Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99277
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉振良zh_TW
dc.contributor.advisorCheng-Liang Liuen
dc.contributor.author鄭羽媗zh_TW
dc.contributor.authorYu-Syuan Jhengen
dc.date.accessioned2025-08-21T17:05:39Z-
dc.date.available2025-08-26-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citation(1) He, J.; Tritt, T. M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357 (6358), eaak9997. DOI: doi:10.1126/science.aak9997.
(2) Fitriani; Ovik, R.; Long, B. D.; Barma, M. C.; Riaz, M.; Sabri, M. F. M.; Said, S. M.; Saidur, R. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renewable and Sustainable Energy Reviews 2016, 64, 635-659. DOI: https://doi.org/10.1016/j.rser.2016.06.035.
(3) Hooshmand Zaferani, S.; Jafarian, M.; Vashaee, D.; Ghomashchi, R. Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview. Energies 2021, 14 (18), 5646.
(4) Twaha, S.; Zhu, J.; Yan, Y.; Li, B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renewable and Sustainable Energy Reviews 2016, 65, 698-726. DOI: https://doi.org/10.1016/j.rser.2016.07.034.
(5) Taroni, P. J.; Hoces, I.; Stingelin, N.; Heeney, M.; Bilotti, E. Thermoelectric Materials: A Brief Historical Survey from Metal Junctions and Inorganic Semiconductors to Organic Polymers. Isr. J. Chem. 2014, 54 (5-6), 534-552. DOI: https://doi.org/10.1002/ijch.201400037.
(6) Hamid Elsheikh, M.; Shnawah, D. A.; Sabri, M. F. M.; Said, S. B. M.; Haji Hassan, M.; Ali Bashir, M. B.; Mohamad, M. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renewable and Sustainable Energy Reviews 2014, 30, 337-355. DOI: https://doi.org/10.1016/j.rser.2013.10.027.
(7) Sun, S.; Li, M.; Shi, X.-L.; Chen, Z.-G. Advances in Ionic Thermoelectrics: From Materials to Devices. Adv. Energy Mater. 2023, 13 (9), 2203692. DOI: https://doi.org/10.1002/aenm.202203692.
(8) Massetti, M.; Jiao, F.; Ferguson, A. J.; Zhao, D.; Wijeratne, K.; Würger, A.; Blackburn, J. L.; Crispin, X.; Fabiano, S. Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chemical Reviews 2021, 121 (20), 12465-12547. DOI: 10.1021/acs.chemrev.1c00218.
(9) Jia, S.; Qian, W.; Yu, P.; Li, K.; Li, M.; Lan, J.; Lin, Y.-H.; Yang, X. Ionic thermoelectric materials: Innovations and challenges. Mater. Today Phys. 2024, 42, 101375. DOI: https://doi.org/10.1016/j.mtphys.2024.101375.
(10) Watanabe, M.; Thomas, M. L.; Zhang, S.; Ueno, K.; Yasuda, T.; Dokko, K. Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chemical Reviews 2017, 117 (10), 7190-7239. DOI: 10.1021/acs.chemrev.6b00504.
(11) Nahar, Y.; Thickett, S. C. Greener, Faster, Stronger: The Benefits of Deep Eutectic Solvents in Polymer and Materials Science. Polymers 2021, 13 (3), 447.
(12) Li, Y.; Sun, M.; Cao, Y.; Yu, K.; Fan, Z.; Cao, Y. Designing Low Toxic Deep Eutectic Solvents for the Green Recycle of Lithium-Ion Batteries Cathodes. ChemSusChem 2024, 17 (13), e202301953. DOI: https://doi.org/10.1002/cssc.202301953.
(13) Wu, X.; Gao, N.; Jia, H.; Wang, Y. Thermoelectric Converters Based on Ionic Conductors. Chemistry – An Asian Journal 2021, 16 (2), 129-141. DOI: https://doi.org/10.1002/asia.202001331.
(14) Al Maimani, M.; Black, J. J.; Aldous, L. Achieving pseudo-‘n-type p-type’ in-series and parallel liquid thermoelectrics using all-iron thermoelectrochemical cells with opposite Seebeck coefficients. Electrochem. Commun. 2016, 72, 181-185. DOI: https://doi.org/10.1016/j.elecom.2016.10.001.
(15) Zhou, H.; Inoue, H.; Ujita, M.; Yamada, T. Advancement of Electrochemical Thermoelectric Conversion with Molecular Technology. Angew. Chem. Int. Ed. 2023, 62 (2), e202213449. DOI: https://doi.org/10.1002/anie.202213449.
(16) Cheng, H.; Le, Q.; Liu, Z.; Qian, Q.; Zhao, Y.; Ouyang, J. Ionic thermoelectrics: principles, materials and applications. J. Mater. Chem. C 2022, 10 (2), 433-450, 10.1039/D1TC05242J. DOI: 10.1039/D1TC05242J.
(17) Fu, M.; Sun, Z.; Yuan, Y.; Yue, K. Ionic Thermoelectric Materials Based on the Thermodiffusion Effect: Mechanism, Advancements, and Applications. Macromol. Chem. Phys. 2025, 226 (2), 2400358. DOI: https://doi.org/10.1002/macp.202400358.
(18) Henderson, D. Some analytic expressions for the capacitance and profiles of the electric double layer formed by ions near an electrode. Hungarian Journal of Industry and Chemistry 2015, 55-66.
(19) Jabeen, N.; Muddasar, M.; Menéndez, N.; Nasiri, M. A.; Gómez, C. M.; Collins, M. N.; Muñoz-Espí, R.; Cantarero, A.; Culebras, M. Recent advances in ionic thermoelectric systems and theoretical modelling. Chemical Science 2024, 15 (35), 14122-14153, 10.1039/D4SC04158E. DOI: 10.1039/D4SC04158E.
(20) Onsager, L. Reciprocal relations in irreversible processes. II. Physical review 1931, 38 (12), 2265.
(21) Liu, J.; Zeng, W.; Tao, X. Gigantic Effect due to Phase Transition on Thermoelectric Properties of Ionic Sol–Gel Materials. Adv. Funct. Mater. 2022, 32 (47), 2208286. DOI: https://doi.org/10.1002/adfm.202208286.
(22) Zhao, D.; Würger, A.; Crispin, X. Ionic thermoelectric materials and devices. J. Energy Chem. 2021, 61, 88-103. DOI: https://doi.org/10.1016/j.jechem.2021.02.022.
(23) Di Lecce, S.; Bresme, F. Thermal Polarization of Water Influences the Thermoelectric Response of Aqueous Solutions. The Journal of Physical Chemistry B 2018, 122 (5), 1662-1668. DOI: 10.1021/acs.jpcb.7b10960.
(24) Han, Y.; Wei, H.; Du, Y.; Li, Z.; Feng, S.-P.; Huang, B.; Xu, D. Ultrasensitive Flexible Thermal Sensor Arrays based on High-Thermopower Ionic Thermoelectric Hydrogel. Adv. Sci. 2023, 10 (25), 2302685. DOI: https://doi.org/10.1002/advs.202302685.
(25) Singh, N. K.; Baranwal, J.; Pati, S.; Barse, B.; Khan, R. H.; Kumar, A. Application of plant products in the synthesis and functionalisation of biopolymers. Int. J. Biol. Macromol. 2023, 237, 124174. DOI: https://doi.org/10.1016/j.ijbiomac.2023.124174.
(26) Long, Q.; Jiang, G.; Zhou, J.; Zhao, D.; Jia, P.; Nie, S. Cellulose ionic gel and its sustainable thermoelectric devices – Design, applications and prospects. Nano Energy 2024, 120, 109130. DOI: https://doi.org/10.1016/j.nanoen.2023.109130.
(27) Liu, K.; Lv, J.; Fan, G.; Wang, B.; Mao, Z.; Sui, X.; Feng, X. Flexible and Robust Bacterial Cellulose-Based Ionogels with High Thermoelectric Properties for Low-Grade Heat Harvesting. Adv. Funct. Mater. 2022, 32 (6), 2107105. DOI: https://doi.org/10.1002/adfm.202107105.
(28) Wang, H.; Guan, J.; He, M.; Zhu, Y.; Cheng, F. Flexible thermoelectric CMTs/KCl/gelatin composite for a wearable pressure and temperature sensor. RSC Adv. 2024, 14 (10), 6865-6873, 10.1039/D3RA08471J. DOI: 10.1039/D3RA08471J.
(29) Li, Q.; Yu, D.; Wang, S.; Zhang, X.; Li, Y.; Feng, S.-P.; Liu, W. High Thermopower of Agarose-Based Ionic Thermoelectric Gel Through Micellization Effect Decoupling the Cation/Anion Thermodiffusion. Adv. Funct. Mater. 2023, 33 (49), 2305835. DOI: https://doi.org/10.1002/adfm.202305835.
(30) Li, X.; Gong, S.; Yang, L.; Zhang, F.; Xie, L.; Luo, Z.; Xia, X.; Wang, J. Study on the degradation behavior and mechanism of Poly(lactic acid) modification by ferric chloride. Polymer 2020, 188, 121991. DOI: https://doi.org/10.1016/j.polymer.2019.121991.
(31) Li, F.-J.; Tan, L.-C.; Zhang, S.-D.; Zhu, B. Compatibility, steady and dynamic rheological behaviors of polylactide/poly(ethylene glycol) blends. J. Appl. Polym. Sci. 2016, 133 (4). DOI: https://doi.org/10.1002/app.42919.
(32) Li, Z.; Liu, Z.; Fang, Y.; Wu, H.; Niu, R.; Wu, L.; Li, Y.; Sui, M.; Wang, H.; Lu, X.; et al. Bio-based Polylactic acid/Polyurethane blends with good recyclability and excellent shape stability for solar thermal energy storage. Solar Energy Materials and Solar Cells 2023, 258, 112406. DOI: https://doi.org/10.1016/j.solmat.2023.112406.
(33) Zhang, Q.; Shi, C.-Y.; Qu, D.-H.; Long, Y.-T.; Feringa, B. L.; Tian, H. Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Sci. Adv. 2018, 4 (7), eaat8192. DOI: doi:10.1126/sciadv.aat8192.
(34) Albanese, K. R.; Read de Alaniz, J.; Hawker, C. J.; Bates, C. M. From health supplement to versatile monomer: Radical ring-opening polymerization and depolymerization of α-lipoic acid. Polymer 2024, 304, 127167. DOI: https://doi.org/10.1016/j.polymer.2024.127167.
(35) Oun, A. A.; Shin, G. H.; Rhim, J.-W.; Kim, J. T. Recent advances in polyvinyl alcohol-based composite films and their applications in food packaging. Food Packaging and Shelf Life 2022, 34, 100991. DOI: https://doi.org/10.1016/j.fpsl.2022.100991.
(36) Verma, C.; Quraishi, M. A.; Alfantazi, A.; Rhee, K. Y. Biodegradable synthetic polymers in sustainable corrosion protection: Present and future scenarios. Advanced Industrial and Engineering Polymer Research 2023, 6 (4), 407-435. DOI: https://doi.org/10.1016/j.aiepr.2023.04.005.
(37) Chen, B.; Chen, Q.; Xiao, S.; Feng, J.; Zhang, X.; Wang, T. Giant negative thermopower of ionic hydrogel by synergistic coordination and hydration interactions. Sci. Adv. 2021, 7 (48), eabi7233. DOI: doi:10.1126/sciadv.abi7233.
(38) Kuzina, M. A.; Kartsev, D. D.; Stratonovich, A. V.; Levkin, P. A. Organogels versus Hydrogels: Advantages, Challenges, and Applications. Adv. Funct. Mater. 2023, 33 (27), 2301421. DOI: https://doi.org/10.1002/adfm.202301421.
(39) Cheng, H.; Ouyang, J. Soret Effect of Ionic Liquid Gels for Thermoelectric Conversion. J. Phys. Chem. Lett. 2022, 13 (46), 10830-10842. DOI: 10.1021/acs.jpclett.2c02645.
(40) Jia, H.; Tao, X.; Wang, Y. Flexible and self-healing thermoelectric converters based on thermosensitive liquids at low temperature gradient. Adv. Electron. Mater 2016, 2 (7), 1600136.
(41) Ma, Y.; Yang, Y.; Li, T.; Hussain, S.; Zhu, M. Deep eutectic solvents as an emerging green platform for the synthesis of functional materials. Green Chemistry 2024, 26 (7), 3627-3669, 10.1039/D3GC04289H. DOI: 10.1039/D3GC04289H.
(42) Jančíková, V.; Jablonský, M. Exploiting Deep Eutectic Solvent-like Mixtures for Fractionation Biomass, and the Mechanism Removal of Lignin: A Review. Sustainability 2024, 16 (2), 504.
(43) El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and properties of deep eutectic solvents: a review. Environmental Chemistry Letters 2021, 19 (4), 3397-3408. DOI: 10.1007/s10311-021-01225-8.
(44) Zhao, D.; Wang, H.; Khan, Z. U.; Chen, J. C.; Gabrielsson, R.; Jonsson, M. P.; Berggren, M.; Crispin, X. Ionic thermoelectric supercapacitors. Energy Environ. Sci. 2016, 9 (4), 1450-1457, 10.1039/C6EE00121A. DOI: 10.1039/C6EE00121A.
(45) Le, Q.; Cheng, H.; Ouyang, J. An ionic thermoelectric capacitor with continuous power generation for heat harvesting. Chem. Eng. J. 2023, 469, 143828. DOI: https://doi.org/10.1016/j.cej.2023.143828.
(46) Sattar, M.; Lee, Y. J.; Kim, H.; Adams, M.; Guess, M.; Kim, J.; Soltis, I.; Kang, T.; Kim, H.; Lee, J.; et al. Flexible Thermoelectric Wearable Architecture for Wireless Continuous Physiological Monitoring. ACS Appl. Mater. Interfaces 2024, 16 (29), 37401-37417. DOI: 10.1021/acsami.4c02467.
(47) Chen, Q.; Cheng, B.; Wang, Z.; Sun, X.; Liu, Y.; Sun, H.; Li, J.; Chen, L.; Zhu, X.; Huang, L.; et al. Rarely negative-thermovoltage cellulose ionogel with simultaneously boosted mechanical strength and ionic conductivity via ion-molecular engineering. J. Mater. Chem. A 2023, 11 (5), 2145-2154, 10.1039/D2TA09068F. DOI: 10.1039/D2TA09068F.
(48) Li, M.; Xu, H.; Luo, M.; Qing, X.; Wang, W.; Zhong, W.; Liu, Q.; Wang, Y.; Yang, L.; Zhu, X.; et al. Wearable ionogel fiber-based ionic thermoelectric device for low-grade human body heat harvesting. Chem. Eng. J. 2024, 485, 149784. DOI: https://doi.org/10.1016/j.cej.2024.149784.
(49) Yu, M.; Li, H.; Li, Y.; Wang, S.; Li, Q.; Wang, Y.; Li, B.; Zhu, K.; Liu, W. Ionic thermoelectric gels and devices: Progress, opportunities, and challenges. EnergyChem 2024, 6 (3), 100123. DOI: https://doi.org/10.1016/j.enchem.2024.100123.
(50) Kim, D.-H.; Akbar, Z. A.; Malik, Y. T.; Jeon, J.-W.; Jang, S.-Y. Self-healable polymer complex with a giant ionic thermoelectric effect. Nat. Commun. 2023, 14 (1), 3246. DOI: 10.1038/s41467-023-38830-w.
(51) Li, Z.; Deng, L.; Lv, H.; Liang, L.; Deng, W.; Zhang, Y.; Chen, G. Mechanically Robust and Flexible Films of Ionic Liquid-Modulated Polymer Thermoelectric Composites. Adv. Funct. Mater. 2021, 31 (42), 2104836. DOI: https://doi.org/10.1002/adfm.202104836.
(52) Liu, Z.; Chen, G. Advancing Flexible Thermoelectric Devices with Polymer Composites. Adv. Mater. Technol. 2020, 5 (7), 2000049. DOI: https://doi.org/10.1002/admt.202000049.
(53) Cheng, H.; He, X.; Fan, Z.; Ouyang, J. Flexible Quasi-Solid State Ionogels with Remarkable Seebeck Coefficient and High Thermoelectric Properties. Adv. Energy Mater. 2019, 9 (32), 1901085. DOI: https://doi.org/10.1002/aenm.201901085.
(54) Fan, G.; Liu, K.; Su, H.; Luo, Y.; Geng, Y.; Chen, L.; Wang, B.; Mao, Z.; Sui, X.; Feng, X. Mesoscopic confined ionic thermoelectric materials with excellent ionic conductivity for waste heat harvesting. Chem. Eng. J. 2022, 434, 134702. DOI: https://doi.org/10.1016/j.cej.2022.134702.
(55) Muddasar, M.; Menéndez, N.; Quero, Á.; Nasiri, M. A.; Cantarero, A.; García-Cañadas, J.; Gómez, C. M.; Collins, M. N.; Culebras, M. Highly-efficient sustainable ionic thermoelectric materials using lignin-derived hydrogels. Adv. Compos. Hybrid Mater. 2024, 7 (2), 47. DOI: 10.1007/s42114-024-00863-0.
(56) Zhu, H.; Cheng, Y.; Li, S.; Xu, M.; Yang, X.; Li, T.; Du, Y.; Liu, Y.; Song, H. Stretchable and recyclable gelatin Ionogel based ionic skin with extensive temperature tolerant, self-healing, UV-shielding, and sensing capabilities. Int. J. Biol. Macromol. 2023, 244, 125417. DOI: https://doi.org/10.1016/j.ijbiomac.2023.125417.
(57) Wu, D.; Wang, M.; Yu, W.; Wang, G.-G.; Zhang, J. A robust, biodegradable and recyclable all-cellulose ionogel from low-value wood. Chem. Eng. J. 2024, 486, 150121. DOI: https://doi.org/10.1016/j.cej.2024.150121.
(58) Zhu, P.; Luo, X.; Lin, X.; Qiu, Z.; Chen, R.; Wang, X.; Wang, Y.; Deng, Y.; Mao, Y. A self-healable, recyclable, and flexible thermoelectric device for wearable energy harvesting and personal thermal management. Energy Convers. Manage. 2023, 285, 117017. DOI: https://doi.org/10.1016/j.enconman.2023.117017.
(59) Lv, S.-y.; He, S.; Ling, X.-l.; Wang, Y.-q.; Huang, C.; Long, J.-r.; Wang, J.-q.; Qin, Y.; Wei, H.; Yu, C.-Y. Review of lipoic acid: from a clinical therapeutic agent to various emerging biomaterials. Int. J. Pharm. 2022, 627, 122201.
(60) Zhou, J.; Chang, C.; Zhang, R.; Zhang, L. Hydrogels Prepared from Unsubstituted Cellulose in NaOH/Urea Aqueous Solution. Macromol. Biosci. 2007, 7 (6), 804-809. DOI: https://doi.org/10.1002/mabi.200700007.
(61) Yu, Q.; Fang, Z.; Luan, S.; Wang, L.; Shi, H. Biological applications of lipoic acid-based polymers: an old material with new promise. J. Mater. Chem. B 2024, 12 (19), 4574-4583, 10.1039/D4TB00581C. DOI: 10.1039/D4TB00581C.
(62) Zhang, L.; Long, Y.; Chen, Z.; Wan, M. The Effect of Hydrogen Bonding on Self-Assembled Polyaniline Nanostructures. Adv. Funct. Mater. 2004, 14 (7), 693-698. DOI: https://doi.org/10.1002/adfm.200305020.
(63) Dang, C.; Shao, C.; Liu, H.; Chen, Y.; Qi, H. Cellulose melt processing assisted by small biomass molecule to fabricate recyclable ionogels for versatile stretchable triboelectric nanogenerators. Nano Energy 2021, 90, 106619. DOI: https://doi.org/10.1016/j.nanoen.2021.106619.
(64) Vera-Tuset, M.; Mas-Ballesté, R.; Cuadrado, I.; Moya, A.; Bruña, S. Electroactive sulfur-rich materials obtained via inverse vulcanization of a diallylsilyl-functionalized ferrocene. Polym. Chem. 2024, 15 (10), 1015-1025, 10.1039/D3PY01283B. DOI: 10.1039/D3PY01283B.
(65) Lyu, X.; Lin, Z.; Huang, C.; Zhang, X.; Lu, Y.; Luo, Z.-Z.; Zhou, P.; Zou, Z. Tough and elastic hydrogel thermocells for heat energy utilization. Chem. Eng. J. 2024, 493, 152887. DOI: https://doi.org/10.1016/j.cej.2024.152887.
(66) Ramazani-Harandi, M. J.; Zohuriaan-Mehr, M. J.; Yousefi, A. A.; Ershad-Langroudi, A.; Kabiri, K. Rheological determination of the swollen gel strength of superabsorbent polymer hydrogels. Polym. Test. 2006, 25 (4), 470-474. DOI: https://doi.org/10.1016/j.polymertesting.2006.01.011.
(67) Bak, J.; Yoo, B. Rheological and tribological properties of xanthan gum-fucoidan mixture: Effect of NaCl, KCl, and CaCl2. J. Mol. Liq. 2024, 412, 125879. DOI: https://doi.org/10.1016/j.molliq.2024.125879.
(68) Chen, F.; Wang, X.; Armand, M.; Forsyth, M. Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications. Nat. Mater. 2022, 21 (10), 1175-1182. DOI: 10.1038/s41563-022-01319-w.
(69) Sinkó, K.; Torma, V.; Kovács, A. SAXS investigation of porous nanostructures. J. Non-Cryst. Solids 2008, 354 (52), 5466-5474. DOI: https://doi.org/10.1016/j.jnoncrysol.2008.08.021.
(70) Bandyopadhyay, J.; Sinha Ray, S. Mechanism of enhanced tenacity in a polymer nanocomposite studied by small-angle X-ray scattering and electron microscopy. Polymer 2010, 51 (21), 4860-4866. DOI: https://doi.org/10.1016/j.polymer.2010.08.040.
(71) Lee, C.-Y.; Hsu, C.-C.; Wang, C.-H.; Jeng, U.-S.; Tung, S.-H.; Hu, C.-C.; Liu, C.-L. Exploring Pyrazine-Based Organic Redox Couples for Enhanced Thermoelectric Performance in Wearable Energy Harvesters. Small 2025, 21 (14), 2407622. DOI: https://doi.org/10.1002/smll.202407622.
(72) Choi, S.-H.; Bates, F. S.; Lodge, T. P. Small-Angle X-ray Scattering of Concentration Dependent Structures in Block Copolymer Solutions. Macromolecules 2014, 47 (22), 7978-7986. DOI: 10.1021/ma5016819.
(73) Susan, M. A. B. H.; Kaneko, T.; Noda, A.; Watanabe, M. Ion Gels Prepared by in Situ Radical Polymerization of Vinyl Monomers in an Ionic Liquid and Their Characterization as Polymer Electrolytes. J. Am. Chem. Soc. 2005, 127 (13), 4976-4983. DOI: 10.1021/ja045155b.
(74) Zhou, W.; Zhao, L.; Cheng, H.; Chen, J.; Ouyang, J. Great enhancement in the ionic thermopower of ionogels by cationic doping. Chem. Eng. J. 2023, 477, 147257. DOI: https://doi.org/10.1016/j.cej.2023.147257.
(75) Fang, Y.; Cheng, H.; He, H.; Wang, S.; Li, J.; Yue, S.; Zhang, L.; Du, Z.; Ouyang, J. Stretchable and Transparent Ionogels with High Thermoelectric Properties. Adv. Funct. Mater. 2020, 30 (51), 2004699. DOI: https://doi.org/10.1002/adfm.202004699.
(76) Zhao, D.; Martinelli, A.; Willfahrt, A.; Fischer, T.; Bernin, D.; Khan, Z. U.; Shahi, M.; Brill, J.; Jonsson, M. P.; Fabiano, S.; et al. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles. Nat. Commun. 2019, 10 (1), 1093. DOI: 10.1038/s41467-019-08930-7.
(77) Ho, D. H.; Kim, Y. M.; Kim, U. J.; Yu, K. S.; Kwon, J. H.; Moon, H. C.; Cho, J. H. Zwitterionic Polymer Gel-Based Fully Self-Healable Ionic Thermoelectric Generators with Pressure-Activated Electrodes. Adv. Energy Mater. 2023, 13 (32), 2301133. DOI: https://doi.org/10.1002/aenm.202301133.
(78) Zhao, W.; Zheng, Y.; Jiang, M.; Sun, T.; Huang, A.; Wang, L.; Jiang, W.; Zhang, Q. Exceptional n-type thermoelectric ionogels enabled by metal coordination and ion-selective association. Sci. Adv. 2023, 9 (43), eadk2098. DOI: doi:10.1126/sciadv.adk2098.
(79) Chi, C.; An, M.; Qi, X.; Li, Y.; Zhang, R.; Liu, G.; Lin, C.; Huang, H.; Dang, H.; Demir, B.; et al. Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing. Nat. Commun. 2022, 13 (1), 221. DOI: 10.1038/s41467-021-27885-2.
(80) Chi, C.; Liu, G.; An, M.; Zhang, Y.; Song, D.; Qi, X.; Zhao, C.; Wang, Z.; Du, Y.; Lin, Z.; et al. Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation. Nat. Commun. 2023, 14 (1), 306. DOI: 10.1038/s41467-023-36018-w.
(81) Cheng, X.; Hu, Y.; Chen, P.; Qi, H.; Lu, A. Regulation of thermal migration channel in cellulose hydrogel to enhance thermopower. Chem. Eng. J. 2024, 498, 155161. DOI: https://doi.org/10.1016/j.cej.2024.155161.
(82) Sotoma, S.; Akagi, K.; Hosokawa, S.; Igarashi, R.; Tochio, H.; Harada, Y.; Shirakawa, M. Comprehensive and quantitative analysis for controlling the physical/chemical states and particle properties of nanodiamonds for biological applications. RSC Adv. 2015, 5 (18), 13818-13827, 10.1039/C4RA16482B. DOI: 10.1039/C4RA16482B.
(83) Fang, F.; Jiang, C.; Ning, C.; Liu, W.; Hou, Q.; Ni, Y. Superstretchable and multifunctional ionogel for facile fabricating flexible strain sensors. Resour. Chem. Mater. 2023, 2 (4), 312-320.
(84) Chen, Y.; Hong, G.; Li, L.; Qu, Q.; Li, G.; Wu, J.; Ge, L. Enlightening thermoelectric mastery: Bio-inspired cellulose gel containing eco-friendly deep eutectic solvents. Chem. Eng. J. 2024, 483, 149344. DOI: https://doi.org/10.1016/j.cej.2024.149344.
(85) Liu, Z.; Cheng, H.; Le, Q.; Chen, R.; Li, J.; Ouyang, J. Giant Thermoelectric Properties of Ionogels with Cationic Doping. Adv. Energy Mater. 2022, 12 (22), 2200858. DOI: https://doi.org/10.1002/aenm.202200858.
(86) Guo, R.; Li, D.; Qi, W.; Chen, G.; Li, Q.; Zhou, Z. Fabrication of high-strength and multi-recyclable supramolecular polysiloxane by incorporating quadruple hydrogen bonds into main-chains for adhesive and oil-water separation. Polymer 2023, 277, 125954. DOI: https://doi.org/10.1016/j.polymer.2023.125954.
(87) Alraddadi, M. A.; Chiaradia, V.; Stubbs, C. J.; Worch, J. C.; Dove, A. P. Renewable and recyclable covalent adaptable networks based on bio-derived lipoic acid. Polym. Chem. 2021, 12 (40), 5796-5802, 10.1039/D1PY00754H. DOI: 10.1039/D1PY00754H.
(88) Yu, J.; Luo, M.; Zhu, X.; Qing, X.; Wang, W.; Zhong, W.; Liu, Q.; Wang, Y.; Lu, Y.; Li, M. Bacterial Cellulose-Based ionogels with synergistically enhanced mechanical and thermoelectric performances for low-grade heat harvesting. Chem. Eng. J. 2024, 488, 150638.
(89) Li, M.; Xu, H.; Luo, M.; Qing, X.; Wang, W.; Zhong, W.; Liu, Q.; Wang, Y.; Yang, L.; Zhu, X. Wearable ionogel fiber-based ionic thermoelectric device for low-grade human body heat harvesting. Chem. Eng. J. 2024, 485, 149784.
(90) Zhao, W.; Lei, Z.; Wu, P. Mechanically Adaptative and Environmentally Stable Ionogels for Energy Harvest. Adv. Sci. 2023, 10 (18), 2300253. DOI: https://doi.org/10.1002/advs.202300253.
(91) Lee, L.-C.; Huang, K.-T.; Lin, Y.-T.; Jeng, U.-S.; Wang, C.-H.; Tung, S.-H.; Huang, C.-J.; Liu, C.-L. A pH-Sensitive Stretchable Zwitterionic Hydrogel with Bipolar Thermoelectricity. Small 2024, 20 (24), 2311811. DOI: https://doi.org/10.1002/smll.202311811.
(92) Han, C.-G.; Qian, X.; Li, Q.; Deng, B.; Zhu, Y.; Han, Z.; Zhang, W.; Wang, W.; Feng, S.-P.; Chen, G.; et al. Giant thermopower of ionic gelatin near room temperature. Science 2020, 368 (6495), 1091-1098. DOI: doi:10.1126/science.aaz5045.
(93) Pai, Y.-H.; Tang, J.; Zhao, Y.; Liang, Z. Ionic Organic Thermoelectrics with Impressively High Thermopower for Sensitive Heat Harvesting Scenarios. Adv. Energy Mater. 2023, 13 (1), 2202507. DOI: https://doi.org/10.1002/aenm.202202507.
(94) Ben Halima, N. Poly(vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Adv. 2016, 6 (46), 39823-39832, 10.1039/C6RA05742J. DOI: 10.1039/C6RA05742J.
(95) He, Y.; Liu, K.; Zhang, C.; Guo, S.; Chang, R.; Guan, F.; Yao, M. Facile preparation of PVA hydrogels with adhesive, self-healing, antimicrobial, and on-demand removable capabilities for rapid hemostasis. Biomaterials Science 2022, 10 (19), 5620-5633, 10.1039/D2BM00891B. DOI: 10.1039/D2BM00891B.
(96) Mansur, H. S.; Sadahira, C. M.; Souza, A. N.; Mansur, A. A. P. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C. 2008, 28 (4), 539-548. DOI: https://doi.org/10.1016/j.msec.2007.10.088.
(97) Bercea, M. Recent Advances in Poly(vinyl alcohol)-Based Hydrogels. Polymers 2024, 16 (14), 2021. DOI: https://doi.org/10.3390/polym16142021.
(98) Ling, J. K. U.; Hadinoto, K. Deep Eutectic Solvent as Green Solvent in Extraction of Biological Macromolecules: A Review. Int. J. Mol. Sci. 2022, 23 (6), 3381.
(99) Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 2012, 41 (21), 7108-7146, 10.1039/C2CS35178A. DOI: 10.1039/C2CS35178A.
(100) Zhao, Y.; Cheng, H.; Li, Y.; Rao, J.; Yue, S.; Le, Q.; Qian, Q.; Liu, Z.; Ouyang, J. Quasi-solid conductive gels with high thermoelectric properties and high mechanical stretchability consisting of a low cost and green deep eutectic solvent. J. Mater. Chem. A 2022, 10 (8), 4222-4229, 10.1039/D1TA09707E. DOI: 10.1039/D1TA09707E.
(101) Wang, Y.; Wang, Y.; Yan, L. Deep Eutectic Solvent-Induced Microphase Separation and Entanglement of PVA Chains for Tough and Reprocessable Eutectogels for Sensors. Langmuir 2022, 38 (40), 12189-12197. DOI: 10.1021/acs.langmuir.2c01770.
(102) Vo, T. H.; Lam, P. K.; Chuang, R.-m.; Shieh, F.-K.; Sheng, Y.-J.; Tsao, H.-K. One-step, additive-free fabrication of highly stretchable and ultra-tough physical polyvinyl alcohol-based eutectogels for strain sensors. Chem. Eng. J. 2024, 493, 152877. DOI: https://doi.org/10.1016/j.cej.2024.152877.
(103) Fan, K.; Wei, W.; Zhang, Z.; Liu, B.; Feng, W.; Ma, Y.; Zhang, X. Highly stretchable, self-healing, and adhesive polymeric eutectogel enabled by hydrogen-bond networks for wearable strain sensor. Chem. Eng. J. 2022, 449, 137878. DOI: https://doi.org/10.1016/j.cej.2022.137878.
(104) Wu, H.; Pang, Z.; Ji, L.; Pang, X.; Li, Y.; Yu, X. Strong adhesive, high conductive and environmentally stable eutectogel based on “Water in deep eutectic Solvent”: Ultrasensitive flexible temperature and strain sensors. Chem. Eng. J. 2024, 497, 154883. DOI: https://doi.org/10.1016/j.cej.2024.154883.
(105) Wang, Y.; Wang, J.; Ma, Z.; Yan, L. A Highly Conductive, Self-Recoverable, and Strong Eutectogel of a Deep Eutectic Solvent with Polymer Crystalline Domain Regulation. ACS Appl. Mater. Interfaces 2021, 13 (45), 54409-54416. DOI: 10.1021/acsami.1c17442.
(106) Ng, L. S.; Chah, E. L. C.; Ngieng, M. H.; Boong, S. K.; Chong, C.; Raja Mogan, T.; Lee, J.-K.; Li, H.; Lee, C.-L. K.; Lee, H. K. Chaotropic Nanoelectrocatalysis: Chemically Disrupting Water Intermolecular Network at the Point-of-Catalysis to Boost Green Hydrogen Electrosynthesis. Angew. Chem. Int. Ed. 2024, 63 (8), e202317751. DOI: https://doi.org/10.1002/anie.202317751.
(107) Huang, B.; Liu, W.; Lan, Y.; Huang, Y.; Fu, L.; Lin, B.; Xu, C. Highly ion-conducting, robust and environmentally stable poly(vinyl alcohol) eutectic gels designed by natural polyelectrolytes for flexible wearable sensors and supercapacitors. Chem. Eng. J. 2024, 480, 147888. DOI: https://doi.org/10.1016/j.cej.2023.147888.
(108) Wang, X.; Qiao, C.; Song, K.; Jiang, S.; Yao, J. Hofmeister effect on the viscosity properties of gelatin in dilute solutions. Colloids Surf. B Biointerfaces 2021, 206, 111944. DOI: https://doi.org/10.1016/j.colsurfb.2021.111944.
(109) Yang, Z.; Lin, Z.; Gao, L. Chaotropic Salt Dispersion Enables Room-Temperature Synthesis of High-Purity Polyvinyl Butyral. Ind. Eng. Chem. Res. 2024, 63 (19), 8591-8600. DOI: 10.1021/acs.iecr.4c00637.
(110) Yin, C.; Sun, J.; Cui, C.; Yang, K.-K.; Shi, L.-Y.; Li, Y. Chaotropic Ions Mediated Polymer Gelation for Thermal Management. Adv. Sci. 2024, 11 (32), 2405077. DOI: https://doi.org/10.1002/advs.202405077.
(111) Zhang, L.; Wang, Z.; Xu, C.; Li, Y.; Gao, J.; Wang, W.; Liu, Y. High strength graphene oxide/polyvinyl alcohol composite hydrogels. J. Mater. Chem. 2011, 21 (28), 10399-10406, 10.1039/C0JM04043F. DOI: 10.1039/C0JM04043F.
(112) Guan, Y.; Qi, X.-M.; Zhang, B.; Chen, G.-G.; Peng, F.; Sun, R.-C. Physically crosslinked composite hydrogels of hemicelluloses with poly (vinyl alcohol phosphate) and chitin nanowhiskers. BioRes. 2015, 10 (1), 1378-1393.
(113) Beaucage, G. Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering. J. Appl. Crystallogr. 1995, 28 (6), 717-728. DOI: https://doi.org/10.1107/S0021889895005292.
(114) Shih, O.; Liao, K.-F.; Yeh, Y.-Q.; Su, C.-J.; Wang, C.-A.; Chang, J.-W.; Wu, W.-R.; Liang, C.-C.; Lin, C.-Y.; Lee, T.-H. Performance of the new biological small-and wide-angle X-ray scattering beamline 13A at the Taiwan Photon Source. Applied Crystallography 2022, 55 (2), 340-352.
(115) Sunaryono; Taufiq, A.; Putra, E. G. R.; Okazawa, A.; Watanabe, I.; Kojima, N.; Rugmai, S.; Soontaranon, S.; Zainuri, M.; Triwikantoro; et al. Small-Angle X-Ray Scattering Study on PVA/Fe3O4 Magnetic Hydrogels. Nano 2016, 11 (03), 1650027. DOI: 10.1142/s1793292016500272.
(116) Kwon, H.-N.; Jang, S.-J.; Kang, Y. C.; Roh, K. C. The effect of ILs as co-salts in electrolytes for high voltage supercapacitors. Sci. Rep. 2019, 9 (1), 1180. DOI: 10.1038/s41598-018-37322-y.
(117) Lin, F.; Zuo, Z.; Cao, B.; Wang, H.; Lu, L.; Lu, X.; Zhu, Y.; Ji, X. A Comprehensive Study of Density, Viscosity, and Electrical Conductivity of Choline Halide-Based Eutectic Solvents in H2O. J. Chem. Eng. Data. 2024, 69 (12), 4362-4376. DOI: 10.1021/acs.jced.4c00218.
(118) Collins, K. D. Charge density-dependent strength of hydration and biological structure. Biophys. J. 1997, 72 (1), 65-76. DOI: https://doi.org/10.1016/S0006-3495(97)78647-8.
(119) Zhi, Y.; Li, M.; Ma, X.; Zhu, X.; Yuan, J.; Xin, Y.; Fang, Y.; Peng, J. Freeze-Tolerant and Transparent Eutectogel with High Conductivity and Long-Lasting Usability for Low-Grade Heat Harvesting. ACS Appl. Polym. Mater. 2025, 7 (7), 4383-4393. DOI: 10.1021/acsapm.5c00097.
(120) Yang, W.; Park, M.; Choi, Y.; Park, I.-S.; Yun, J. W.; Yoon, H.; Lee, D.; Seo, J.; Kim, H.; Kim, J. H. Biodegradable, ionic thermoelectric composites via self-assembly of dipeptides and deep eutectic solvents. Adv. Compos. Hybrid Mater. 2025, 8 (1), 143. DOI: 10.1007/s42114-025-01239-8.
(121) Zeng, Q.; Lai, X.; Li, H.; Chen, Z.; Zeng, X.; Zhang, L. High Fire-Safety and Multifunctional Eutectogel for Flexible Quasi-Solid-State Supercapacitors. Adv. Funct. Mater. 2024, 34 (52), 2411029. DOI: https://doi.org/10.1002/adfm.202411029.
(122) Wang, H.; Zhao, D.; Khan, Z. U.; Puzinas, S.; Jonsson, M. P.; Berggren, M.; Crispin, X. Ionic Thermoelectric Figure of Merit for Charging of Supercapacitors. Adv. Electron. Mater. 2017, 3 (4), 1700013. DOI: https://doi.org/10.1002/aelm.201700013.
(123) Yang, X.; Tian, Y.; Wu, B.; Jia, W.; Hou, C.; Zhang, Q.; Li, Y.; Wang, H. High-Performance Ionic Thermoelectric Supercapacitor for Integrated Energy Conversion-Storage. Energy Environ. Mater. 2022, 5 (3), 954-961. DOI: https://doi.org/10.1002/eem2.12220.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99277-
dc.description.abstract隨著化石燃料逐漸枯竭及全球暖化問題日益嚴峻,如何在資源取得與環境保護之間取得平衡,已成為迫切且重要的課題。我們觀察到,在能源轉換過程中,例如燃料燃燒與工業生產,會產生大量廢熱。若能有效回收並轉換這些廢熱為可用能源,不僅有助於能源的再利用,更將成為推動永續發展的重要里程碑。熱電材料因能直接將熱能轉換為電能而備受關注。然而,傳統電子熱電材料普遍存在毒性及脆性問題,對環境造成潛在傷害,且限制其應用場域。相較之下,離子熱電材料展現出優異的熱電性能與柔韌性,但部分現有材料在環境友善性方面仍具挑戰性。基於此,本論文聚焦於綠色高分子凝膠於熱充電電容之研究,期望開發出兼具環境友善與能源效率的離子熱電材料,為綠色能源技術貢獻一份心力。
本研究共分為兩個部分。第一部分以α 硫辛酸 (LA)、丙烯酸 (AA) 及羥丙基纖維素 (HPC) 為組成,通過化學合成方法製備出凝膠基材,其中 LA 所含的雙硫鍵及凝膠網路中豐富的氫鍵共同促成動態交聯結構的形成,賦予材料良好的可回收性。不僅如此,研究中以 1 丁基 3 甲基咪唑氯鹽 (BMIM:Cl) 作為離子供體,並引入氯化鈣 (CaCl2) 以建立離子選擇性傳輸通道,進而優化熱電性能。實驗結果顯示,LACIG 3% (含3% CaCl2) 的離子熱電係數 (thermopower) 可達 −30.4 mV K−1,當該凝膠搭配鎳-鉑電極組裝成熱電元件後,在僅5 K的溫差下即可產生142.8 mV的輸出電壓,LACIG 3%也展現出優異的再加工性,能以澆鑄法製備成各種形狀並貼合複雜表面。此研究結果凸顯了該系統在熱電性能、再加工性及環境永續性之間的出色平衡。
第二部分以PVA作為高分子基材,在不額外添加化學交聯劑和添加劑的條件下,保有其環境友好特性,並以深共熔溶劑 (DES) 作為離子供體。研究比較了以甘油為氫鍵供體 (HBD)、氯化膽鹼 (ChCl)、溴化膽鹼 (ChBr) 及碘化膽鹼 (ChI) 為氫鍵受體 (HBA) 的三種配方。結果發現,Cl–, Br–, I–的chaotropic effect將影響高分子鏈的結構,導致結晶度的下降,降幅趨勢為 I– > Br– > Cl–,與chaotropic effect的強弱一致。熱電性能中,含有 ChCl 的凝膠 (ETG-Cl) 因溶液黏度過高,限制離子傳輸;而含有 ChI 的凝膠 (ETG-I) 雖因I–降低結晶度而使離子傳輸更為容易,然而受限於空間障礙及I–與高分子間相互作用力過低,導致離子傳輸缺乏選擇性,影響熱電表現。相比之下,含有 ChBr 的凝膠 (ETG-Br) 在黏度、結晶性及離子傳輸之間取得最佳平衡,表現出最高的離子導電率 (ionic conductivity) 為63.33 mS cm–1,離子熱電係數 (thermopower) 為5.70 mV K–1及無因次離子熱電優值 (zTi) 達 0.14。研究結果顯示,ChBr極有潛力成為目前研究中常用 ChCl 的更佳候選者,並為深共熔溶劑在離子熱電材料領域的設計和應用提供新方向。
這些研究結果共同突顯了設計環境友好、高性能離子熱電材料的可行性,說明透過動態交聯網絡及離子傳輸通道的構建,並納入離子液體與深共熔溶劑系統的加入,能有效促進離子傳輸並提升元件性能。此研究不僅拓展了離子熱電材料的設計思路,也為後續開發兼具可再加工性、環境相容性及優異離子傳輸特性的熱電元件奠定了重要基礎,對推動新一代綠色能源技術的應用與發展具有關鍵意義。
zh_TW
dc.description.abstractWith fossil fuel depletion and global warming becoming urgent concerns, recovering industrial waste heat offers a sustainable energy pathway. While thermoelectric materials convert heat into electricity, traditional thermoelectric materials often face toxicity and brittleness issues. Ionic thermoelectric materials provide better flexibility and performance but may lack environmental compatibility. This study explores green polymer gels for thermally chargeable capacitors, aiming to develop eco-friendly, efficient materials for sustainable energy applications.
This study consists of two parts. In the first part, a matrix was synthesized from α-lipoic acid (LA), acrylic acid (AA), and hydroxypropyl cellulose (HPC). The disulfide bonds in LA, together with extensive hydrogen bonding, formed a dynamic crosslinked network, imparting good recyclability. 1-butyl-3-methylimidazolium chloride (BMIM:Cl) was used as the ionic donor, and calcium chloride (CaCl2) was added to create ion-selective channels, thereby enhancing thermoelectric performance. The LACIG 3% gel (with 3% CaCl2) exhibited a thermopower of −30.4 mV K−1 and generated 142.8 mV under a 5 K temperature gradient when paired with Ni-Pt electrodes. It also showed excellent reprocessability, enabling casting into various shapes and conformal contact with complex surfaces.
The second part uses poly(vinyl alcohol) (PVA) as the polymer matrix without added chemical crosslinkers, preserving environmental friendliness. Deep eutectic solvents (DES) with glycerol as hydrogen bond donor and choline salts (ChCl, ChBr, ChI) as hydrogen bond acceptors were compared. The chaotropic effects of Cl−, Br−, and I− reduced polymer crystallinity in the order I− > Br− > Cl−. The eutectogel containing ChCl (ETG-Cl) showed limited ion transport due to high viscosity, while the eutectogel containing ChI (ETG-I) had improved mobility but poor thermoelectric performance from weak polymer-ion interactions and low selectivity. The eutectogel containing ChBr (ETG-Br) achieved the best balance, with the highest ionic conductivity (63.33 mS cm−1), thermopower (5.70 mV K−1), and ionic figure of merit (zTi = 0.14).
These results demonstrate the feasibility of designing eco-friendly, high-performance ionic thermoelectric materials. The use of dynamic networks, ion transport channels, ionic liquids, and deep eutectic solvents enhances ion mobility and overall performance. This work provides a foundation for sustainable, reprocessable thermoelectric systems in green energy applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:05:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T17:05:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝………………………………………………………………………………….. i
ABSTRACT…………………………………………………………………………..ii
摘要…………………………………………………………………………………..iv
Table of Contents……………………………………………………………………..vi
Figure Captions………………………………………………………………………..x
Table Captions……………………………………………………………………….xix
1. Chapter 1. Introduction 1
1.1. Background 1
1.2. Ionic Thermoeletric Mechanisms 7
1.2.1. Fundamental Effect 7
1.2.2. Thermogalvanic Effect 8
1.2.3. Thermodiffusion Effect 9
1.3. Green Ionic Thermoeletric Materials 13
1.3.1. Matrixes 14
1.3.1.1. Natural Origin 16
1.3.1.2. Chemical Synthesis 19
1.3.2. Solvent 22
1.3.2.1. Water 22
1.3.2.2. Organic Solvent 22
1.3.3. Ion donor 23
1.3.3.1. Ionic liquid 23
1.3.3.2. Deep Eutectic Solvent (DES) 25
1.4. Ionic Thermoeletric Capacitors 28
1.4.1. Mechanisms of Ionic Thermoeletric Capacitors 28
1.4.2. Application of Ionic Thermoeletric Capacitors 29
1.5. Motivation 32
2. Chapter 2 Experimental Section 36
2.1. Materials 36
2.2. Synthesis of Green Materials 36
2.2.1. The LACIG Ionogels 36
2.2.2. The Eutectogels 37
2.3. Characterization 38
2.4. Thermoeletric Measurement 39
3. Chapter 3 Green Ionogels for Dual Thermoelectric and Energy Storage Functions 40
3.1. Research Background 40
3.2. Results and Discussion 44
3.2.1. Design and synthesis of the LACIG ionogels 44
3.2.2. Mechanical Performance Analysis 50
3.2.3. Small-angle X-ray Scattering Analysis 52
3.2.4. Thermoelectric Performance Analysis 56
3.2.5. Ionic Thermoelectric Mechanism 62
3.2.6. Ionic Thermoelectric Capacitor 67
3.2.7. Recyclability 69
3.2.8. Processability and thermoelectric application 74
3.3. Summary 77
4. Chapter 4 Investigating the Influence of Halogen Variations in Choline-Based Deep Eutectic Solvents on Thermoelectric Properties 79
4.1. Research Background 79
4.2. Results and Discussion 83
4.2.1. Design and Synthesis of Eutectogels 83
4.2.2. Mechanical Performance Analysis 88
4.2.3. Spectroscopic and Structural Characterization 91
4.2.4. Small-angle X-ray Scattering Analysis 98
4.2.5. Thermoelectric Performance Analysis 104
4.2.6. Ionic Thermoelectric Capacitor 115
4.2.7. Wearable Device Application 117
4.3. Summary 119
5. Conclusion 121
6. Reference 122
-
dc.language.isoen-
dc.subject有機離子熱電材料zh_TW
dc.subject離子液體zh_TW
dc.subject深共熔溶劑zh_TW
dc.subject廢熱回收zh_TW
dc.subject離子傳輸zh_TW
dc.subject環境永續zh_TW
dc.subjectdeep eutectic solventsen
dc.subjectOrganic ionic thermoelectric materialsen
dc.subjectenvironmental sustainabilityen
dc.subjection transporten
dc.subjectwaste heat recoveryen
dc.subjectionic liquidsen
dc.title綠色高分子凝膠於熱充電電容之研究zh_TW
dc.titleInvestigation of Green Polymer Gels for Thermally Chargeable Capacitorsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭有舜;郭紹偉;劉英麟zh_TW
dc.contributor.oralexamcommitteeU-Ser Jeng;Shiao-Wei Kuo;Ying-Ling Liuen
dc.subject.keyword有機離子熱電材料,離子液體,深共熔溶劑,廢熱回收,離子傳輸,環境永續,zh_TW
dc.subject.keywordOrganic ionic thermoelectric materials,ionic liquids,deep eutectic solvents,waste heat recovery,ion transport,environmental sustainability,en
dc.relation.page144-
dc.identifier.doi10.6342/NTU202503218-
dc.rights.note未授權-
dc.date.accepted2025-08-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved