Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98963
標題: 磨削訊號特徵擷取與加工品質之關聯研究
Signals Feature Extraction from Grinding Processing for Their Relation to Machining Quality
作者: 林聖育
Sheng-Yu Lin
指導教授: 蔡曜陽
Yao-Yang Tsai
關鍵字: 磨削訊號處理,人工特徵擷取,自動特徵擷取,砂輪狀態診斷,機器學習,
Grinding Signals Processing,Manual Features Extraction,Image-Based Features Extraction,Grinding Wheel Condition Diagnosis,Machining Learning,
出版年 : 2025
學位: 碩士
摘要: 本研究旨在針對磨削加工中砂輪狀態(銳利與鈍化)進行有效分類,以提升製程穩定性與工件表面品質。由於傳統診斷方式多倚賴人工經驗與後製檢測,無法即時掌握砂輪狀態變化,故本研究提出一套結合人工特徵、自動圖像特徵與混合式特徵的機械學習架構,以增進砂輪失效預測的準確性與穩健性。人工特徵模型方面,擷取頻域、離散小波轉換、短時傅立葉轉換及小波包轉換等共 84 個統計特徵,輸入至 XGBoost 分類器建模,達成準確率 97.45%、精確率 97.55%、召回率 97.45%、F1 分數 0.975 的良好表現。自動特徵模型方面,先將原始訊號轉換為六種圖像(STIM、GASF、GADF、FS、STFT*、CWT),輸入 Vision Transformer(ViT-B/16)模型進行訓練,再透過 L8 田口直交表設計與 Soft Voting 策略選出最佳圖像組合。結果顯示,FS、STFT*、CWT 三圖融合輸入至 ViT 可達成分類最佳表現(準確率 98.9%、F1 分數 0.989),展現優異的深度學習辨識能力。最後,混合式特徵模型整合 84 個人工統計特徵與 FS、STFT*、CWT 三圖所對應之 2304 個圖像特徵,並輸入至 XGBoost 進行混合學習。實驗結果顯示其準確率為 97.6%、精確率 97.7%、召回率 97.55%、F1 分數為 0.976,整體表現穩定,惟未超越單純 ViT 圖像模型之最優效能。綜合而言,ViT 圖像模型透過多圖融合,有效捕捉砂輪磨削訊號中的時頻紋理與能量分佈特徵,展現最佳分類效能;而圖像配合 XGBoost 雖略遜一籌,仍具彈性與實用性。混合式模型則展現融合潛力,未來可透過特徵選擇進一步優化。研究結果驗證深度圖像特徵在磨削狀態監測的應用價值,並說明田口方法在特徵組合篩選上的實用性,為智慧製造中的機械狀態診斷系統建立良好基礎。
This study aims to achieve effective classification of grinding wheel conditions (sharp vs. dull) during grinding processes, thereby enhancing process stability and workpiece surface quality. Traditional diagnostic methods often rely on manual experience and post-process inspection, which fail to capture real-time changes in wheel condition. To address this, a machine learning framework combining handcrafted features, automated image features, and hybrid feature fusion is proposed to improve the accuracy and robustness of wheel failure prediction. For the handcrafted feature model, a total of 84 statistical features were extracted from the frequency domain, discrete wavelet transform (DWT), short-time Fourier transform (STFT), and wavelet packet transform (WPT). These were used to train an XGBoost classifier, achieving excellent performance with an accuracy of 97.45%, precision of 97.55%, recall of 97.45%, and F1-score of 0.975. In the automated feature model, the raw signals were first transformed into six types of images (STIM, GASF, GADF, FS, STFT*, and CWT), which were then input into a Vision Transformer (ViT-B/16) for training. Using the Taguchi L8 orthogonal array and a soft voting strategy, the optimal image combination was selected. The best classification performance was achieved by fusing FS, STFT*, and CWT images, with an accuracy of 98.9% and an F1-score of 0.989, demonstrating the powerful recognition capabilities of deep learning. Finally, in the hybrid feature model, the 84 handcrafted features were combined with 2,304 deep image features extracted from FS, STFT*, and CWT images and fed into XGBoost for hybrid learning. Experimental results showed an accuracy of 97.6%, precision of 97.7%, recall of 97.55%, and F1-score of 0.976. While performance was stable, it did not surpass the best results achieved by the ViT image-only model. In summary, the ViT image model, through multi-image fusion, effectively captures the time–frequency textures and energy distributions within grinding signals, achieving the best classification performance. Although the image–XGBoost model is slightly less accurate, it offers greater flexibility and practicality. The hybrid model shows potential for future enhancement through feature selection. Overall, the findings confirm the value of deep image features in grinding condition monitoring and highlight the practical utility of the Taguchi method in feature combination optimization, laying a solid foundation for intelligent diagnostics in smart manufacturing.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98963
DOI: 10.6342/NTU202504402
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2025-08-21
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
12.55 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved