Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98989
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張秉純zh_TW
dc.contributor.advisorBiing-Chwen Changen
dc.contributor.author高仕懷zh_TW
dc.contributor.authorShih-Huai Kaoen
dc.date.accessioned2025-08-20T16:33:35Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-14-
dc.identifier.citation[1] S. N. Boateng et al., "Heterogenous Collaboration: A new approach for search and rescue operations," in 2024 IEEE International Symposium on Safety Security Rescue Robotics (SSRR), 12-14 Nov. 2024 2024, pp. 142-147, doi: 10.1109/SSRR62954.2024.10770037. [Online]. Available: https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=&arnumber=10770037&ref=
[2] E. B. Joyee and Y. Pan, "Multi-material Additive Manufacturing of Functional Soft Robot," Procedia Manufacturing, vol. 34, pp. 566-573, 2019.
[3] M. Funatsu, Y. Kawasaki, S. Kawasaki, and K. Kikuchi, "Development of cm-scale Wall Climbing Hexapod Robot with Claws," MM Science Journal, October 2014.
[4] W. Zhang, W. Zhang, and Z. Sun, "A reconfigurable soft wall-climbing robot actuated by electromagnet," International Journal of Advanced Robotic Systems, vol. 18, no. 2, 2021.
[5] F. Hartmann, M. Baskaran, G. Raynaud, M. Benbedda, K. Mulleners, and H. Shea, "Highly agile flat swimming robot," Science Robotics, vol. 10, no. 99, p. eadr0721.
[6] S. Miyashita, S. Guitron, M. Ludersdorfer, C. R. Sung, and D. Rus, "An untethered miniature origami robot that self-folds, walks, swims, and degrades," 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 2015, pp. 1490-1496.
[7] Z. Y. Jing, Q. Z. Li, W. T. Su, and Y. Chen, "Dielectric Elastomer-Driven Bionic Inchworm Soft Robot Realizes Forward and Backward Movement and Jump," Actuators, vol. 11, no. 8, p. 227, Aug 2022.
[8] B. Gorissen, M. De Volder, and D. Reynaerts, "Pneumatically-actuated artificial cilia array for biomimetic fluid propulsion," Lab on a Chip, vol. 15, no. 22, pp. 4348-4355, 2015.
[9] H. Guo, J. Zhang, T. Wang, Y. Li, J. Hong, and Y. Li, "Design and control of an inchworm-inspired soft robot with omega-arching locomotion," 2017 2017: IEEE.
[10] J. Ning, C. Ti, and y. liu, "Inchworm Inspired Pneumatic Soft Robot Based on Friction Hysteresis," Journal of Robotics and Automation, vol. 1, pp. 54-63, 09/15 2017.
[11] J. Wang, Y. Fei, and Z. Liu, "FifoBots: Foldable Soft Robots for Flipping Locomotion," Soft Robotics, vol. 6, no. 4, pp. 532-559, 2019.
[12] B. Gamus, L. Salem, A. D. Gat, and Y. Or, "Understanding Inchworm Crawling for Soft-Robotics," IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1397-1404, 2020.
[13] Q. Zhang, H. Fang, and J. Xu, "Yoshimura-origami Based Earthworm-like Robot With 3-dimensional Locomotion Capability," Front Robot AI, vol. 8, p. 738214, 2021.
[14] Z. Zhang, W. Fan, G. Chen, J. Luo, Q. Lu, and H. Wang, "A 3D Printable Origami Vacuum Pneumatic Artificial Muscle with Fast and Powerful Motion," presented at the 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), 2021.
[15] Y. Zhang, D. Yang, P. Yan, P. Zhou, J. Zou, and G. Gu, "Inchworm Inspired Multimodal Soft Robots With Crawling, Climbing, and Transitioning Locomotion," Ieee T Robot, vol. 38, no. 3, pp. 1806-1819, 2022.
[16] H.-T. Lin, G. Leisk, and B. Trimmer, "GoQBot: A caterpillar-inspired soft-bodied rolling robot," Bioinspiration & biomimetics, vol. 6, p. 026007, 2011
[17] W. Wang, J. Y. Lee, H. Rodrigue, S. H. Song, W. S. Chu, and S. H. Ahn, "Locomotion of inchworm-inspired robot made of smart soft composite (SSC)," Bioinspir Biomim, vol. 9, no. 4, p. 046006, Oct 7 2014.
[18] B. An et al., "An End-to-End Approach to Self-Folding Origami Structures," (in English), Ieee T Robot, vol. 34, no. 6, pp. 1409-1424, Dec 2018.
[19] L. Xu et al., "Locomotion of an untethered, worm-inspired soft robot driven by a shape-memory alloy skeleton," Scientific Reports, vol. 12, no. 1, p. 12392, 2022.
[20] 許凱棋, "微型仿生機器人動態特性分析與運動控制," 碩士, 機械工程學研究所, 國立臺灣大學, 2005年, 2005.
[21] A. K. Eigoli and G. Vossoughi, "Dynamic Modeling of Stick-Slip Motion in a Legged, Piezoelectric Driven Microrobot," International Journal of Advanced Robotic Systems, vol. 7, no. 3, p. 21, 2010.
[22] T. Cheng, M. He, H. Li, X. Lu, H. Zhao, and H. Gao, "A Novel Trapezoid-Type Stick–Slip Piezoelectric Linear Actuator Using Right Circular Flexure Hinge Mechanism," IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5545-5552, 2017.
[23] G. Wang, C. Li, and T. Yuan, "Design and experiment of a small-scale walking robot employing stick-slip motion principle," Review of Scientific Instruments, vol. 88, no. 11, p. 115001, 2017.
[24] Y. Shao et al., "Development of a frequency-controlled inertial type piezoelectric locomotion method with nano-scale motion resolution driven by a symmetrical waveform," Mechanical Systems and Signal Processing, vol. 177, p. 109271, 2022.
[25] J. Xing, C. Ning, Y. Liu, and I. Howard, "Piezoelectric inertial robot for operating in small pipelines based on stick-slip mechanism: modeling and experiment," Frontiers of Mechanical Engineering, vol. 17, no. 3, 2022.
[26] K.-J. Cho and R. Wood, "Biomimetic Robots," Springer International Publishing, 2016, pp. 543-574.
[27] U. Saranli, M. Buehler, and D. E. Koditschek, "RHex: A Simple and Highly Mobile Hexapod Robot," The International Journal of Robotics Research, vol. 20, no. 7, pp. 616-631, 2001.
[28] A. M. Hoover, E. Steltz, and R. S. Fearing, "RoACH: An autonomous 2.4g crawling hexapod robot," in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 26-33.
[29] P. Birkmeyer, K. Peterson, and R. S. Fearing, "DASH: A dynamic 16g hexapedal robot," in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 2683-2689.
[30] A. M. Hoover, S. Burden, F. Xiao-Yu, S. S. Sastry, and R. S. Fearing, "Bio-inspired design and dynamic maneuverability of a minimally actuated six-legged robot," in 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 2010, pp. 869-876.
[31] D. W. Haldane, K. C. Peterson, F. L. G. Bermudez, and R. S. Fearing, "Animal-inspired design and aerodynamic stabilization of a hexapedal millirobot," in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 3279-3286.
[32] A. T. Baisch, O. Ozcan, B. Goldberg, D. Ithier, and R. J. Wood, "High speed locomotion for a quadrupedal microrobot," The International Journal of Robotics Research, vol. 33, no. 8, pp. 1063-1082, 2014.
[33] S. Hirose and Y. Umetani, "The development of soft gripper for the versatile robot hand," Mechanism and Machine Theory, vol. 13, no. 3, pp. 351-359, 1978.
[34] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen, "From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model," Science, vol. 315, no. 5817, pp. 1416-1420, 2007
[35] C. Wright et al., "Design of a modular snake robot," in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 2609-2614
[36] Z. Y. Bayraktaroglu, "Snake-like locomotion: Experimentations with a biologically inspired wheel-less snake robot," Mechanism and Machine Theory, vol. 44, no. 3, pp. 591-602, 2009.
[37] D. Lee, S. Kim, Y.-L. Park, and R. J. Wood, "Design of centimeter-scale inchworm robots with bidirectional claws," in 2011 IEEE International Conference on Robotics and Automation, 2011: IEEE, pp. 3197-3204.
[38] Q. J. Ze et al., "Soft robotic origami crawler," (in English), Sci. Adv., Article vol. 8, no. 13, p. 9, Apr 2022, Art no. eabm7834, doi: 10.1126/sciadv.abm7834.
[39] X. Zhan, J. Xu, and H. Fang, "A vibration-driven planar locomotion robot-Shell," Robotica, Article vol. 36, no. 9, pp. 1402-1420, Sep 2018, doi: 10.1017/s0263574718000383.
[40] C. H. Belke and J. Paik, "Mori: A Modular Origami Robot," (in English), Ieee-Asme T Mech, vol. 22, no. 5, pp. 2153-2164, Oct 2017, doi: 10.1109/Tmech.2017.2697310.
[41] J. S. Walker, *Physics*, 2nd ed. New Jersey: Pearson Education, 2004, p. 139.
[42] 達宏精密工業, "塑材特性," [Online]. Available: http://www.da-hongcnc.com/info.php?id=39. [Accessed: Jul. 18, 2025].
[43] Arduino, “Arduino UNO Rev3 with Long Pins,” Arduino Documentation, [Online]. Available: https://docs.arduino.cc/retired/boards/arduino-uno-rev3-with-long-pins/. [Accessed: Jun. 20, 2025].
[44] R. Mischianti, "ESP32 WeMos LOLIN32 high resolution pinout and specs," Renzo Mischianti, [Online]. Available: https://mischianti.org/esp32-wemos-lolin32-high-resolution-pinout-and-specs/, [Accessed: Jun. 20, 2025].
[45] Arduino, "Arduino Uno Rev3 — A000066 Datasheet," Arduino Documentation, [Online]. Available: https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf, [Accessed: Jun. 20, 2025].
[46] ESPRESSIF, " ESP32-WROOM-32 Datasheet Version 3.5," ESP-IDF Programming Guide, [Online]. Available: https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf, [Accessed: Jun. 20, 2025].
[47] ESPRESSIF, " ESP32 Technical Reference Manual," ESP-IDF Programming Guide, [Online]. Available: https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf, [Accessed: Jun. 20, 2025], p.168.
[48] Texas Instruments, "Industry-Standard Dual Operational Amplifiers datasheet (Rev. AB)," [Online]. Available: https://www.ti.com/lit/ds/symlink/lm358.pdf. [Accessed: Mar. 6, 2025].
[49] STMicroelectronics, " TDA2050 32 W hi-fi audio power amplifier datasheet," [Online]. Available: https://www.st.com/resource/en/datasheet/cd00000131.pdf. [Accessed: Dec. 2, 2024].
[50] 榮紹精密塑膠射出股份有限公司, "塑膠射出成型材料-分類," [Online]. Available: https://www.lon-so.com/m/materials-1-5.html. [Accessed: Jul. 18, 2025].
[51] 高成電木塑膠有限公司, "產品介紹/ PMMA壓克力," [Online]. Available: http://www.kcm.com.tw/mobile/detail.php?index_id=22. [Accessed: Jul. 18, 2025].
[52] 广东立恩实业有限公司, "tpe材料的摩擦系数多少," [Online]. Available: https://www.linngd.com/3977.html. [Accessed: Jul. 18, 2025].
[53] Gallagher Corporation, "Polyurethane’s Coefficient of Friction," [Online]. Available: https://gallaghercorp.com/polyurethane-coefficient-of-friction/. [Accessed: Jul. 18, 2025].
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98989-
dc.description.abstract公分級微型機器人在搜救、醫療與檢測等領域具備龐大潛力,然而其在驅動方式、能源效率與系統整合上仍面臨諸多挑戰。傳統方案常受限於外部氣壓源、高驅動電壓或緩慢的響應速度。為解決此困境,本論文旨在開發新型、低電壓、無線驅動潛力之公分級模組化機器人。
本研究提出並實作了基於黏滑運動(stick-slip motion)原理之電磁驅動柔性關節機器人模組。其核心設計整合了三項關鍵技術。首先,以永久磁鐵與電磁鐵間的快速吸斥作用作為低電壓(<24V)驅動源;其次,採用一體成形的矽膠材料作為兼具彈性與阻尼特性的柔性關節;最後,在足端設計上創新地複合了高摩擦係數的聚氨酯(PU)與低摩擦係數的聚四氟乙烯(PTFE),以被動方式實現運動所需的摩擦力非對稱性。
本論文首先透過準靜態力學分析與有限元素模擬,建立了系統的理論模型,並指導了關鍵元件的設計與選型。接著,透過一系列系統性實驗,對單一模組的動態性能進行了詳盡的特性分析。實驗結果顯示,單一模組在最佳化的驅動參數(1.5 Vpp, 0% 工作週期, ~17.5 Hz)與特定TPE材質表面上,能達到約 22 cm/s 的最高前進速度。研究亦發現,因製造過程中無法避免的微小公差,不同模組間會展現出可識別的動態「個體差異」,影響其等效勁度與阻尼特性。
為探討模組化潛力,本研究進一步將兩個模組進行橫向並聯,並測試其協同運動性能。在同步驅動下,並聯模組的直行速度並未簡單倍增,證實了「機械耦合阻尼效應」的存在。在非同步驅動下,系統成功實現了穩定的定輪轉彎與差速轉彎,驗證了其二維運動能力。然而,轉向性能呈現出顯著的非對稱性,此現象可追溯並歸因於單一模組的個體差異在耦合系統中被進一步放大。
總結而言,本研究成功驗證創新的電磁驅動柔性關節機器人設計,並深入揭示了在模組化軟體機器人系統中,製造公差與機械耦合效應對整體動態行為的深刻影響。此研究成果不僅為未來發展高機動性、自主化的公分級機器人集群奠定了基礎,也對軟體機器人的設計、控制與量產提供了重要的學理依據與工程參考。
zh_TW
dc.description.abstractCentimeter-scale robots hold immense potential for applications in search and rescue, medicine, and inspection, yet they face significant challenges in actuation, power efficiency, and system integration. Conventional solutions are often constrained by external pneumatic tethers, high driving voltages, or slow response times. To address these limitations, this thesis aims to develop a novel, low-voltage, modular robot with the potential for untethered operation.
This research presents the design, fabrication, and characterization of an electromagnetic-driven soft-joint robot module that utilizes stick-slip motion. The core design integrates three key technologies: (1) a low-voltage (<24V) actuation source based on the rapid attraction and repulsion between a permanent magnet and an electromagnet; (2) a monolithic silicone structure serving as a soft joint with inherent elasticity and damping; and (3) an innovative composite foot design that passively achieves frictional anisotropy by combining high-friction polyurethane (PU) and low-friction polytetrafluoroethylene (PTFE).
A theoretical framework was first established through quasi-static mechanical analysis and finite element method (FEM) simulations to guide the design and selection of key components. Subsequently, a series of systematic experiments were conducted to thoroughly characterize the dynamic performance of a single module. Experimental results show that a single module can achieve a maximum forward velocity of approximately 22 cm/s on a specific TPE surface under optimized driving parameters (1.5 Vpp, 0% duty cycle, ~17.5 Hz). The study also reveals that due to minute, unavoidable manufacturing tolerances, different modules exhibit distinct dynamic "personalities," affecting their equivalent stiffness and damping properties.
To investigate modularity, two modules were configured in a side-by-side parallel arrangement. Under synchronous actuation, the forward velocity of the parallel configuration did not simply double, confirming the presence of a "mechanical coupling damping" effect. Under asynchronous actuation, the system successfully demonstrated stable pivot and differential turning, validating its 2D locomotion capabilities. However, the turning performance exhibited significant asymmetry, which was traced back to and attributed to the amplification of the individual modules' intrinsic differences within the coupled system.
In conclusion, this research successfully validates an innovative design for an electromagnetic-driven soft-joint robot. More importantly, it provides a deep investigation into the profound impact of manufacturing tolerances and mechanical coupling effects on the global dynamic behavior of modular soft robotic systems. These findings not only lay a foundation for the future development of highly mobile, autonomous centimeter-scale robot swarms but also offer critical scientific principles and engineering references for the design, control, and fabrication of soft robots.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:33:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:33:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目次 vi
圖次 x
表次 xiii
第 1 章 緒論 1
1.1 研究動機與背景 1
1.2 文獻回顧 3
1.2.1 仿生設計於微型機器人之應用 3
1.2.2 尺蠖運動的優勢及其設計 4
1.2.3 黏滑運動原理 11
1.2.4 磁性驅動於微型機器人之應用 13
1.2.5 模組化與可重構機器人之概念與挑戰 15
1.3 研究目的 16
第 2 章 裝置與系統設計 18
2.1 設計概念 18
2.2 運動原理分析 19
2.3 足端設計 20
2.3.1 幾何構型之權衡與選取 20
2.3.2 運動週期中之接觸狀態分析與材料配置 22
2.4 機器人模組驅動力之靜力分析 23
2.4.1 系統模型與假設 24
2.4.2 驅動力臨界條件分析 24
2.4.3 基礎阻力估算 26
2.5 電磁交互 26
2.5.1 線圈與釹鐵硼磁鐵在不同距離下的磁力模擬 26
2.5.2 磁力實驗量測 28
2.5.3 實驗結果與磁力模擬比較與分析 30
2.6 彈性關節設計 31
2.6.1 材料選取與設計原則 32
2.6.2 關節拓撲結構之比較分析與決策 33
2.6.3 最終設計之幾何優化與系統級約束 34
2.6.4 空間(Out-of-Plane)性能集成 36
2.6.5 有限元素法之元件特性標定 37
2.6.6 系統力學平衡分析與設計可行性驗證 38
2.7 動態模型 39
2.7.1 模型假設與簡化 40
2.7.2 轉移函數與參數關係 41
2.8 驅動訊號處理 42
2.8.1 訊號產生器程式邏輯與策略 44
2.8.2 直流位移與前級放大 47
2.8.3 功率放大與輸出驅動 48
2.8.4 系統整合與電源分配 50
第 3 章 單個模組的性能測試 51
3.1 實驗器材 51
3.1.1 共用設備 51
3.1.2 各實驗之額外設置 51
3.2 數據處理方法 53
3.2.1 紅外線光遮斷感測器量測系統 54
3.2.2 影像分析與手動速度估算 54
3.2.3 自動化光遮斷計時與速度計算 54
3.3 單個模組的躍階響應 55
3.3.1 實驗步驟 55
3.3.2 數據分析 57
3.3.3 實驗結果 58
3.3.4 討論 61
3.4 訊號電壓與足端摩擦非對稱性之影響 63
3.4.1 實驗步驟 64
3.4.2 實驗結果 64
3.4.3 討論 65
3.5 不同頻率對速度的影響 67
3.5.1 實驗步驟 67
3.5.2 實驗結果 67
3.5.3 討論 68
3.6 不同工作週期對速度的影響 70
3.6.1 實驗步驟 70
3.6.2 實驗結果 70
3.6.3 討論 71
3.7 不同平面上的移動速度 72
3.7.1 實驗步驟 72
3.7.2 實驗結果 73
3.7.3 討論 74
第 4 章 模組並聯之性能測試 77
4.1 相同頻率下的兩模組並聯直行速度 78
4.1.1 實驗步驟 78
4.1.2 實驗結果 78
4.2 不同頻率下兩模組並聯的轉彎性能 79
4.2.1 實驗步驟 79
4.2.2 數據分析 80
4.2.3 定點轉向(fout=17.5 Hz, fin=0 Hz)實驗結果 80
4.2.4 差速轉向(fout=17.5 Hz, fin=8.75 Hz)實驗結果 82
4.3 討論 84
4.3.1 機械耦合阻尼效應的提出與驗證 84
4.3.2 內在特性差異導致的性能非對稱性 85
4.3.3 對結構公差的最終推論 85
第 5 章 總結與未來展望 87
5.1 總結 87
5.2 未來展望 88
參考文獻 90
-
dc.language.isozh_TW-
dc.subject電磁驅動zh_TW
dc.subject柔性關節zh_TW
dc.subject黏滑運動zh_TW
dc.subject模組化機器人zh_TW
dc.subject摩擦非對稱性zh_TW
dc.subject系統特性識別zh_TW
dc.subjectStick-Slip Motionen
dc.subjectElectromagnetic-Drivenen
dc.subjectSystem Characterizationen
dc.subjectFrictional Anisotropyen
dc.subjectModular Roboten
dc.subjectSoft Jointen
dc.title開發基於黏滑運動之電磁驅動柔性關節機器人模組zh_TW
dc.titleDevelopment of an Electromagnetic-Driven Soft-Joint Robot Module Utilizing Stick-Slip Motionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李宇修;陳羽薰zh_TW
dc.contributor.oralexamcommitteeYu-Hsiu Lee;Yu-Hsun Chenen
dc.subject.keyword電磁驅動,柔性關節,黏滑運動,模組化機器人,摩擦非對稱性,系統特性識別,zh_TW
dc.subject.keywordElectromagnetic-Driven,Soft Joint,Stick-Slip Motion,Modular Robot,Frictional Anisotropy,System Characterization,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202504296-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2026-09-01-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved