請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99271完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉振良 | zh_TW |
| dc.contributor.advisor | Cheng-Liang Liu | en |
| dc.contributor.author | 王鈺皓 | zh_TW |
| dc.contributor.author | Yu-Hao Wang | en |
| dc.date.accessioned | 2025-08-21T17:04:02Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | [1] Farghali, M.; Osman, A. I.; Mohamed, I. M.; Chen, Z.; Chen, L.; Ihara, I.; Yap, P.-S.; Rooney, D. W. Environ. Chem. Lett. 2023, 21, 2003-2039.
[2] Holdren, J. P. Population and environment 1991, 12, 231-255. [3] Perera, F.; Nadeau, K. New England Journal of Medicine 2022, 386, 2303-2314. [4] Van de Bor, D.; Ferreira, C. I.; Kiss, A. A. Energy 2015, 89, 864-873. [5] Kannan, N.; Vakeesan, D. Renewable Sustainable Energy Rev. 2016, 62, 1092-1105. [6] Granqvist, C. G. Adv. Mater. 2003, 15, 1789-1803. [7] Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A. A.; Kim, K.-H. Renewable Sustainable Energy Rev. 2018, 82, 894-900. [8] Liu, J.; Yang, H.; Gosling, S. N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C. Earth's future 2017, 5, 545-559. [9] Goh, P.; Ismail, A. Desalination 2018, 434, 60-80. [10] Wenten, I. G. Desalination 2016, 391, 112-125. [11] Panagopoulos, A.; Haralambous, K.-J.; Loizidou, M. Sci. Total Environ. 2019, 693, 133545. [12] Darre, N. C.; Toor, G. S. Curr. Pollut. Rep. 2018, 4, 104-111. [13] Curto, D.; Franzitta, V.; Guercio, A. Applied Sciences 2021, 11, 670. [14] Mukherjee, M.; Srivastava, A.; Singh, A. K. J. Mater. Chem. C 2022, 10, 12524-12555. [15] Champier, D. Energy Convers. Manage. 2017, 140, 167-181. [16] Zoui, M. A.; Bentouba, S.; Stocholm, J. G.; Bourouis, M. Energies 2020, 13, 3606. [17] Cheng, H.; Le, Q.; Liu, Z.; Qian, Q.; Zhao, Y.; Ouyang, J. J. Mater. Chem. C 2022, 10, 433-450. [18] Zhao, D.; Würger, A.; Crispin, X. J. Energy Chem. 2021, 61, 88-103. [19] Liu, W.; Hu, J.; Zhang, S.; Deng, M.; Han, C.-G.; Liu, Y. Mater. Today Phys. 2017, 1, 50-60. [20] Hasan, M. N.; Wahid, H.; Nayan, N.; Mohamed Ali, M. S. Int. J. Energy Res. 2020, 44, 6170-6222. [21] Lee, L. C.; Huang, K. T.; Lin, Y. T.; Jeng, U. S.; Wang, C. H.; Tung, S. H.; Huang, C. J.; Liu, C. L. Small 2024, 20, 2311811. [22] Zhou, H.; Inoue, H.; Ujita, M.; Yamada, T. Angew. Chem. Int. Ed. 2023, 135, e202213449. [23] Ren, P.; Liu, Y.; He, J.; Lv, T.; Gao, J.; Xu, G. Inorg. Chem. Front. 2018, 5, 2380-2398. [24] Zhang, C.; Shi, X. L.; Liu, Q.; Chen, Z. G. Adv. Funct. Mater. 2024, 34, 2410127. [25] Pai, Y. H.; Tang, J.; Zhao, Y.; Liang, Z. Adv. Energy Mater. 2023, 13, 2202507. [26] Pai, Y. H.; Xu, C.; Zhu, R.; Ding, X.; Bai, S.; Liang, Z.; Chen, L. Adv. Mater. 2024, 37, 2414663. [27] Lu, X.; Mo, Z.; Liu, Z.; Hu, Y.; Du, C.; Liang, L.; Liu, Z.; Chen, G. Angew. Chem. Int. Ed. 2024, e202405357. [28] Liu, W.; Jie, Q.; Kim, H. S.; Ren, Z. Acta Mater. 2015, 87, 357-376. [29] Basu, R. Appl. Energy 2024, 375, 124127. [30] Li, K.; Kinoshita, Y.; Sakai, D.; Kawano, Y. Micromachines 2022, 14, 61. [31] Yin, C.-H.; Jiang, H.-T.; Chen, L.-D.; Lv, Y.-Y.; Yao, S.-H.; Zhou, J.; Chen, Y.; Lu, M.-H.; Chen, Y.-F. J. Appl. Phys. 2024, 136, 073103. [32] Sun, S.; Li, M.; Shi, X. L.; Chen, Z. G. Adv. Energy Mater. 2023, 13, 2203692. [33] Forman, C.; Muritala, I. K.; Pardemann, R.; Meyer, B. Renewable Sustainable Energy Rev. 2016, 57, 1568-1579. [34] Zhang, X.; Tan, B.; Wu, Y.; Zhang, M.; Liao, J. Polymers 2021, 13, 2100. [35] Lei, W.; Liu, Y.; Khan, S.; Suzuki, N.; Terashima, C.; Fujishima, A.; Liu, M. Desalination 2022, 533, 115780. [36] Yang, J.; Lv, S.; Zuo, J.; Wang, J.; Wei, D. Advanced Sustainable Systems 2025, 9, 2400330. [37] Lu, Y.; Fan, D.; Wang, Y.; Xu, H.; Lu, C.; Yang, X. ACS nano 2021, 15, 10366-10376. [38] Blanchard, K. C. Water, free and bound. In Cold Spring Harbor Symp. Quant. Biol., 1940; Cold Spring Harbor Laboratory Press: Vol. 8, pp 1-8. [39] An, N.; Chen, Y.; Li, Q. Green Energy and Resources 2023, 1, 100011. [40] Song, C.; Wang, Z.; Yin, Z.; Xiao, D.; Ma, D. Chem Catalysis 2022, 2, 52-83. [41] Reber, C. Can. J. Anal. Sci. Spectros. 2008, 53, 91-101. [42] Rojas, A.; Zuñiga, R. G.; Vidal, A. C.; Nogal, U.; Wong, J. H.; Frutis, M. A.; Hernández, R. M.; Marín, E.; Calderón, A. Latin-American Journal of Physics Education 2023, 17, 12. [43] Matter, M. E.; Tagnon, C.; Stache, E. E. ACS Cent. Sci. 2024, 10, 1460-1472. [44] Sun, J.-P.; Ren, Y.-T.; Wei, K.; He, M.-J.; Gao, B.-H.; Qi, H. Results in Physics 2022, 34, 105209. [45] Palmieri, V.; Spirito, M. D.; Papi, M. Nanomedicine 2020, 15, 1411-1417. [46] Jain, A.; Homayoun, A.; Bannister, C. W.; Yum, K. Biotechnol. J. 2015, 10, 447-459. [47] Kleiner, S.; Wulf, V.; Bisker, G. J. Colloid Interface Sci. 2024, 670, 439-448. [48] Kalogirou, S. A. Prog. Energy Combust. Sci. 2004, 30, 231-295. [49] Zhi, D.; Yang, T.; O'hagan, J.; Zhang, S.; Donnelly, R. F. J. Controlled Release 2020, 325, 52-71. [50] Khawaji, A. D.; Kutubkhanah, I. K.; Wie, J.-M. Desalination 2008, 221, 47-69. [51] Zhu, L.; Gao, M.; Peh, C. K. N.; Ho, G. W. Materials Horizons 2018, 5, 323-343. [52] Nagata, Y.; Usui, K.; Bonn, M. Phys. Rev. Lett. 2015, 115, 236102. [53] Tang, R.; Etzion, Y. Building and Environment 2004, 39, 77-86. [54] Shoeibi, S.; Saemian, M.; Kargarsharifabad, H.; Hosseinzade, S.; Rahbar, N.; Khiadani, M.; Rashidi, M. M. Int. Commun. Heat Mass Transfer 2022, 138, 106387. [55] Lv, J.; Xu, H.; Zhu, M.; Dai, Y.; Liu, H.; Li, Z. Journal of Building Engineering 2021, 41, 102741. [56] Drioli, E.; Ali, A.; Macedonio, F. Desalination 2015, 356, 56-84. [57] Goh, P.; Matsuura, T.; Ismail, A.; Hilal, N. Desalination 2016, 391, 43-60. [58] Dai, C.; Li, Z.; Zheng, K.; Zhang, J.-H.; Dai, R.; Luo, D.; Gao, H.; Thabet, H. K.; El-Bahy, Z. M.; Pan, L. Nano Energy 2024, 131, 110244. [59] Yang, H. C.; Lu, F.; Li, H. N.; Zhang, C.; Darling, S. B.; Xu, Z. K. Adv. Funct. Mater. 2023, 33, 2304580. [60] Antar, M. A.; Bilton, A.; Blanco, J.; Zaragoza, G. Annu. Rev. Heat Transfer 2012, 15, 277-347. [61] El-Sebaii, A.; El-Bialy, E. Renewable Sustainable Energy Rev. 2015, 49, 1198-1212. [62] Zhou, X.; Guo, Y.; Zhao, F.; Yu, G. Acc. Chem. Res. 2019, 52, 3244-3253. [63] Guo, Y.; Bae, J.; Fang, Z.; Li, P.; Zhao, F.; Yu, G. Chem. Rev. 2020, 120, 7642-7707. [64] Su, Y.-y.; Miles, R. E.; Li, Z.-m.; Reid, J. P.; Xu, J. Physical Chemistry Chemical Physics 2018, 20, 23453-23466. [65] Zhao, X.; Liu, C. Desalination 2020, 482, 114385. [66] Zhao, Q.; Yang, Y.; Zhu, B.; Sha, Z.; Zhu, H.; Wu, Z.; Nawaz, F.; Wei, Y.; Luo, L.; Que, W. Desalination 2023, 568, 116999. [67] Sharshir, S. W.; Algazzar, A. M.; Elmaadawy, K.; Kandeal, A.; Elkadeem, M.; Arunkumar, T.; Zang, J.; Yang, N. Desalination 2020, 491, 114564. [68] Lee, C. Y.; Hong, S. H.; Liu, C. L. Macromol. Rapid Commun. 2025, 46, 2400837. [69] Zhang, C.; Shi, X. L.; Liu, Q.; Chen, Z. G. Adv. Funct. Mater. 2024, 34, 2410127. [70] Rahman, M.; Saghir, M. Int. J. Heat Mass Transfer 2014, 73, 693-705. [71] Gunawan, A.; Lin, C.-H.; Buttry, D. A.; Mujica, V.; Taylor, R. A.; Prasher, R. S.; Phelan, P. E. Nanoscale Microscale Thermophys. Eng. 2013, 17, 304-323. [72] Wang, H.; Zhao, W. Next Materials 2023, 1, 100049. [73] Fu, M.; Sun, Z.; Liu, X.; Huang, Z.; Luan, G.; Chen, Y.; Peng, J.; Yue, K. Adv. Funct. Mater. 2023, 33, 2306086. [74] Zhou, Z.; Wan, Y.; Zi, J.; Ye, G.; Jin, T.; Geng, X.; Zhuang, W.; Yang, P. Materials Today Sustainability 2023, 21, 100293. [75] Beretta, D.; Neophytou, N.; Hodges, J. M.; Kanatzidis, M. G.; Narducci, D.; Martin-Gonzalez, M.; Beekman, M.; Balke, B.; Cerretti, G.; Tremel, W. Mater. Sci. Eng., R 2019, 138, 100501. [76] Aridi, R.; Faraj, J.; Ali, S.; Lemenand, T.; Khaled, M. Electricity 2021, 2, 359-386. [77] Sun, Y.; Di, C. A.; Xu, W.; Zhu, D. Adv. Electron. Mater. 2019, 5, 1800825. [78] Gao, Z.; Yang, Q.; Qiu, P.; Wei, T. R.; Yang, S.; Xiao, J.; Chen, L.; Shi, X. Adv. Energy Mater. 2021, 11, 2100883. [79] Massetti, M.; Jiao, F.; Ferguson, A. J.; Zhao, D.; Wijeratne, K.; Würger, A.; Blackburn, J. L.; Crispin, X.; Fabiano, S. Chem. Rev. 2021, 121, 12465-12547. [80] Fu, M.; Sun, Z.; Yuan, Y.; Yue, K. Macromol. Chem. Phys. 2025, 226, 2400358. [81] Yacine, L.; Mojtabi, A.; Bennacer, R.; Khouzam, A. Int. J. Therm. Sci. 2016, 104, 29-38. [82] Kim, S. L.; Lin, H. T.; Yu, C. Adv. Energy Mater. 2016, 6, 1600546. [83] Wang, J.; Feng, S.-P.; Yang, Y.; Hau, N. Y.; Munro, M.; Ferreira-Yang, E.; Chen, G. Nano Lett. 2015, 15, 5784-5790. [84] Würger, A. Physical Review Research 2020, 2, 042030. [85] Song, D.; Chi, C.; An, M.; Du, Y.; Ma, W.; Wang, K.; Zhang, X. Cell Rep. Phys. Sci. 2022, 3, 101018. [86] Bothe, A.; Balducci, A. J. Power Sources 2022, 548, 232090. [87] Liu, Y.; Wang, H.; Sherrell, P. C.; Liu, L.; Wang, Y.; Chen, J. Adv. Sci. 2021, 8, 2100669. [88] Yang, X.; Wang, P.; Wu, X.; Liao, Y.; Liu, S.; Duan, W.; Yue, Y. Chin. J. Chem . 2024, 42, 543-556. [89] Gunawan, A.; Li, H.; Lin, C.-H.; Buttry, D. A.; Mujica, V.; Taylor, R. A.; Prasher, R. S.; Phelan, P. E. Int. J. Heat Mass Transfer 2014, 78, 423-434. [90] Qian, X.; Ma, Z.; Huang, Q.; Jiang, H.; Yang, R. ACS Energy Lett. 2024, 9, 679-706. [91] Peng, P.; Zhou, J.; Liang, L.; Huang, X.; Lv, H.; Liu, Z.; Chen, G. Nano-Micro Lett. 2022, 14, 81. [92] Abraham, T. J.; MacFarlane, D. R.; Pringle, J. M. Energy Environ. Sci. 2013, 6, 2639-2645. [93] Jin, L.; Greene, G. W.; MacFarlane, D. R.; Pringle, J. M. ACS Energy Lett. 2016, 1, 654-658. [94] Li, J.; Wang, Z.; Khan, S. A.; Li, N.; Huang, Z.; Zhang, H. Nano Energy 2023, 113, 108612. [95] Gao, W.; Lei, Z.; Zhang, C.; Liu, X.; Chen, Y. Adv. Funct. Mater. 2021, 31, 2104071. [96] Xu, C.; Sun, Y.; Zhang, J.; Xu, W.; Tian, H. Adv. Energy Mater. 2022, 12, 2201542. [97] Li, X.; Xiao, X.; Bai, C.; Mayer, M.; Cui, X.; Lin, K.; Li, Y.; Zhang, H.; Chen, J. J. Mater. Chem. C 2022, 10, 13789-13796. [98] Wang, Z.; Li, N.; Yang, X.; Zhang, Z.; Zhang, H.; Cui, X. Microsyst. Nanoeng. 2024, 10, 55. [99] Rashwan, M. S.; Al‐Sheikh, A. M.; Baskaran, H.; Burda, C. ChemNanoMat 2025, 11, e202400636. [100] Hu, Z.; Zhang, H.; Li, Z.; Zhao, T.; Gu, Z.; Yuan, Q.; Chen, B. Chin. Chem. Lett. 2024, 35, 109527. [101] Shen, J.; Yang, C.; Ma, Y.; Cao, M.; Gao, Z.; Wang, S.; Li, J.; Liu, S.; Chen, Z.; Li, S. EcoMat 2024, 6, e12428. [102] Bai, C.; Li, X.; Cui, X.; Yang, X.; Zhang, X.; Yang, K.; Wang, T.; Zhang, H. Nano Energy 2022, 100, 107449. [103] Meng, F. L.; Gao, M.; Ding, T.; Yilmaz, G.; Ong, W. L.; Ho, G. W. Adv. Funct. Mater. 2020, 30, 2002867. [104] Liu, H.; Jin, X.; Xu, Q.; Jin, Y.; Zhang, X.; Lv, S.-L. ACS Appl. Mater. Interfaces 2025, 17, 36943–36950. [105] Xu, Y.; Guo, Z.; Wang, J.; Chen, Z.; Yin, J.; Zhang, Z.; Huang, J.; Qian, J.; Wang, X. ACS Appl. Mater. Interfaces 2021, 13, 27129-27139. [106] Chen, C.; Kuang, Y.; Hu, L. Joule 2019, 3, 683-718. [107] Vorosmarty, C. J.; Green, P.; Salisbury, J.; Lammers, R. B. Science 2000, 289, 284-288. [108] Hong, M.; Lyv, W.; Li, M.; Xu, S.; Sun, Q.; Zou, J.; Chen, Z.-G. Joule 2020, 4, 2030-2043. [109] Gong, J.; Li, C.; Wasielewski, M. R. Chem. Soc. Rev. 2019, 48, 1862-1864. [110] Zhu, L.; Ding, T.; Gao, M.; Peh, C. K. N.; Ho, G. W. Adv. Energy Mater. 2019, 9, 1900250. [111] Ren, J.; Ding, Y.; Gong, J.; Qu, J.; Niu, R. Energy Environ. Mater. 2023, 6, e12376. [112] Lin, Y.-H.; Lin, H.-H.; Lee, Y.-S.; Yu, W.-Y.; Luo, S.-C.; Kang, D.-Y. ACS Appl. Mater. Interfaces 2024, 16, 49640-49650. [113] Curto, D.; Franzitta, V.; Guercio, A. Appl. Sci. 2021, 11, 670. [114] Li, J.; Wei, W.; Chen, Y.; Liu, Z. ACS Sustainable Chem. Eng. 2024, 12, 16388. [115] Guo, Y.; Lu, H.; Zhao, F.; Zhou, X.; Shi, W.; Yu, G. Adv. Mater. 2020, 32, 1907061. [116] Yang, P.; Liu, K.; Chen, Q.; Li, J.; Duan, J.; Xue, G.; Xu, Z.; Xie, W.; Zhou, J. Energy Environ. Sci. 2017, 10, 1923-1927. [117] Ren, J.; Chen, L.; Gong, J.; Qu, J.; Niu, R. Chem. Eng. J. 2023, 458, 141511. [118] Mu, X.; Zhou, J.; Wang, P.; Chen, H.; Yang, T.; Chen, S.; Miao, L.; Mori, T. Energy Environ. Sci. 2022, 15, 3388-3399. [119] Jiang, S.; Liu, S.; Feng, W. J. Mech. Behav. Biomed. Mater. 2011, 4, 1228-1233. [120] Lin, M.-H.; Hong, S.-H.; Ding, J.-F.; Liu, C.-L. ACS Appl. Mater. Interfaces 2024, 16, 67116. [121] Hsiao, Y.-C.; Lee, L.-C.; Lin, Y.-T.; Hong, S.-H.; Wang, K.-C.; Tung, S.-H.; Liu, C.-L. Mater. Today Energy 2023, 37, 101383. [122] Guo, Y.; Zhou, X.; Zhao, F.; Bae, J.; Rosenberger, B.; Yu, G. ACS Nano 2019, 13, 7913-7919. [123] Mansur, H. S.; Sadahira, C. M.; Souza, A. N.; Mansur, A. A. P. Mater. Sci. Eng.: C 2008, 28, 539-548. [124] Chen, Q.; Chen, B.; Xiao, S.; Feng, J.; Yang, J.; Yue, Q.; Zhang, X.; Wang, T. ACS Appl. Mater. Interfaces 2022, 14, 19304-19314. [125] Chen, B.; Chen, Q.; Xiao, S.; Feng, J.; Zhang, X.; Wang, T. Sci. Adv. 2021, 7, eabi7233. [126] Ricciardi, R.; Auriemma, F.; De Rosa, C.; Lauprêtre, F. Macromolecules 2004, 37, 1921-1927. [127] Zhao, D.; Wang, H.; Khan, Z. U.; Chen, J.; Gabrielsson, R.; Jonsson, M. P.; Berggren, M.; Crispin, X. Energy Environ. Sci. 2016, 9, 1450-1457. [128] Park, S.; Kim, B.; Cho, C.; Kim, E. J. Mater. Chem. A 2022, 10, 13958-13968. [129] Hong, S.-H.; Hsu, C.-C.; Liu, T.-H.; Lee, T.-C.; Tung, S.-H.; Chen, H.-L.; Yu, J.; Liu, C.-L. Mater. Today Energy 2024, 42, 101546. [130] Lin, Y.-T.; Hsu, C.-C.; Hong, S.-H.; Lee, L.-C.; Jeng, U. S.; Chen, H.-L.; Tung, S.-H.; Liu, C.-L. J. Power Sources 2024, 609, 234647. [131] Lee, C.-Y.; Lin, Y.-T.; Hong, S.-H.; Wang, C.-H.; Jeng, U. S.; Tung, S.-H.; Liu, C.-L. ACS Appl. Mater. Interfaces 2023, 15, 56072-56083. [132] Chen, Q.; Cheng, B.; Wang, Z.; Sun, X.; Liu, Y.; Sun, H.; Li, J.; Chen, L.; Zhu, X.; Huang, L. J. Mater. Chem. A 2023, 11, 2145-2154. [133] Villar-Chavero, M. M.; Domínguez, J. C.; Alonso, M. V.; Oliet, M.; Rodriguez, F. Carbohydr. Polym. 2019, 207, 775-781. [134] Souri, H.; Banerjee, H.; Jusufi, A.; Radacsi, N.; Stokes, A. A.; Park, I.; Sitti, M.; Amjadi, M. Adv. Intell. Syst. 2020, 2, 2000039. [135] Zhou, X.; Zhao, F.; Guo, Y.; Zhang, Y.; Yu, G. Energy Environ. Sci. 2018, 11, 1985-1992. [136] Deng, Z.; Miao, L.; Liu, P.-F.; Zhou, J.; Wang, P.; Gu, Y.; Wang, X.; Cai, H.; Sun, L.; Tanemura, S. Nano Energy 2019, 55, 368-376. [137] Qi, H.; Wei, T.; Zhao, W.; Zhu, B.; Liu, G.; Wang, P.; Lin, Z.; Wang, X.; Li, X.; Zhang, X.; et al. Adv. Mater. 2019, 31, 1903378. [138] Surwade, S. P.; Smirnov, S. N.; Vlassiouk, I. V.; Unocic, R. R.; Veith, G. M.; Dai, S.; Mahurin, S. M. Nat. Nanotechnol. 2015, 10, 459-464. [139] Jiang, Q.; Sun, H.; Zhao, D.; Zhang, F.; Hu, D.; Jiao, F.; Qin, L.; Linseis, V.; Fabiano, S.; Crispin, X. Adv. Mater. 2020, 32, 2002752. [140] Guan, X.; Cheng, H.; Ouyang, J. J. Mater. Chem. A 2018, 6, 19347-19352. [141] Huggins, R. A. Ionics 2002, 8, 300-313. [142] Wang, S.; Yan, M.; Li, Y.; Vinado, C.; Yang, J. J. Power Sources 2018, 393, 75-82. [143] Han, B.; Zhang, Y. L.; Chen, Q. D.; Sun, H. B. Adv. Funct. Mater. 2018, 28, 1802235. [144] Ren, Y.; Lian, R.; Liu, Z.; Zhang, G.; Wang, W.; Ding, D.; Tian, M.; Zhang, Q. Desalination 2022, 535, 115836. [145] Liu, W.; Zhang, X.; Zhou, L.; Shang, L.; Su, Z. J. Colloid Interface Sci. 2019, 536, 160-170. [146] Jun, Y.-S.; Wu, X.; Ghim, D.; Jiang, Q.; Cao, S.; Singamaneni, S. Acc. Chem. Res. 2019, 52, 1215-1225. [147] Zhou, X.; Zhao, F.; Guo, Y.; Zhang, Y.; Yu, G. Energy Environ. Sci. 2018, 11, 1985-1992. [148] Anderson, R. R.; Beck, H.; Bruggemann, U.; Farinelli, W.; Jacques, S. L.; Parrish, J. A. Appl. Opt. 1989, 28, 2256-2262. [149] Kumar, R.; Soni, S. Beilstein J. Nanotechnol. 2023, 14, 205-217. [150] Zheng, D.; Yao, J.; Zhu, H.; Wang, J.; Yin, C. Energy Convers. Manage. 2023, 285, 117020. [151] Tretinnikov, O.; Zagorskaya, S. J. Appl. Spectrosc. 2012, 79, 521-526. [152] Shanmugam, R.; Dineshkumar, P.; Sangeetha, T.; Mounica, P.; Ramya, K.; Elangovan, A.; Arivazhagan, G. J. Mol. Model. 2025, 31, 85. [153] Kamoshida, N.; Kasahara, S.; Ikemiya, N.; Hoshi, N.; Nakamura, M.; Einaga, Y. Diamond Relat. Mater. 2019, 93, 50-53. [154] Kim, K.; Hwang, S.; Lee, H. Electrochim. Acta 2020, 335, 135651. [155] Chen, G. Physical Chemistry Chemical Physics 2022, 24, 12329-12345. [156] Garrido, L.; Aranaz, I.; Gallardo, A.; García, C.; García, N.; Benito, E.; Guzmán, J. The Journal of Physical Chemistry B 2018, 122, 8301-8308. [157] Lee, Y.; So, J.-H.; Koo, H.-J. Materials 2024, 17, 288. [158] Zhang, M.; Che, Z.; Chen, J.; Zhao, H.; Yang, L.; Zhong, Z.; Lu, J. J. Chem. Eng. Data 2011, 56, 859-864. [159] Ehrlich, L. E.; Feig, J. S.; Schiffres, S. N.; Malen, J. A.; Rabin, Y. PLoS One 2015, 10, e0125862. [160] Hong, S.; Zou, G.; Kim, H.; Huang, D.; Wang, P.; Alshareef, H. N. ACS nano 2020, 14, 9042-9049. [161] Shih, O.; Liao, K.-F.; Yeh, Y.-Q.; Su, C.-J.; Wang, C.-A.; Chang, J.-W.; Wu, W.-R.; Liang, C.-C.; Lin, C.-Y.; Lee, T.-H. Appl. Crystallogr. 2022, 55, 340-352. [162] Gupta, D.; Jassal, M.; Agrawal, A. K. RSC Advances 2016, 6, 102947-102955. [163] Otarbayeva, S.; Berillo, D. Gels 2024, 10, 753. [164] Adelnia, H.; Ensandoost, R.; Moonshi, S. S.; Gavgani, J. N.; Vasafi, E. I.; Ta, H. T. Eur. Polym. J. 2022, 164, 110974. [165] Hapipi, N. M.; Mazlan, S. A.; Ubaidillah, U.; Abdul Aziz, S. A.; Ahmad Khairi, M. H.; Nordin, N. A.; Nazmi, N. Int. J. Mol. Sci. 2020, 21, 1793. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99271 | - |
| dc.description.abstract | 熱電材料能將熱能轉換成電能,對於能量轉換系統中的可攜式設備或柔性裝置等等領域是相當重要的。本論文藉由太陽光,設計出以凝膠作為材料能在熱電以外同時能夠能量轉換的功能例如水蒸發或光熱電的能量轉換的應用裝置。本論文將介紹水蒸發、熱電以及光熱電的原理機制。
在第一篇研究中,置備了一種結合海水淨化和熱電的裝置。該裝置透過將熱電水凝膠置於光熱水凝膠之上,利用光熱轉換產生溫度梯度。光熱水凝膠以聚乙烯醇 (PVA) 作為基材,因其低成本和易加工性。為了同時提高太陽能驅動的水蒸發和光熱轉換效率,將球磨的三氧化二鈦 (Ti2O3) 奈米顆粒和奈米碳管 (CNT) 均勻分散到PVA 基質中。水蒸發速率能夠達到高達3.22 kg m−2 h−1。PVA 也為熱電水凝膠的基質,浸泡在 K3[Fe(CN)6]/K4[Fe(CN)6] 氧化還原對溶液中,以利用熱化學電池效應 (TGC) 使得能夠透過熱端和冷端的氧化還原反應產生電壓。所得到的熱電性能為1.48 mV K−1 的離子塞貝克係數 (Si) 和串聯九個熱電水凝膠後的功率密度能來到9.6 mW m−2。這種雙功能裝置能夠同時有效地淨化海水並發電。戶外測試顯示,熱電水凝膠的日產水量為9.2 kg m−2,並能穩定產生130 mV 的電壓。這種方法推進了水淨化和能源生產技術,為再生能源的創新應用開闢了新途徑。 在第二篇研究中,設計出一種雙層光熱電 (PTE)以聚乙烯醇 (PVA) 為基材的水凝膠。水凝膠的上層用奈米碳管 (CNT) 和還原氧化石墨烯 (rGO),而下層則由純 PVA 水凝膠組成,並調整雙層水凝膠的 DMSO:H2O 溶劑比例。這些方法整體提升了光熱轉換效率,降低了熱導率,並優化了熱電性能。將雙層水凝膠浸泡在 K3[Fe(CN)6]/K4[Fe(CN)6] 氧化還原溶液中,透過調整 DMSO:H2O 比例來優化熱電性能,同時保持低熱導率 (0.42 W m−1 K−1) 並提高了離子塞貝克係數 (1.78 mV K−1)。而雙層結構增加了溫度梯度。在模擬太陽光下,光熱電發電機 (PTEG) 表現出最大溫差為 11.5 °C 的、175 mV 的電壓產生和 300 mW m−2 的最大功率密度,並在戶外測試中展現出優異的長期穩定性。這些特性突顯了其作為太陽能驅動裝置的巨大潛力。 | zh_TW |
| dc.description.abstract | Thermoelectric materials, capable of converting thermal energy into electrical energy, are vital for energy conversion systems, particularly in portable electronics and flexible devices. This thesis presents the design of innovative devices based on hydrogels to harness solar energy for functionalities beyond traditional thermoelectricity, encompassing applications like water evaporation and photothermoelectric conversion. This thesis will introduce the fundamental principles and mechanisms behind water evaporation, thermoelectrics, and photothermoelectrics.
In the first research (Chapter 3), we developed a combined system for seawater purification and thermoelectric power generation. This device operates by placing thermoelectric hydrogels on top of photothermal hydrogel, where the photothermal layer generates temperature gradient through photothermal conversion. We used polyvinyl alcohol (PVA) as the matrix for photothermal hydrogel, chosen for its low cost and ease of processing. To enhance both solar-driven water evaporation and photothermal conversion efficiency by uniformly dispersed ball-milled dititanium trioxide (Ti2O3) nanoparticles and carbon nanotubes (CNT) within the PVA matrix. This design enabled an impressive water evaporation rate of up to 3.22 kg m-2 h-1. PVA are also the matrix of thermoelectric hydrogels, which were immersed in K3[Fe(CN)6]/K4[Fe(CN)6] redox pair solution to leverage the thermogalvanic effect. This setup allowed for voltage generation through redox reactions occurring at both the hot and cold ends. The device exhibited excellent thermoelectric properties, characterized by an ionic Seebeck coefficient (Si) of 1.48 mV K-1 and a power density of 9.6 mW m-2 when nine thermoelectric hydrogels connected in series. This dual-functional device effectively purifies seawater and generates electricity. Outdoor tests further confirmed its performance, showing a daily water production of 9.2 kg m-2 and a stable voltage output of 130 mV. This integrated approach advances both water purification and energy generation technologies, paving new ways for applications in renewable energy. In the second research (Chapter 4), a bilayer photothermoelectric (PTE) hydrogel system was designed using polyvinyl alcohol (PVA) matrix. The upper layer of this hydrogel contains carbon nanotubes (CNT) and reduced graphene oxide (rGO), while the bottom layer consisted of pure PVA hydrogel. We systematically adjusted the DMSO:H2O solvent ratio of the entire bilayer hydrogel. These modifications collectively enhanced photothermal conversion efficiency, reduced thermal conductivity, and optimized thermoelectric performance. By immersing the bilayer hydrogel in K3[Fe(CN)6]/K4[Fe(CN)6] redox solution and tuning the DMSO:H2O ratio, we optimized its thermoelectric properties while maintaining a low thermal conductivity of 0.42 W m-1 K-1 and boosting the ionic Seebeck coefficient to 1.78 mV K-1. The bilayer structure significantly amplified the temperature gradient. Under simulated sunlight, the photothermoelectric generator (PTEG) achieved a maximum temperature difference of 11.5 °C, a voltage generation of 175 mV, and a peak power density of 300 mW m-2. Importantly, it demonstrated excellent long-term stability during outdoor testing. These compelling characteristics underscore its substantial potential as a solar-powered device. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:04:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T17:04:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
致謝 i 中文摘要 ii ABSTRACT iv Table of Contents vii List of Figures xi List of Tables xvi Chapter 1 Introduction 1 1.1 Background 1 1.2 Gel-based Photothermal and Water Evaporation 4 1.2.1 Photothermal Effect 6 1.2.2 Water Evaporation 8 1.3 Gel-based Thermoelectric Materials 11 1.3.1 Seebeck Effect 12 1.3.2 Thermodiffusion Effect 13 1.3.3 Thermogalvanic Effect 16 1.3.4 Gel-based Thermogalvanic Cells (TGCs) 18 1.4 Gel-based Photothermoelectric 20 1.5 Motivation 22 Chapter 2 Experimental Section 25 2.1 Materials 25 2.1.1 Preparation of Photothermal and Themoelectric Hydrogel 25 2.1.2 Preparation of Photothermoelectric Bilayer Hydrogel 27 2.2 Device and Generator 29 2.2.1 Fabrication of Dual-Function Photothermal and Thermoelectric Device 29 2.2.2 Photothermoelectric Generator Fabrication 29 2.3 Characterization 30 2.3.1 Fourier transform infrared (FTIR) spectroscopy 30 2.3.2 UV-vis-NIR spectrometer 30 2.3.3 X-ray diffraction (XRD) 30 2.3.4 Dynamic Rheological Test 31 2.3.5 Tensile Test 31 2.3.6 Small Angle X-ray Scattering (SAXS) 31 2.3.7 Differential scanning calorimetry (DSC) 32 2.3.8 Field Emission Scanning Electron Microscope (FE-SEM) 32 2.3.9 Thermoelectric Properties Measurements 32 2.3.10 Electrochemical Analysis 33 2.3.11 Water Evaportation Test 33 2.3.12 Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 33 Chapter 3 Dual-Function Photothermal and Thermoelectric Poly (vinyl alcohol) Hydrogel for Solar Water Production and Thermoelectric Energy Generation 35 3.1 Research Background 35 3.2 Results and Discussion 38 3.2.1 Preparation of Photothermal and Thermoelectric Hydrogel 38 3.2.2 Structural Characterization 40 3.2.3 Mechanical and Rheological Properties 45 3.2.4 Photothermal and Evaporation Properties 47 3.2.5 Thermoelectric Properties 51 3.2.6 Dual-Function Photothermal and Thermoelectric Device 55 3.3 Summary 58 Chapter 4 Bilayer Poly (vinyl alcohol) Hydrogel for Photothermoelectric Generator 60 4.1 Research Background 60 4.2 Results and Discussion 63 4.2.1 Preparation of Photothermoelectric Hydrogel 63 4.2.2 Photothermal Properties 66 4.2.3 Morphology and Structural Characterization 71 4.2.4 Thermoelectric Properties 73 4.2.5 Structures and Mechanical Properties 76 4.2.6 Photothermoelectric Generator 81 4.3 Summary 84 Chapter 5 Conclusion 86 REFERENCE 88 | - |
| dc.language.iso | en | - |
| dc.subject | 凝膠 | zh_TW |
| dc.subject | 熱電 | zh_TW |
| dc.subject | 水蒸發 | zh_TW |
| dc.subject | 光熱電 | zh_TW |
| dc.subject | 氧化還原對 | zh_TW |
| dc.subject | Water evaporation | en |
| dc.subject | Hydrogel | en |
| dc.subject | Redox couple | en |
| dc.subject | Photothermoelectric | en |
| dc.subject | Thermoelectric | en |
| dc.title | 基於凝膠之熱電、太陽能產水、光熱電轉換之機制與應用 | zh_TW |
| dc.title | Mechanisms and Applications of Gel-based Thermoelectric, Solar-Driven Water Generation, and Photothermoelectric Conversion | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭有舜;劉英麟;郭紹偉 | zh_TW |
| dc.contributor.oralexamcommittee | U-Ser Jeng;Ying-Ling Liu;Shiao-Wei Kuo | en |
| dc.subject.keyword | 凝膠,熱電,水蒸發,光熱電,氧化還原對, | zh_TW |
| dc.subject.keyword | Hydrogel,Thermoelectric,Water evaporation,Photothermoelectric,Redox couple, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202503058 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
