請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98963完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡曜陽 | zh_TW |
| dc.contributor.advisor | Yao-Yang Tsai | en |
| dc.contributor.author | 林聖育 | zh_TW |
| dc.contributor.author | Sheng-Yu Lin | en |
| dc.date.accessioned | 2025-08-20T16:27:17Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-14 | - |
| dc.identifier.citation | [1] 鄭文虎. 刀具材料和難切(磨)削材料加工技術. 化學工業出版社, 2016.
[2] 辛志杰. 超硬與難磨磨削材料加工技術實例. 化學工業出版社, 2013. [3] F. Klocke, C. Wirtz, S. Mueller, and P. Mattfeld. Analysis of the material behavior of cemented carbides (wc-co) in grinding by single grain cutting tests. In 7th HPC 2016–CIRP Conference on High Performance Cutting, volume 46, pages 209–213, Aachen, Germany, 2016. Elsevier. Available online at www.sciencedirect.com. [4] S.Y. Luo, Y.C. Liu, C.C. Chou, and T.C. Chen. Performance of powder filled resin-bonded diamond wheels in the vertical dry grinding of tungsten carbide. Journal of Materials Processing Technology, 118(1–3):329–336, 2001. [5] I. Inasaki. Grinding of hard and brittle materials. CIRP Annals - Manufacturing Technology, 36(2):463–471, 1987. Keynote Paper. [6] J.Y. Shen, J.Q. Wang, B. Jiang, and X.P. Xu. Study on wear of diamond wheel in ultrasonic vibration-assisted grinding ceramic. Wear, 332–333:788–793, 2015. [7] Taghi Tawakoli and Bahman Azarhoushang. Influence of ultrasonic vibrations on dry grinding of soft steel. International Journal of Machine Tools & Manufacture,48:1585–1591, 2008. [8] 吳侑璋. 聲射訊號應用於砂輪堵塞與工件表面粗糙度之監控. 國立臺灣大學碩士論文, 2016. [9] T.W. Hwang, E.P. Whitenton, N.N. Hsu, G.V. Blessing, and C.J. Evans. Acousticemission monitoring of high speed grinding of silicon nitride. Ultrasonics,38(1–8):614–619, 2000. [10] Yu-Kun Lin, Bing-Fei Wu, and Chia-Meng Chen. Characterization of grinding wheel condition by acoustic emission signals. In 2018 International Conference on System Science and Engineering (ICSSE). IEEE, 2018. [11] 徐振豪. 探討砂輪黏屑現象與其監控技術之研究. 國立臺灣大學碩士論文,2020. [12] Jae-Seob Kwak and Man-Kyung Ha. Neural network approach for diagnosis of grinding operation by acoustic emission and power signals. Journal of Materials Processing Technology, 147:65–71, 2004. [13] Siamak Mirifar, Mohammadali Kadivar, and Bahman Azarhoushang. First steps through intelligent grinding using machine learning via integrated acoustic emission sensors. Journal of Manufacturing and Materials Processing, 4(2):54,2020. [14] Warren Liao. Feature extraction and selection from acoustic emission signals wit an application in grinding wheel condition monitoring. Engineering Applications of Artificial Intelligence, 23(1):74–84, 2010. [15] Weicheng Guo, Beizhi Li, and Qinzhi Zhou. An intelligent monitoring system of grinding wheel wear based on two-stage feature selection and long short-term memory network. Proc. Inst. Mech. Eng. Part B: J. Engineering Manufacture,233(13):2436–2446, 2019. [16] Henrique Butzlaff Hübner, Marcus A. V. Duarte, and Rosemar Batista da Silva.Automatic grinding burn recognition based on time-frequency analysis and convolutional neural networks. The International Journal of Advanced Manufacturing Technology, 2020. First Online September 2020. [17] Cheng‑Hsiung Lee, Jung‑Sing Jwo, Han‑Yi Hsieh, and Ching‑Sheng Lin. An intelligent system for grinding wheel condition monitoring based on machining sound and deep learning. IEEE Access, 8:58279–58289, 2020. [18] Emil Sauter, Erkut Sarikaya, Marius Winter, and Konrad Wegener. In-process detection of grinding burn using machine learning. The International Journal of Advanced Manufacturing Technology, 113(9-10):2481–2492, 2021. [19] Guoqiang Yin, Yunyun Guan, Jiahui Wang, Yunguang Zhou, and Ye Chen.Multi-information fusion recognition model and experimental study of grinding wheel wear status. The International Journal of Advanced Manufacturing Technology, 121:3477–3498, 2022. [20] N. Ding, C. L. Zhao, X. Luo, and J. Shi. An intelligent grinding wheel wear monitoring system based on acoustic emission. Solid State Phenomena,261:195–200, 2017. [21] E. A. Dias, F. B. Pereira, S. L. M. R. Filho, and L. C. Brandão. Monitoring of through-feed centreless grinding processes with acoustic emission signals.Measurement, 90:71–79, 2016. [22] D. F. G. Moia, I. H. Thomazella, P. R. Aguiar, E. C. Bianchi, C. H. R. Martins, and M. Marchi. Tool condition monitoring of aluminum oxide grinding wheel in dressing operation using acoustic emission and neural networks. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37(2):627–640, 2015. [23] S. Devendiran and K. Manivannan. Condition monitoring on grinding wheel wear using wavelet analysis and decision tree c4.5 algorithm. International Journal of Engineering and Technology (IJET), 5(5):4010–4024, 2013. [24] Zhensheng Yang, Zhonghua Yu, Chao Xie, and Youfang Huang. Application of hilbert–huang transform to acoustic emission signal for burn feature extraction in surface grinding process. Measurement, 47(1):14–21, 2014. [25] Nigro Francesco. Diamond dressing of vitrified grinding wheels 上課講義.Master’s thesis, Politecnico di Torino, Torino, Italy, October 2022. [26] Stephen Malkin and Changsheng Guo. Grinding Technology: Theory and Applications of Machining with Abrasives. Industrial Press, New York, 2nd edition,2008. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98963 | - |
| dc.description.abstract | 本研究旨在針對磨削加工中砂輪狀態(銳利與鈍化)進行有效分類,以提升製程穩定性與工件表面品質。由於傳統診斷方式多倚賴人工經驗與後製檢測,無法即時掌握砂輪狀態變化,故本研究提出一套結合人工特徵、自動圖像特徵與混合式特徵的機械學習架構,以增進砂輪失效預測的準確性與穩健性。人工特徵模型方面,擷取頻域、離散小波轉換、短時傅立葉轉換及小波包轉換等共 84 個統計特徵,輸入至 XGBoost 分類器建模,達成準確率 97.45%、精確率 97.55%、召回率 97.45%、F1 分數 0.975 的良好表現。自動特徵模型方面,先將原始訊號轉換為六種圖像(STIM、GASF、GADF、FS、STFT*、CWT),輸入 Vision Transformer(ViT-B/16)模型進行訓練,再透過 L8 田口直交表設計與 Soft Voting 策略選出最佳圖像組合。結果顯示,FS、STFT*、CWT 三圖融合輸入至 ViT 可達成分類最佳表現(準確率 98.9%、F1 分數 0.989),展現優異的深度學習辨識能力。最後,混合式特徵模型整合 84 個人工統計特徵與 FS、STFT*、CWT 三圖所對應之 2304 個圖像特徵,並輸入至 XGBoost 進行混合學習。實驗結果顯示其準確率為 97.6%、精確率 97.7%、召回率 97.55%、F1 分數為 0.976,整體表現穩定,惟未超越單純 ViT 圖像模型之最優效能。綜合而言,ViT 圖像模型透過多圖融合,有效捕捉砂輪磨削訊號中的時頻紋理與能量分佈特徵,展現最佳分類效能;而圖像配合 XGBoost 雖略遜一籌,仍具彈性與實用性。混合式模型則展現融合潛力,未來可透過特徵選擇進一步優化。研究結果驗證深度圖像特徵在磨削狀態監測的應用價值,並說明田口方法在特徵組合篩選上的實用性,為智慧製造中的機械狀態診斷系統建立良好基礎。 | zh_TW |
| dc.description.abstract | This study aims to achieve effective classification of grinding wheel conditions (sharp vs. dull) during grinding processes, thereby enhancing process stability and workpiece surface quality. Traditional diagnostic methods often rely on manual experience and post-process inspection, which fail to capture real-time changes in wheel condition. To address this, a machine learning framework combining handcrafted features, automated image features, and hybrid feature fusion is proposed to improve the accuracy and robustness of wheel failure prediction. For the handcrafted feature model, a total of 84 statistical features were extracted from the frequency domain, discrete wavelet transform (DWT), short-time Fourier transform (STFT), and wavelet packet transform (WPT). These were used to train an XGBoost classifier, achieving excellent performance with an accuracy of 97.45%, precision of 97.55%, recall of 97.45%, and F1-score of 0.975. In the automated feature model, the raw signals were first transformed into six types of images (STIM, GASF, GADF, FS, STFT*, and CWT), which were then input into a Vision Transformer (ViT-B/16) for training. Using the Taguchi L8 orthogonal array and a soft voting strategy, the optimal image combination was selected. The best classification performance was achieved by fusing FS, STFT*, and CWT images, with an accuracy of 98.9% and an F1-score of 0.989, demonstrating the powerful recognition capabilities of deep learning. Finally, in the hybrid feature model, the 84 handcrafted features were combined with 2,304 deep image features extracted from FS, STFT*, and CWT images and fed into XGBoost for hybrid learning. Experimental results showed an accuracy of 97.6%, precision of 97.7%, recall of 97.55%, and F1-score of 0.976. While performance was stable, it did not surpass the best results achieved by the ViT image-only model. In summary, the ViT image model, through multi-image fusion, effectively captures the time–frequency textures and energy distributions within grinding signals, achieving the best classification performance. Although the image–XGBoost model is slightly less accurate, it offers greater flexibility and practicality. The hybrid model shows potential for future enhancement through feature selection. Overall, the findings confirm the value of deep image features in grinding condition monitoring and highlight the practical utility of the Taguchi method in feature combination optimization, laying a solid foundation for intelligent diagnostics in smart manufacturing. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:27:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:27:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 iii 摘要 v Abstract vii 目次 ix 圖次 xiii 表次 xv 第一章緒論 1 1.1前言 1 1.2文獻回顧 1 1.2.1材料加工特性 2 1.2.2碳化鎢 3 1.2.3碳化鎢磨削方面研究 4 1.2.4超音波輔助磨削方面研究 5 1.2.5感測器應用於工程領域文獻 6 1.2.6機器學習應用於工程領域文獻 7 1.3研究動機與目的 10 1.4論文大綱 11 第二章基礎理論 13 2.1砂輪 13 2.1.1鑽石砂輪組成 14 2.1.2鑽石種類與粒度 14 2.1.3集中度 15 2.1.4結合度 16 2.1.5結合劑 16 2.2磨削基本原理 17 2.2.1磨削加工材料移除機制 17 2.2.2磨削幾何學 18 2.2.3砂輪表面狀態 20 2.2.4砂輪磨耗機制 21 2.3感測器原理 22 2.3.1聲發射(AE)訊號 22 2.4訊號處理 23 2.4.1傅立葉轉換 23 2.4.2短時傅立葉轉換 24 2.4.3小波包分解 25 2.5機器學習 26 2.5.1 XGBoost模型與梯度樹結構 27 2.5.2 ViT模型與Transformer架構 29 2.5.3 ViT模型選擇與架構設定 34 2.6田口方法(TaguchiMethod) 36 2.6.1影響因子 36 2.6.2田口直交表設計原理 37 2.6.3訊號雜訊比(S/N比) 38 第三章實驗設備與方法 41 3.1實驗設備 41 3.1.1平面磨床 41 3.1.2超音波主軸 42 3.1.3超音波發射器 42 3.1.4砂輪動平衡校正儀 43 3.1.5雷射位移計 45 3.1.6 Keyence數位顯微鏡 46 3.1.7 PXIe-1078訊號擷取系統 48 3.1.8 PXI-6132擷取卡 48 3.1.9 TB2709接線盒 49 3.1.10聲發射感測器 49 3.1.11聲發射感測放大器 51 3.2實驗材料 53 3.2.1樹脂鑽石砂輪 53 3.2.2磨削試片 54 3.2.3修整器 54 3.2.4切削液 54 3.3研究規劃架構 54 3.3.1實驗配置 57 3.4實驗參數設定 57 3.5訊號前處理 59 3.5.1去除訊號雜訊 59 3.5.2磨削訊號分段 61 3.6人工特徵擷取 63 3.6.1時間域(TimeDomain) 63 3.6.2頻率域(FrequencyDomain) 65 3.6.3短時傅立葉轉換(STFT) 69 3.6.4離散小波轉換(DWT) 71 3.6.5小波包轉換(WPT) 73 3.7自動特徵擷取(圖像轉換法) 76 3.7.1 SignaltoImageMapping(STIM) 77 3.7.2 GramianAngularField(GAF) 78 3.7.3 FrequencySpectrum(FS) 81 3.7.4 Short-timeFourierTransformSpectrogram(STFT*) 82 3.7.5 ContinuousWaveletTransformSpectrogram(CWT) 83 3.8不同模型的訓練設定與資料拆分 85 3.8.1 XGBoost模型訓練設定 85 3.8.2 10摺交叉驗證(10-FolderCross-Validation) 86 3.8.3貝葉斯超參數優化 86 3.8.4 ViT-B/16模型訓練設定 87 3.9模型性能評估指標 88 第四章結果與討論 91 4.1人工特徵輸入XGBoost模型分類結果 91 4.1.1單類別特徵輸入XGBoost模型分類結果 91 4.1.2多類別特徵輸入XGBoost模型分類結果 96 4.2自動特徵擷取模型分類結果 102 4.2.1單圖像特徵輸入ViT模型性能結果 102 4.2.2多圖像特徵輸入ViT模型性能結果 111 4.3人工+自動特徵(混合式) 116 4.4混合式特徵輸入XGBoost模型分類結果 118 第五章結論與未來展望 121 5.1結論 121 5.2未來展望 122 參考文獻 125 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 人工特徵擷取 | zh_TW |
| dc.subject | 磨削訊號處理 | zh_TW |
| dc.subject | 砂輪狀態診斷 | zh_TW |
| dc.subject | 自動特徵擷取 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | Grinding Signals Processing | en |
| dc.subject | Machining Learning | en |
| dc.subject | Grinding Wheel Condition Diagnosis | en |
| dc.subject | Image-Based Features Extraction | en |
| dc.subject | Manual Features Extraction | en |
| dc.title | 磨削訊號特徵擷取與加工品質之關聯研究 | zh_TW |
| dc.title | Signals Feature Extraction from Grinding Processing for Their Relation to Machining Quality | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王世明;張弘岳 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Ming Wang;Hung-Yueh Chang | en |
| dc.subject.keyword | 磨削訊號處理,人工特徵擷取,自動特徵擷取,砂輪狀態診斷,機器學習, | zh_TW |
| dc.subject.keyword | Grinding Signals Processing,Manual Features Extraction,Image-Based Features Extraction,Grinding Wheel Condition Diagnosis,Machining Learning, | en |
| dc.relation.page | 128 | - |
| dc.identifier.doi | 10.6342/NTU202504402 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 12.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
