Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99036
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛景中zh_TW
dc.contributor.advisorJing-Jong Shyueen
dc.contributor.author鄭舒勻zh_TW
dc.contributor.authorShu-Yun Chengen
dc.date.accessioned2025-08-21T16:08:28Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citationDeblase, C. R.; Dichtel, W. R. Moving Beyond Boron: The Emergence of New Linkage Chemistries in Covalent Organic Frameworks. Macromolecules 2016, 49 (15), 5297–5305. https://doi.org/10.1021/acs.macromol.6b00891.
余玟儀. 能量消散型石英晶體微天平於金屬有機框架對藥物客體吸附性質之研究. 國立臺灣大學工學院材料科學與工程學系暨研究所 2022.
Chiang, P.-H.; Hsieh, P.; Hou, C.-H.; You, Y.-W.; Wang, M.-Y.; Yang, T.-J.; Shyue, J.-J. Determining the Distributions of Components inside Metal–Organic Framework Thin Films with an Ar-Gas Cluster Ion Beam (Ar 1000,2500 + ) and Ar + Cosputter via Secondary Ion Mass Spectrometry. ACS Appl Mater Interfaces 2025, 17 (26), 38658–38668. https://doi.org/10.1021/acsami.5c05778.
Li, G.; Zhang, K.; Tsuru, T. Two-Dimensional Covalent Organic Framework (COF) Membranes Fabricated via the Assembly of Exfoliated COF Nanosheets. ACS Appl Mater Interfaces 2017, 9 (10), 8433–8436. https://doi.org/10.1021/acsami.6b15752.
Beagle, L. K.; Fang, Q.; Tran, L. D.; Baldwin, L. A.; Muratore, C.; Lou, J.; Glavin, N. R. Synthesis and Tailored Properties of Covalent Organic Framework Thin Films and Heterostructures. Materials Today 2021, 51, 427–448. https://doi.org/10.1016/j.mattod.2021.08.007.
Liu, M.; Liu, Y.; Dong, J.; Bai, Y.; Gao, W.; Shang, S.; Wang, X.; Kuang, J.; Du, C.; Zou, Y.; Chen, J.; Liu, Y. Two-Dimensional Covalent Organic Framework Films Prepared on Various Substrates through Vapor Induced Conversion. Nat Commun 2022, 13 (1), 1411. https://doi.org/10.1038/s41467-022-29050-9.
Lohse, M. S.; Bein, T. Covalent Organic Frameworks: Structures, Synthesis, and Applications. Adv Funct Mater 2018, 28 (33), 1705553. https://doi.org/10.1002/adfm.201705553.
Li, Y.; Wu, Q.; Guo, X.; Zhang, M.; Chen, B.; Wei, G.; Li, X.; Li, X.; Li, S.; Ma, L. Laminated Self-Standing Covalent Organic Framework Membrane with Uniformly Distributed Subnanopores for Ionic and Molecular Sieving. Nat Commun 2020, 11 (1), 599. https://doi.org/10.1038/s41467-019-14056-7.
Liu, J.; Han, G.; Zhao, D.; Lu, K.; Gao, J.; Chung, T. S. Self-Standing and Flexible Covalent Organic Framework (COF) Membranes for Molecular Separation. Sci Adv 2020, 6 (41), eabb1110. https://doi.org/10.1126/sciadv.abb1110.
Lu, W.; Wei, Z.; Gu, Z. Y.; Liu, T. F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle, T.; Bosch, M.; Zhou, H. C. Tuning the Structure and Function of Metal-Organic Frameworks via Linker Design. Chem. Soc. Rev. 2014, 43, 5561–5593. https://doi.org/10.1039/c4cs00003j.
Freund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J.; Kalmutzki, M.; Lächelt, U.; Ploetz, E.; Diercks, C. S.; Wuttke, S. The Current Status of MOF and COF Applications. Angewandte Chemie - International Edition 2021, 60 (45), 23975–24001. https://doi.org/10.1002/anie.202106259.
Adrien P. Côté et al. Porous, Crystalline, Covalent Organic Frameworks. Science (1979) 2005, 310 (5751), 1166–1170. https://doi.org/10.1126/science.1120411.
Hani M. El-Kaderi et al. Designed Synthesis of 3D Covalent Organic Frameworks. Science (1979) 2007, 316 (5822), 268–272. https://doi.org/10.1126/science.1139915.
Dawson, R.; Cooper, A. I.; Adams, D. J. Nanoporous Organic Polymer Networks. Progress in Polymer Science (Oxford) 2012, 37 (4), 530–563. https://doi.org/10.1016/j.progpolymsci.2011.09.002.
Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F. Dynamic Covalent Chemistry. Angew. Chem. Int. Ed 2002, 41 (6), 898–952. https://doi.org/10.1002/1521-3773(20020315)41:6<898::aid-anie898>3.0.co;2-e.
Waller, P. J.; Gándara, F.; Yaghi, O. M. Chemistry of Covalent Organic Frameworks. Acc Chem Res 2015, 48 (12), 3053–3063. https://doi.org/10.1021/acs.accounts.5b00369.
Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem. Rev 2020, 120 (16), 8814–8933. https://doi.org/10.1021/acs.chemrev.9b00550.
Younas, R.; Jubeen, F.; Bano, N.; Andreescu, S.; Zhang, H.; Hayat, A. Covalent Organic Frameworks (COFs) as Carrier for Improved Drug Delivery and Biosensing Applications. Biotechnology and Bioengineering 2024, 121 (7), 2017–2049. https://doi.org/10.1002/bit.28718.
Xiong, S.; Wang, Y.; Wang, X.; Chu, J.; Zhang, R.; Gong, M.; Wu, B.; Li, Z. Schiff Base Type Conjugated Organic Framework Nanofibers: Solvothermal Synthesis and Electrochromic Properties. Solar Energy Materials and Solar Cells 2020, 209, 110438. https://doi.org/10.1016/j.solmat.2020.110438.
Xiao, J.; Chen, J.; Liu, J.; Ihara, H.; Qiu, H. Synthesis Strategies of Covalent Organic Frameworks: An Overview from Nonconventional Heating Methods and Reaction Media. Green Energy and Environment 2023, 8 (6), 1596–1618. https://doi.org/10.1016/j.gee.2022.05.003.
Campbell, N. L.; Clowes, R.; Ritchie, L. K.; Cooper, A. I. Rapid Microwave Synthesis and Purification of Porous Covalent Organic Frameworks. Chemistry of Materials 2009, 21 (2), 204–206. https://doi.org/10.1021/cm802981m.
Ritchie, L. K.; Trewin, A.; Reguera-Galan, A.; Hasell, T.; Cooper, A. I. Synthesis of COF-5 Using Microwave Irradiation and Conventional Solvothermal Routes. Microporous and Mesoporous Materials 2010, 132 (1–2), 132–136. https://doi.org/10.1016/j.micromeso.2010.02.010.
Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. Mechanochemical Synthesis of Chemically Stable Isoreticular Covalent Organic Frameworks. J Am Chem Soc 2013, 135 (14), 5328–5331. https://doi.org/10.1021/ja4017842.
Das, G.; Balaji Shinde, D.; Kandambeth, S.; Biswal, B. P.; Banerjee, R. Mechanosynthesis of Imine, β-Ketoenamine, and Hydrogen-Bonded Imine-Linked Covalent Organic Frameworks Using Liquid-Assisted Grinding. Chemical Communications 2014, 50 (84), 12615–12618. https://doi.org/10.1039/c4cc03389b.
Ren, X.; Liao, G.; Li, Z.; Qiao, H.; Zhang, Y.; Yu, X.; Wang, B.; Tan, H.; Shi, L.; Qi, X.; Zhang, H. Two-Dimensional MOF and COF Nanosheets for next-Generation Optoelectronic Applications. Coordination Chemistry Reviews 2021, 435, 213781. https://doi.org/10.1016/j.ccr.2021.213781.
Yang, B.; Zhang, C. Alkali-Durable Covalent Organic Frameworks Carrying in Situ Ammonium as an Ionic Conductor toward Hydroxide Transport. ACS Sustain Chem Eng 2022, 10 (30), 9749–9759. https://doi.org/10.1021/acssuschemeng.2c01071.
Medina, D. D.; Werner, V.; Auras, F.; Tautz, R.; Dogru, M.; Schuster, J.; Linke, S.; Döblinger, M.; Feldmann, J.; Knochel, P.; Bein, T. Oriented Thin Films of a Benzodithiophene Covalent Organic Framework. ACS Nano 2014, 8 (4), 4042–4052. https://doi.org/10.1021/nn5000223.
Kuhn, P.; Antonietti, M.; Thomas, A. Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angewandte Chemie - International Edition 2008, 47 (18), 3450–3453. https://doi.org/10.1002/anie.200705710.
Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klöck, C.; O’Keeffe, M.; Yaghi, O. M. A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework. J Am Chem Soc 2009, 131 (13), 4570–4571. https://doi.org/10.1021/ja8096256.
Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki-Miyaura Coupling Reaction. J Am Chem Soc 2011, 133 (49), 19816–19822. https://doi.org/10.1021/ja206846p.
Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. Crystalline Covalent Organic Frameworks with Hydrazone Linkages. J Am Chem Soc 2011, 133 (30), 11478–11481. https://doi.org/10.1021/ja204728y.
Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D. An Azine-Linked Covalent Organic Framework. J Am Chem Soc 2013, 135 (46), 17310–17313. https://doi.org/10.1021/ja4103293.
Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.; Qiu, S.; Yan, Y. Designed Synthesis of Large-Pore Crystalline Polyimide Covalent Organic Frameworks. Nat Commun 2014, 5, 4503. https://doi.org/10.1038/ncomms5503.
Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of Crystalline 2D Covalent Organic Frameworks with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route. J Am Chem Soc 2012, 134 (48), 19524–19527. https://doi.org/10.1021/ja308278w.
Machado, T. F.; Serra, M. E. S.; Murtinho, D.; Valente, A. J. M.; Naushad, M. Covalent Organic Frameworks: Synthesis, Properties and Applications-an Overview. Polymers 2021, 13(6), 970. https://doi.org/10.3390/polym13060970.
Yusran, Y.; Fang, Q.; Qiu, S. Postsynthetic Covalent Modification in Covalent Organic Frameworks. Israel Journal of Chemistry 2018, 58, 971–984. https://doi.org/10.1002/ijch.201800066.
Shah, S. S. A.; Javed, M. S.; Najam, T.; Nazir, M. A.; ur Rehman, A.; Rauf, A.; Sohail, M.; Verpoort, F.; Bao, S. J. Covalent Organic Frameworks (COFs) for Heterogeneous Catalysis: Recent Trends in Design and Synthesis with Structure-Activity Relationship. Materials Today 2023, 67, 229–255. https://doi.org/10.1016/j.mattod.2023.05.023.
Nagai, A.; Guo, Z.; Feng, X.; Jin, S.; Chen, X.; Ding, X.; Jiang, D. Pore Surface Engineering in Covalent Organic Frameworks. Nat Commun 2011, 2 (1), 536. https://doi.org/10.1038/ncomms1542.
Qian, C.; Qi, Q. Y.; Jiang, G. F.; Cui, F. Z.; Tian, Y.; Zhao, X. Toward Covalent Organic Frameworks Bearing Three Different Kinds of Pores: The Strategy for Construction and COF-to-COF Transformation via Heterogeneous Linker Exchange. J Am Chem Soc 2017, 139 (19), 6736–6743. https://doi.org/10.1021/jacs.7b02303.
Du, Y.; Mao, K.; Kamakoti, P.; Ravikovitch, P.; Paur, C.; Cundy, S.; Li, Q.; Calabro, D. Experimental and Computational Studies of Pyridine-Assisted Post-Synthesis Modified Air Stable Covalent-Organic Frameworks. Chemical Communications 2012, 48 (38), 4606–4608. https://doi.org/10.1039/c2cc30781b.
Leng, W.; Peng, Y.; Zhang, J.; Lu, H.; Feng, X.; Ge, R.; Dong, B.; Wang, B.; Hu, X.; Gao, Y. Sophisticated Design of Covalent Organic Frameworks with Controllable Bimetallic Docking for a Cascade Reaction. Chemistry - A European Journal 2016, 22 (27), 9087–9091. https://doi.org/10.1002/chem.201601334.
Daugherty, M. C.; Vitaku, E.; Li, R. L.; Evans, A. M.; Chavez, A. D.; Dichtel, W. R. Improved Synthesis of β-Ketoenamine-Linked Covalent Organic Frameworks: Via Monomer Exchange Reactions. Chemical Communications 2019, 55 (18), 2680–2683. https://doi.org/10.1039/c8cc08957d.
Xie, G.; Cui, F.; Zhao, H.; Fan, Z.; Liu, S.; Pang, B.; Yan, X.; Du, R.; Liu, C.; He, G.; Wu, X. Free-Standing COF Nanofiber in Ion Conductive Membrane to Improve Efficiency of Vanadium Redox Flow Battery. J Memb Sci 2024, 708, 123052. https://doi.org/10.1016/j.memsci.2024.123052.
Jia, Z.; Yan, Z.; Zhang, J.; Zou, Y.; Qi, Y.; Li, X.; Li, Y.; Guo, X.; Yang, C.; Ma, L. Pore Size Control via Multiple-Site Alkylation to Homogenize Sub-Nanoporous Covalent Organic Frameworks for Efficient Sieving of Xenon/Krypton. ACS Appl Mater Interfaces 2021, 13 (1), 1127–1134. https://doi.org/10.1021/acsami.0c14610.
EL-Mahdy, A. F. M.; Hung, Y. H.; Mansoure, T. H.; Yu, H. H.; Hsu, Y. S.; Wu, K. C. W.; Kuo, S. W. Synthesis of [3 + 3] β-Ketoenamine-Tethered Covalent Organic Frameworks (COFs) for High-Performance Supercapacitance and CO2 Storage. J Taiwan Inst Chem Eng 2019, 103, 199–208. https://doi.org/10.1016/j.jtice.2019.07.016.
Zhao, S.; Di, N.; Lei, R.; Wang, J.; Wang, Z. Triphenylamine-Based COFs Composite Membrane Fabricated through Oligomer-Triggered Interfacial Polymerization. J Memb Sci 2023, 672, 121424. https://doi.org/10.1016/j.memsci.2023.121424.
Golshadi, Z.; Dinari, M.; Knebel, A.; Lützenkirchen, J.; Monjezi, B. H. Metal Organic and Covalent Organic Framework-Based QCM Sensors for Environmental Pollutant Detection and Beyond. Coordination Chemistry Reviews 2024, 521, 216163. https://doi.org/10.1016/j.ccr.2024.216163.
Ahmed, L. R.; Lüder, J.; Chuang, C. H.; EL-Mahdy, A. F. M. Covalent-Organic-Framework-Modified Quartz Crystal Microbalance Sensor for Selective Detection of Hazardous Formic Acid. ACS Applied Materials and Interfaces 2024, 16 (23), 30408–30420. https://doi.org/10.1021/acsami.4c04630.
Li, D. M.; Li, S. Q.; Huang, J. Y.; Yan, Y. L.; Zhang, S. Y.; Tang, X. H.; Fan, J.; Zheng, S. R.; Zhang, W. G.; Cai, S. L. A Recyclable Bipyridine-Containing Covalent Organic Framework-Based QCM Sensor for Detection of Hg(II) Ion in Aqueous Solution. J Solid State Chem 2021, 302, 122421. https://doi.org/10.1016/j.jssc.2021.122421.
Bisbey, R. P.; DeBlase, C. R.; Smith, B. J.; Dichtel, W. R. Two-Dimensional Covalent Organic Framework Thin Films Grown in Flow. J Am Chem Soc 2016, 138 (36), 11433–11436. https://doi.org/10.1021/jacs.6b04669.
Yang, Y.; Mallick, S.; Izquierdo-Ruiz, F.; Schäfer, C.; Xing, X.; Rahm, M.; Börjesson, K. A Highly Conductive All-Carbon Linked 3D Covalent Organic Framework Film. Small 2021, 17 (40), 2103152. https://doi.org/10.1002/smll.202103152.
Ratsch, M.; Ye, C.; Yang, Y.; Zhang, A.; Evans, A. M.; Börjesson, K. All-Carbon-Linked Continuous Three-Dimensional Porous Aromatic Framework Films with Nanometer-Precise Controllable Thickness. J Am Chem Soc 2020, 142 (14), 6548–6553. https://doi.org/10.1021/jacs.9b10884.
Yang, Y.; Schäfer, C.; Börjesson, K. Detachable All-Carbon-Linked 3D Covalent Organic Framework Films for Semiconductor/COF Heterojunctions by Continuous Flow Synthesis. Chem 2022, 8 (8), 2217–2227. https://doi.org/10.1016/j.chempr.2022.05.003.
Yang, Y.; Ratsch, M.; Evans, A. M.; Börjesson, K. Layered 3D Covalent Organic Framework Films Based on Carbon-Carbon Bonds. J Am Chem Soc 2023, 145 (33), 18668–18675. https://doi.org/10.1021/jacs.3c06621.
Pate, K.; Safier, P. Chemical Metrology Methods for CMP Quality. In Advances in Chemical Mechanical Planarization (CMP); Babu, S., Ed.; Woodhead Publishing, 2016; pp 229–325. https://doi.org/10.1016/B978-0-08-100165-3.00012-7.
Park, S. J.; Seo, M. K. Interface Science and Technology, 1st ed.; Interface Science and Technology, Vol. 18; Elsevier, 2011.
Stetefeld, J.; McKenna, S. A.; Patel, T. R. Dynamic Light Scattering: A Practical Guide and Applications in Biomedical Sciences. Biophysical Reviews 2016, 8, 409–427. https://doi.org/10.1007/s12551-016-0218-6.
Bhattacharjee, S. DLS and Zeta Potential - What They Are and What They Are Not? Journal of Controlled Release 2016, 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017.
Tscharauter, W. W., Mobility measurements by phase analysis. Applied optics 2001, 40 (24), 3995–4003.
Sauerbrey, G. Verwendung von Schwingquarzen Zur Wägung Dünner Schichten Und Zur Mikrowägung. Zeitschrift für Physik 1959, 55 (2), 206–222.
Dixon MC. Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J Biomol Tech 2008, 19 (3), 151-158.
Johannsmann, D. The Quartz Crystal Microbalance in Soft Matter Research: Fundamentals and Modeling; Springer, 2014. https://doi.org/10.1007/978-3-319-07836-6.
Keiji Kanazawa, K.; Gordon, J. G. The Oscillation Frequency of a Quartz Resonator in Contact with Liquid. Analytica Chimica Acta 1985, 175, 99–105. https://doi.org/10.1016/S0003-2670(00)82721-X.
Thompson, M.; Kipling, A. L.; Duncan-Hewitts, W. C.; Ljubinka, C.; Rajakovic, V.; Cavic-Vlasak, B. A. Thickness-Shear-Mode Acoustic Wave Sensors in the Liquid Phase. A Review. Analyst 1991, 116 (9), 881–890.
Reed, C. E.; Kanazawa, K. K.; Kaufman, J. H. Physical Description of a Viscoelastically Loaded AT-Cut Quartz Resonator. J Appl Phys 1990, 68 (5), 1993–2001. https://doi.org/10.1063/1.346548.
Rodahl M, Kasemo B. Frequency and dissipation-factor responses to localized liquid deposits on a QCM electrode. Sensors and Actuators B: Chemical 1996, 37, 111–116.
Voinova, M. v; Rodahl, M.; Jonson, M.; Kasemo, B. Viscoelastic Acoustic Response of Layered Polymer Films at Fluid-Solid Interfaces: Continuum Mechanics Approach. Physica Scripta 1999, 59 (5), 391.
Rodahl, M.; Kasemo, B. A Simple Setup to Simultaneously Measure the Resonant Frequency and the Absolute Dissipation Factor of a Quartz Crystal Microbalance. Review of Scientific Instruments 1996, 67 (9), 3238–3241. https://doi.org/10.1063/1.1147494.
Rodahl, M.; Höök, F.; Krozer, A.; Brzezinski, P.; Kasemo, B. Quartz Crystal Microbalance Setup for Frequency and Q-Factor Measurements in Gaseous and Liquid Environments. Review of Scientific Instruments 1995, 66 (7), 3924–3930. https://doi.org/10.1063/1.1145396.
Chen, L.; Yang, B.; Zhang, J. Preparation and Tribological Properties of Polymer Film Covalently Bonded to Silicon Substrate via an Epoxy-Terminated Self-Assembled Monolayer. J Adhes Sci Technol 2014, 28 (17), 1725–1738. https://doi.org/10.1080/01694243.2014.915785.
Lee, S. H.; Lin, W. C.; Kuo, C. H.; Karakachian, M.; Lin, Y. C.; Yu, B. Y.; Shyue, J. J. Photooxidation of Amine-Terminated Self-Assembled Monolayers on Gold. Journal of Physical Chemistry C 2010, 114 (23), 10512–10519. https://doi.org/10.1021/jp101426h.
Graham, D.; Dingman, S. A Step-by-Step Guide for Solution Based Self-Assembly. Material Matters 2006, 1 (2), 18–19.
Wang, H.; Chen, S.; Li, L.; Jiang, S. Improved Method for the Preparation of Carboxylic Acid and Amine Terminated Self-Assembled Monolayers of Alkanethiolates. Langmuir 2005, 21 (7), 2633–2636. https://doi.org/10.1021/la046810w.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99036-
dc.description.abstract共價有機框架(Covalent Organic Frameworks, COFs)為一種新型有機多孔材料,其有著結構清楚明確、可調性孔洞、比表面積大、穩定性高等特性,再加上碳、氧、氫、氮等輕元素之間具有穩固的強共價鍵,因而在能量儲存與轉換、光電元件、氣體分離、感應器、催化、藥物傳輸等領域有著廣泛的應用,在這些應用中,了解吸附和脫附的行為是COFs成功的關鍵。
本實驗採用界面聚合法將作為反應物的三甲醯間苯三酚(2,4,6-Triformylphloroglucinol, TFP)和三(4-胺基苯基)胺(Tris(4-aminophenyl)amine, TAPA)合成為β-酮烯胺(β-Ketoenamine-linked)連接的COF薄膜。利用掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)、傅立葉轉換紅外線光譜儀(FTIR)、界面電位分析儀等方式對TAPA-TFP薄膜進行表徵,以了解其形貌、厚度、結構及界面電位。並利用能量消散型石英晶體微天平(QCM-D)的高質量靈敏度,連續記錄共振頻率和能量消散的變化,以研究小分子客體在不同pH值水溶液中的吸附與脫附行為。
將大約17.5 nm的獨立TAPA-TFP薄膜直接轉移到石英晶片上以形成穩定且均勻的塗層,選取磷酸鹽緩衝生理鹽水(Phosphate buffered saline, PBS)溶液作為本實驗的背景溶液,並分別通入酸性及鹼性的PBS溶液,得知TAPA-TFP薄膜在pH 6 – pH 3能有穩定結構,後續選擇咖啡因作為本次實驗的客體分子,將晶片暴露於含有咖啡因的緩衝溶液中,發現隨著pH值越小,QCM-D收取之資料變化顯示可逆的質量減少,結構會從通入藥物溶液後造成的鬆散再變得緻密,因而擠壓出咖啡因溶液。
zh_TW
dc.description.abstractCovalent organic frameworks (COFs) are a kind of emerging porous crystalline material, which have well-defined structure, tunable pore size, large specific surface area, high stability with robust covalent bonds between light elements of C, O, H, and N. As a result, they can be applied in energy storage and conversion, optoelectronics, gas separation, sensors, catalysis, drug delivery, etc. For these applications, the adsorption and desorption behaviors are key to their success.
In this work, the β-ketoenamine-linked COF synthesized from 2,4,6-triformylphloroglucinol (TFP) and tris(4-aminophenyl)amine (TAPA) film was prepared with interfacial polymerization. The TFP-TAPA film was characterized by SEM, AFM, FTIR, Zeta Potential Analyzer to identify its morphology, thickness, structure and zeta potential. For its high weight sensitivity, quartz-crystal microbalance with dissipation detection (QCM-D) was used for investigating the adsorption and desorption behaviors of small molecular guests in aqueous solution of different pHs.
Approximate 17.5 nm thick standalone TFP-TAPA film was transferred to quartz crystal chip directly to form a stable and uniform coating. Using phosphate buffered saline (PBS) as the blank buffer, and the film was exposed to acidic and alkaline PBS solutions respectively. It was found that TAPA-TFP film can have a stable structure between pH 6 to 3. Subsequently, the chip was exposed to a buffer solution containing caffeine between pH 6 to 3. It was found that as the pH value decreased, the data collected by QCM-D showed a reversible mass reduction. The result reflected the structure would change from loose to dense, and some of the caffeine solution was lose from the film.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:08:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:08:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iii
目次 v
圖次 viii
表次 xi
第一章 緒論 1
第二章 文獻回顧 3
2.1 共價有機框架簡介 3
2.1.1 共價有機框架(COFs)合成 5
2.1.1.1 溶劑熱法 Solvothermal Synthesis 6
2.1.1.2 微波輔助溶劑熱法 Microwave-assisted Solvothermal Synthesis 7
2.1.1.3 機械化學合成 Mechanochemical Synthesis 8
2.1.1.4 界面合成 Interfacial Synthesis 9
2.1.2 共價有機框架(COFs)結構與性質 11
2.1.2.1 含硼COFs 11
2.1.2.2 基於三嗪的COFs(Triazine‐based COFs) 11
2.1.2.3 亞胺鍵連接的COFs(Imine‐linked COFs) 12
2.1.2.4 醯亞胺鍵連接的COFs(Imide‐linked COFs) 14
2.1.2.5 β-酮烯胺連接的COFs(β-Ketoenamine-linked COFs) 14
2.1.3 共價有機框架(COFs)後修飾 16
2.1.4 TAPA-TFP簡介 19
2.2 石英晶體微天平於共價有機框架之研究 20
2.2.1 氣體感測 21
2.2.2 液相環境之QCM分析 23
2.2.3 以QCM監測COFs薄膜生長 24
第三章 實驗與儀器介紹 27
3.1 藥品與基材 27
3.2 實驗儀器與原理 28
3.2.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 28
3.2.2 原子力顯微鏡(Atomic Force Microscope, AFM) 29
3.2.3 傅立葉轉換紅外光譜儀(Fourier-transform infrared spectroscopy, FTIR) 30
3.2.4 界面電位分析儀(Zeta Potential Analyzer)55–58 31
3.2.5 能量消散型石英晶體微天平(Quartz Crystal Microbalance with Dissipation, QCM-D) 35
3.3 實驗流程 40
3.3.1 TAPA-TFP的合成 40
3.3.2 試片製備 41
3.3.3 SEM影像觀測 43
3.3.4 AFM量測 44
3.3.5 FT-IR量測 44
3.3.6 界面電位量測 44
3.3.7 QCM-D量測 45
第四章 實驗結果與討論 47
4.1 TAPA-TFP的合成 47
4.2 TAPA-TFP薄膜的厚度調整與鍍金矽基板的貼合 48
4.3 TAPA-TFP薄膜的FT-IR分析 51
4.4 TAPA-TFP薄膜的AFM分析 52
4.5 TAPA-TFP於不同環境pH值的界面電位 54
4.6 QCM-D分析 54
4.6.1 背景溶液的選擇 55
4.6.2 環境pH值 58
4.6.3 藥物吸附與脫附 64
4.6.3.1 阿斯匹靈 64
4.6.3.2 咖啡因 67
第五章 結論 72
第六章 參考文獻 74
-
dc.language.isozh_TW-
dc.subjectTAPA-TFPzh_TW
dc.subject共價有機框架zh_TW
dc.subject脫附zh_TW
dc.subject吸附zh_TW
dc.subject能量消散型石英晶體微天平zh_TW
dc.subjectQCM-Den
dc.subjectAbsorptionen
dc.subjectDesorptionen
dc.subjectTAPA-TFPen
dc.subjectCovalent organic frameworks (COFs)en
dc.title能量消散型石英晶體微天平對於共價有機框架在水相環境中藥物客體吸脫附過程之研究zh_TW
dc.titleQuartz crystal microbalance with dissipation detection (QCM-D) studies of adsorption/desorption processes of guests in covalent organic frameworks (COFs) in aqueous environmentsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林煒淳;王榮輝zh_TW
dc.contributor.oralexamcommitteeWei-Chun Lin;Jung-Hui Wangen
dc.subject.keyword共價有機框架,TAPA-TFP,能量消散型石英晶體微天平,吸附,脫附,zh_TW
dc.subject.keywordCovalent organic frameworks (COFs),TAPA-TFP,QCM-D,Absorption,Desorption,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202502775-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2030-07-30-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved