glass substrates, demonstrating large-area structural uniformity. The metasurface design is optimized for RGB wavelengths (450 nm, 532 nm, and 630 nm) through parameter sweeps of nanopillar dimensions, with Finite-Difference Time-Domain (FDTD) simulations employed to evaluate deflection efficiency and phase coverage. High deflection efficiency is achieved across all three wavelengths, with red and green channels exceeding 90%, and the blue channel demonstrating slightly lower performance due to material absorption, though still viable for practical applications.
This work further demonstrated an integrated naked-eye 3D display system combining a metasurface with a 4K liquid crystal display (LCD) module and a collimated backlight source. Experimental results demonstrated the successful rendering of 3D images with 18 distinct viewing angles. The preliminary findings validate the system's potential for high resolution, multi-view capability, and low power consumption, offering a promising technological pathway for future applications in augmented/virtual reality (AR/VR), 3D medical imaging, and next-generation smart display technologies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:04:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:04:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭...I
摘要...II
Abstract...III
目次...IV
圖次...VI
表次...IX
第一章 緒論...1
1.1常見3D顯示器種類與設計 ...1
1.2小面積與大面積超穎介面簡介...3
1.3 2D和3D廣義斯乃爾定律...5
1.4時域有限差分法模擬...8
1.5研究動機與論文結構...10
第二章 超穎介面元件之設計與模擬...15
2.1整體超穎介面之規格與研究架構...15
2.2 RGB三原色不同偏折角度超穎介面之時域有限差分法與設計...17
2.3 RGB三原色角度偏折超穎介面之模擬設計結果...19
2.4大面積超穎介面之光罩設計與佈局...21
第三章 大面積超穎介面元件陣列製作與3D顯示之應用...42
3.1大面積超穎介面的製作與分析量測方法..42
3.1.1 TiO₂薄膜的沉積...42
3.1.2深紫外光光學微影術 ...44
3.1.3雷射切割...45
3.1.4感應耦合電漿乾式蝕刻...45
3.1.5濕蝕刻...46
3.1.6薄膜與奈米結構之特性及形貌分析...46
3.2大面積超穎介面的製作結果...48
3.2.1 TiO₂薄膜沉積特性分析...48
3.2.2深紫外光微影術曝光製程與實驗結果...49
3.2.3 TiO₂超穎介面之ICP乾式蝕刻與實驗結果...50
3.2.4 2.5 cm×5 cm大面積超穎介面搭配3D顯示...50
第四章 總結...70
參考文獻...71
-
dc.language.isozh_TW-
dc.subject深紫外光微影術zh_TW
dc.subject裸眼3D顯示zh_TW
dc.subjectFDTD模擬zh_TW
dc.subject超穎介面zh_TW
dc.subjectMetasurfaceen
dc.subjectFinite-Difference Time-Domain Simulationen
dc.subjectDeep Ultraviolet Lithographyen
dc.subjectAutostereoscopic 3D Displayen
dc.title以深紫外光微影術製備大面積TiO₂超穎介面暨裸眼3D全彩顯示應用zh_TW
dc.titleFabrication of Large-Area Titanium Dioxide Metasurfaces via Deep Ultraviolet Lithography for Full-Color Naked-Eye 3D Display Applicationsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡志宏; 張志豪zh_TW
dc.contributor.oralexamcommitteeChih-Hung Tsai;Chih-Hao Changen
dc.subject.keyword超穎介面,裸眼3D顯示,深紫外光微影術,FDTD模擬,zh_TW
dc.subject.keywordMetasurface,Autostereoscopic 3D Display,Deep Ultraviolet Lithography,Finite-Difference Time-Domain Simulation,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202503063-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2030-07-30-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved