Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99225
Title: 針對小資料集之資料分類器增強輔助設計:以海龜為例
Classification Framework for Small Datasets with Data Augmentation Support: Sea Turtle as an Example
Authors: 劉晏妤
Yen-Yu Liu
Advisor: 李佳翰
Jia-Han Li
Keyword: 海龜,個體辨識,YOLO,資料增強,敏感度分析,公民科學,
Sea turtle,Individual identificatio,YOLO,Data augmentation,Sensitivity analysis,Citizen science,
Publication Year : 2025
Degree: 碩士
Abstract: 本研究針對臺灣海域海龜個體辨識問題,提出一套資料增強輔助之三層級分類系統,以逐層分類方式協助縮小比對範圍、加速辨識流程。研究採用 YOLOv5、YOLOv7 與 YOLOv8 三種深度學習架構,分別訓練於物種分類(ClassA)、左眼下鱗片數量分類(ClassB)及臉部特徵分類(ClassC)等任務,並進行模型效能比較。實驗結果顯示,YOLOv8 於複雜特徵辨識任務(ClassC)中表現最佳,具備較佳的泛化能力與辨識穩定性。本研究所提出之系統具備良好之可擴充性及實務應用潛力,為未來自動化辨識系統建置提供實證基礎。
This study addresses the individual identification of sea turtles in Taiwan by proposing a three-tier classification system with data augmentation to assist in narrowing down candidate lists and accelerating the identification processes. The research employs three YOLO-based deep learning architectures—YOLOv5, YOLOv7, and YOLOv8—trained separately on species classification (ClassA), scute number under left eye classification (ClassB), and left facial scute pattern (ClassC) tasks, respectively. Model performance comparisons reveal that YOLOv8 achieves superior results in complex feature recognition tasks (ClassC), demonstrating better generalization and classification stability. Overall, the proposed system exhibits excellent scalability and practical potential, providing an empirical foundation for future automated identification systems.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99225
DOI: 10.6342/NTU202502906
Fulltext Rights: 同意授權(全球公開)
metadata.dc.date.embargo-lift: 2025-08-22
Appears in Collections:工程科學及海洋工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf8.91 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved