請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98989| 標題: | 開發基於黏滑運動之電磁驅動柔性關節機器人模組 Development of an Electromagnetic-Driven Soft-Joint Robot Module Utilizing Stick-Slip Motion |
| 作者: | 高仕懷 Shih-Huai Kao |
| 指導教授: | 張秉純 Biing-Chwen Chang |
| 關鍵字: | 電磁驅動,柔性關節,黏滑運動,模組化機器人,摩擦非對稱性,系統特性識別, Electromagnetic-Driven,Soft Joint,Stick-Slip Motion,Modular Robot,Frictional Anisotropy,System Characterization, |
| 出版年 : | 2025 |
| 學位: | 碩士 |
| 摘要: | 公分級微型機器人在搜救、醫療與檢測等領域具備龐大潛力,然而其在驅動方式、能源效率與系統整合上仍面臨諸多挑戰。傳統方案常受限於外部氣壓源、高驅動電壓或緩慢的響應速度。為解決此困境,本論文旨在開發新型、低電壓、無線驅動潛力之公分級模組化機器人。
本研究提出並實作了基於黏滑運動(stick-slip motion)原理之電磁驅動柔性關節機器人模組。其核心設計整合了三項關鍵技術。首先,以永久磁鐵與電磁鐵間的快速吸斥作用作為低電壓(<24V)驅動源;其次,採用一體成形的矽膠材料作為兼具彈性與阻尼特性的柔性關節;最後,在足端設計上創新地複合了高摩擦係數的聚氨酯(PU)與低摩擦係數的聚四氟乙烯(PTFE),以被動方式實現運動所需的摩擦力非對稱性。 本論文首先透過準靜態力學分析與有限元素模擬,建立了系統的理論模型,並指導了關鍵元件的設計與選型。接著,透過一系列系統性實驗,對單一模組的動態性能進行了詳盡的特性分析。實驗結果顯示,單一模組在最佳化的驅動參數(1.5 Vpp, 0% 工作週期, ~17.5 Hz)與特定TPE材質表面上,能達到約 22 cm/s 的最高前進速度。研究亦發現,因製造過程中無法避免的微小公差,不同模組間會展現出可識別的動態「個體差異」,影響其等效勁度與阻尼特性。 為探討模組化潛力,本研究進一步將兩個模組進行橫向並聯,並測試其協同運動性能。在同步驅動下,並聯模組的直行速度並未簡單倍增,證實了「機械耦合阻尼效應」的存在。在非同步驅動下,系統成功實現了穩定的定輪轉彎與差速轉彎,驗證了其二維運動能力。然而,轉向性能呈現出顯著的非對稱性,此現象可追溯並歸因於單一模組的個體差異在耦合系統中被進一步放大。 總結而言,本研究成功驗證創新的電磁驅動柔性關節機器人設計,並深入揭示了在模組化軟體機器人系統中,製造公差與機械耦合效應對整體動態行為的深刻影響。此研究成果不僅為未來發展高機動性、自主化的公分級機器人集群奠定了基礎,也對軟體機器人的設計、控制與量產提供了重要的學理依據與工程參考。 Centimeter-scale robots hold immense potential for applications in search and rescue, medicine, and inspection, yet they face significant challenges in actuation, power efficiency, and system integration. Conventional solutions are often constrained by external pneumatic tethers, high driving voltages, or slow response times. To address these limitations, this thesis aims to develop a novel, low-voltage, modular robot with the potential for untethered operation. This research presents the design, fabrication, and characterization of an electromagnetic-driven soft-joint robot module that utilizes stick-slip motion. The core design integrates three key technologies: (1) a low-voltage (<24V) actuation source based on the rapid attraction and repulsion between a permanent magnet and an electromagnet; (2) a monolithic silicone structure serving as a soft joint with inherent elasticity and damping; and (3) an innovative composite foot design that passively achieves frictional anisotropy by combining high-friction polyurethane (PU) and low-friction polytetrafluoroethylene (PTFE). A theoretical framework was first established through quasi-static mechanical analysis and finite element method (FEM) simulations to guide the design and selection of key components. Subsequently, a series of systematic experiments were conducted to thoroughly characterize the dynamic performance of a single module. Experimental results show that a single module can achieve a maximum forward velocity of approximately 22 cm/s on a specific TPE surface under optimized driving parameters (1.5 Vpp, 0% duty cycle, ~17.5 Hz). The study also reveals that due to minute, unavoidable manufacturing tolerances, different modules exhibit distinct dynamic "personalities," affecting their equivalent stiffness and damping properties. To investigate modularity, two modules were configured in a side-by-side parallel arrangement. Under synchronous actuation, the forward velocity of the parallel configuration did not simply double, confirming the presence of a "mechanical coupling damping" effect. Under asynchronous actuation, the system successfully demonstrated stable pivot and differential turning, validating its 2D locomotion capabilities. However, the turning performance exhibited significant asymmetry, which was traced back to and attributed to the amplification of the individual modules' intrinsic differences within the coupled system. In conclusion, this research successfully validates an innovative design for an electromagnetic-driven soft-joint robot. More importantly, it provides a deep investigation into the profound impact of manufacturing tolerances and mechanical coupling effects on the global dynamic behavior of modular soft robotic systems. These findings not only lay a foundation for the future development of highly mobile, autonomous centimeter-scale robot swarms but also offer critical scientific principles and engineering references for the design, control, and fabrication of soft robots. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98989 |
| DOI: | 10.6342/NTU202504296 |
| 全文授權: | 同意授權(限校園內公開) |
| 電子全文公開日期: | 2026-09-01 |
| 顯示於系所單位: | 機械工程學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.4 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
