Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98858
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何昊哲zh_TW
dc.contributor.advisorHao-Che Hoen
dc.contributor.author胡卡林zh_TW
dc.contributor.authorAbdikarim Hassan Husseinen
dc.date.accessioned2025-08-19T16:28:22Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-12-
dc.identifier.citationReference
Adham, A., Riksen, M., Ouessar, M., & Ritsema, C. J. (2016). A methodology to assess and evaluate rainwater harvesting techniques in (semi-) arid regions. Water (Switzerland), 8(5), 1–23. https://doi.org/10.3390/w8050198
Ahana, B. S., Posite, V. R., Maouly, D. K., Abdelbaki, C., Kantoush, S. A., Nguyen, B. Q., & Kumar, N. (2024). Changing Rainfall Patterns in the Northeastern South Kivu Region, Democratic Republic of the Congo: A Detailed Analysis Using CHIRPS Rainfall Data (1981–2023). Earth Systems and Environment, 1733–1750. https://doi.org/10.1007/s41748-024-00510-0
Ahmad, B. A., Salar, S. G., & Shareef, A. J. (2024). An integrated new approach for optimizing rainwater harvesting system with dams site selection in the Dewana Watershed, Kurdistan Region, Iraq. Heliyon, 10(6), e27273. https://doi.org/10.1016/j.heliyon.2024.e27273
Ahmad, R., Gabriel, H. F., Alam, F., Zarin, R., Raziq, A., Nouman, M., Young, H. W. V., & Liou, Y. A. (2024). Remote sensing and GIS based multi-criteria analysis approach with application of AHP and FAHP for structures suitability of rainwater harvesting structures in Lai Nullah, Rawalpindi, Pakistan. Urban Climate, 53(January), 101817. https://doi.org/10.1016/j.uclim.2024.101817
Ahmed, S., Jesson, M., & Sharifi, S. (2023). Selection Frameworks for Potential Rainwater Harvesting Sites in Arid and Semi-Arid Regions: A Systematic Literature Review. Water (Switzerland), 15(15). https://doi.org/10.3390/w15152782
Al-Adamat, R. (2008). GIS as a decision support system for siting water harvesting ponds in the basalt aquifer/NE Jordan. Journal of Environmental Assessment Policy and Management, 10(2), 189–206. https://doi.org/10.1142/S1464333208003020
Al-adamat, R., Alayyash, S., Al-amoush, H., Al-meshan, O., & Rawajfih, Z. (2012). The Combination of Indigenous Knowledge and Geo-Informatics for Water Harvesting Siting in the Jordanian Badia. 2012(August 2012), 366–376.
Al-Adamat, R., Diabat, A., & Shatnawi, G. (2010). Combining GIS with multicriteria decision making for siting water harvesting ponds in Northern Jordan. Journal of Arid Environments, 74(11), 1471–1477. https://doi.org/10.1016/j.jaridenv.2010.07.001
Al-Hasani, B., Abdellatif, M., Carnacina, I., Harris, C., Al-Quraishi, A., Maaroof, B. F., & Zubaidi, S. L. (2023). Integrated geospatial approach for adaptive rainwater harvesting site selection under the impact of climate change. Stochastic Environmental Research and Risk Assessment, 38(3), 1009–1033. https://doi.org/10.1007/s00477-023-02611-0
Alfonsov, V. A., McKenna, C. E., Bayandina, E. V., Kashemirov, B. A., Yarmieva, L. N., Punegova, L. N., & Kataeva, O. N. (2008). Stereoselective synthesis of enantiopure cyclic α-aminophosphonic acids: Direct observation of inversion at phosphorus in phosphonate ester silyldealkylation by bromotrimethylsilane. In Heteroatom Chemistry (Vol. 19, Issue 6). https://doi.org/10.1002/hc.20480
Ali, K., & Al-Hameed, A. (2022). Spearman’s correlation coefficient in statistical analysis. Int. J. Nonlinear Anal. Appl, 13(October 2021), 2008–6822. http://dx.doi.org/10.22075/ijnaa.2022.6079
Ammar, A., Riksen, M., Ouessar, M., & Ritsema, C. (2016). Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions: A review. International Soil and Water Conservation Research, 4(2), 108–120. https://doi.org/10.1016/j.iswcr.2016.03.001
Baalousha, H. M., Younes, A., Yassin, M. A., & Fahs, M. (2023). Comparison of the Fuzzy Analytic Hierarchy Process (F-AHP) and Fuzzy Logic for Flood Exposure Risk Assessment in Arid Regions. Hydrology, 10(7). https://doi.org/10.3390/hydrology10070136
Banko, G. (1998). A review of assessing the accuracy of and of methods including remote sensing data in forest inventory. Internation Institute for Applied Systems Analysis, Interim Report IT-98-081, November, Laxenburg,_ Austria.
Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051–13069. https://doi.org/10.1016/j.eswa.2012.05.056
Broek, Thea Van Den, and R. H. (2022). An Integrated Approach to Climate Security and Peacebuilding in Somalia. International Affairs, 98(5), 1475–1493.
Buraihi, F. H., & Shariff, A. R. M. (2015). Selection of rainwater harvesting sites by using remote sensing and GIS techniques: A case study of Kirkuk, Iraq. Jurnal Teknologi, 76(15), 75–81. https://doi.org/10.11113/jt.v76.5955
Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655. https://doi.org/10.1016/0377-2217(95)00300-2
Chisanga, C. B., Nkonde, E., Mubanga, K. H., Phiri, D., Chemura, A., & Kipkulei, H. K. (2025). SPI-based drought characteristics using CHIRPS over Zambia: 1981–2024. All Earth, 37(1), 1–19. https://doi.org/10.1080/27669645.2025.2472574
Chisanga, C. B., Nkonde, E., Phiri, E., Mubanga, K. H., & Lwando, C. (2023). Trend analysis of rainfall from 1981-2022 over Zambia. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e22345
Chubaka, C. E., Whiley, H., Edwards, J. W., & Ross, K. E. (2018). A review of roof harvested rainwater in Australia. Journal of Environmental and Public Health, 2018. https://doi.org/10.1155/2018/6471324
Coskun, M., & Musaoglu, N. (2004). Investigation of Rainfall- Runoff Modelling of the Van Lake Catchment By Using Remote Sensing and Gis Integration Abstract : F = ( P − I ) − Q Q =. Civil Engineering, June, 2–5.
Cruz, J. (2013). Water Harvesting Proposals.
de Winnaar, G., Jewitt, G. P. W., & Horan, M. (2007). A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa. Physics and Chemistry of the Earth, 32(15–18), 1058–1067. https://doi.org/10.1016/j.pce.2007.07.009
Ekmekcioğlu, Ö., Koc, K., & Özger, M. (2021). District based flood risk assessment in Istanbul using fuzzy analytical hierarchy process. Stochastic Environmental Research and Risk Assessment, 35(3), 617–637. https://doi.org/10.1007/s00477-020-01924-8
Elewa, H. H., Qaddah, A. a, El-feel, A. a, Brows, J., St, T., Nozha, E., Gedida, E., & Alf-maskan, P. O. B. (2012). Determining Potential Sites for Runoff Water Harvesting using Remote Sensing and Geographic Information Systems-Based Modeling in Sinai Department of Water Resources , National Authority for Remote Sensing and Space Sciences ( NARSS ), Environmental GIS L. American Journal of Environmental Sciences, 8(1), 42–55.
Faisal, R. M., & Abdaki, M. (2021). Multi-Criteria Analysis For Selecting Suitable Sites Of Water Harvesting In Northern Al Tharthar Watershed. Journal of Sustainability Science and Management, 16(7), 218–236. https://doi.org/10.46754/jssm.2021.10.017
Falkenmark, M., & Rockström, J. (2004). Balancing water for humans and nature: The new approach in ecohydrology. Balancing Water for Humans and Nature: The New Approach in Ecohydrology, 1–247. https://doi.org/10.4324/9781849770521
FAO. (2015). HLPE Report on Water for food security and nutrition High Level Panel of Experts on Food Security and Nutrition Extract from the Report Water for food security and nutrition. 6, 1–14. http://www.fao.org/fileadmin/user_upload/hlpe/hlpe_documents/HLPE_S_and_R/HLPE_2015_Water_for_Food_Security_and_Nutrition_Summary-and-Recommendations.pdf
Foody, G. M. (2001). Land Cover Classification Accuracy Assessment. Springer Geography, 80, 105–118. https://doi.org/10.1007/978-981-16-5149-6_6
Forzieri, G., Gardenti, M., Caparrini, F., & Castelli, F. (2008). A methodology for the pre-selection of suitable sites for surface and underground small dams in arid areas: A case study in the region of Kidal, Mali. Physics and Chemistry of the Earth, 33(1–2), 74–85. https://doi.org/10.1016/j.pce.2007.04.014
Ghosh, S., Kour, S., Taron, A., Kaywala, K., & Rajakaruna, P. (2024a). Assessing El Niño-induced drought in Zambia and its effects using earth observation data. Natural Hazards, 121(4), 4505–4530. https://doi.org/10.1007/s11069-024-06976-5
Ghosh, S., Kour, S., Taron, A., Kaywala, K., & Rajakaruna, P. (2024b). Assessing El Niño-induced drought in Zambia and its effects using earth observation data. Natural Hazards, 0123456789. https://doi.org/10.1007/s11069-024-06976-5
Gupta, K. K., Deelstra, J., & Sharma, K. D. (1997). Estimation of water harvesting potential for a semiarid area using GIS and remote sensing. IAHS-AISH Publication, 242(January 1997), 53–62.
Handia, L., Tembo, J. M., & Mwiindwa, C. (2003). Potential of rainwater harvesting in urban Zambia. Physics and Chemistry of the Earth, 28(20–27), 893–896. https://doi.org/10.1016/j.pce.2003.08.016
Hwang, C.-L., & Yoon, K. (1981). Methods for Multiple Attribute Decision Making. 58–191. https://doi.org/10.1007/978-3-642-48318-9_3
Iradukunda, P., Mwanaumo, E. M., & Kabika, J. (2023). Hydroclimatic trend analysis and projection in Africa tropical urban regions: Cases of Lusaka, Zambia and Kigali, Rwanda. Urban Climate, 52(January), 101680. https://doi.org/10.1016/j.uclim.2023.101680
Ishizaka, A., & Labib, A. (2011). Review of the main developments in the analytic hierarchy process. Expert Systems with Applications, 38(11), 14336–14345. https://doi.org/10.1016/j.eswa.2011.04.143
Jaafar, H. H., Ahmad, F. A., & El Beyrouthy, N. (2019). GCN250, new global gridded curve numbers for hydrologic modeling and design. Scientific Data, 6(1), 1–9. https://doi.org/10.1038/s41597-019-0155-x
Joanes, D. N., & Gill, C. A. (1998). Comparing measures of sample skewness and kurtosis. Journal of the Royal Statistical Society Series D: The Statistician, 47(1), 183–189. https://doi.org/10.1111/1467-9884.00122
Kafi, K. M., Shafri, H. Z. M., & Shariff, A. B. M. (2014). An analysis of LULC change detection using remotely sensed data; A Case study of Bauchi City. IOP Conference Series: Earth and Environmental Science, 20(1). https://doi.org/10.1088/1755-1315/20/1/012056
Kahinda, J. M., Lillie, E. S. B., Taigbenu, A. E., Taute, M., & Boroto, R. J. (2008). Developing suitability maps for rainwater harvesting in South Africa. Physics and Chemistry of the Earth, 33(8–13), 788–799. https://doi.org/10.1016/j.pce.2008.06.047
Kaluba, P., Verbist, K. M. J., Cornelis, W. M., & Van Ranst, E. (2017). Spatial mapping of drought in Zambia using regional frequency analysis. Hydrological Sciences Journal, 62(11), 1825–1839. https://doi.org/10.1080/02626667.2017.1343475
Karakuş, C. B., & Yıldız, S. (2022). Gis-multi criteria decision analysis-based land suitability assessment for dam site selection. International Journal of Environmental Science and Technology, 19(12), 12561–12580. https://doi.org/10.1007/s13762-022-04323-4
Khan, Z., Alim, M. A., Rahman, M. M., & Rahman, A. (2021). A continental scale evaluation of rainwater harvesting in Australia. Resources, Conservation and Recycling, 167(December 2020), 105378. https://doi.org/10.1016/j.resconrec.2020.105378
Koudahe, K., Kayode, A. J., Samson, A. O., Adebola, A. A., & Djaman, K. (2017). Trend Analysis in Standardized Precipitation Index and Standardized Anomaly Index in the Context of Climate Change in Southern Togo. Atmospheric and Climate Sciences, 07(04), 401–423. https://doi.org/10.4236/acs.2017.74030
Libanda, B., Zheng, M., & Ngonga, C. (2019). Spatial and temporal patterns of drought in Zambia. Journal of Arid Land, 11(2), 180–191. https://doi.org/10.1007/s40333-019-0053-2
Mahendra, H. N., Pushpalatha, V., Mallikarjunaswamy, S., Rama Subramoniam, S., Sunil Rao, A., & Sharmila, N. (2024). LULC change detection analysis of Chamarajanagar district, Karnataka state, India using CNN-based deep learning method. Advances in Space Research, 74(12), 6384–6408. https://doi.org/10.1016/j.asr.2024.07.066
Mahmoud, S. H., Adamowski, J., Alazba, A. A., & El-Gindy, A. M. (2016). Rainwater harvesting for the management of agricultural droughts in arid and semi-arid regions. Paddy and Water Environment, 14(1), 231–246. https://doi.org/10.1007/s10333-015-0493-z
Mahmoud, S. H., & Alazba, A. A. (2015). The potential of in situ rainwater harvesting in arid regions: developing a methodology to identify suitable areas using GIS-based decision support system. Arabian Journal of Geosciences, 8(7), 5167–5179. https://doi.org/10.1007/s12517-014-1535-3
Maina, C. W., & Raude, J. M. (2016). Assessing land suitability for rainwater harvesting using geospatial techniques: A case study of njoro catchment, Kenya. Applied and Environmental Soil Science, 2016. https://doi.org/10.1155/2016/4676435
Mati, B. M., Malesu, M., Oduor, A., & ICRAF. (2005). Promoting rainwater harvesting eastern and southern Africa, The RELMA experience, ICRAF working paper. 36.
Matomela, N., Li, T., & Ikhumhen, H. O. (2020). Siting of Rainwater Harvesting Potential Sites in Arid or Semi-arid Watersheds Using GIS-based Techniques. Environmental Processes, 7(2), 631–652. https://doi.org/10.1007/s40710-020-00434-7
McKee, Thomas B., N. J. D., & Kleist, J. (1993). Preoperative serum value of sialyl Lewis X predicts pathological nodal extension and survival in patients with surgically treated small cell lung cancer. Journal of Surgical Oncology, 105(8), 818–824. https://doi.org/10.1002/jso.23002
Meghanadh, D., Bharti, K., Maurya, V. K., & Dwivedi, R. (2022). Identification of Potential Sites for Harvesting Rainwater Using Geospatial Techniques. International Geoscience and Remote Sensing Symposium (IGARSS), 2022-July(November), 6364–6367. https://doi.org/10.1109/IGARSS46834.2022.9884550
Mosase, E., Kayombo, B., Tsheko, R., & Tapela, M. (2017). Assessment of the Suitability of Rain Water Harvesting Areas Using Multi-Criteria Analysis and Fuzzy Logic. Advances in Research, 10(4), 1–22. https://doi.org/10.9734/air/2017/33983
Mouhoumed, R. M., Ekmekcioğlu, Ö., Başakın, E. E., & Özger, M. (2023). Integrated Fuzzy AHP-TOPSIS Model for Assessing Managed Aquifer Recharge Potential in a Hot Dry Region: A Case Study of Djibouti at a Country Scale. Water (Switzerland), 15(14). https://doi.org/10.3390/w15142534
Mouhoumed, R. M., Ekmekcioğlu, Ö., & Özger, M. (2024a). A holistic multi-tiered decision framework for evaluating rainwater harvesting potential in arid regions: A case study of the southeastern basin of Djibouti. Groundwater for Sustainable Development, 25(January). https://doi.org/10.1016/j.gsd.2024.101090
Mouhoumed, R. M., Ekmekcioğlu, Ö., & Özger, M. (2024b). A holistic multi-tiered decision framework for evaluating rainwater harvesting potential in arid regions: A case study of the southeastern basin of Djibouti. Groundwater for Sustainable Development, 25(September 2023). https://doi.org/10.1016/j.gsd.2024.101090
Moumane, A., Enajar, A. A., Ghazali, F. E. El, Khouz, A., Karmaoui, A., Al Karkouri, J., & Batchi, M. (2024). GIS, remote sensing, and analytical hierarchy process (AHP) approach for rainwater harvesting site selection in arid regions: Feija Plain case study, Zagora (Morocco). Applied Geomatics, 861–880. https://doi.org/10.1007/s12518-024-00585-4
Murray, R. S., John, J. S., & R. Alu, S. (2009). Schaum’s Probability and Statistics.
Musonda, B., Jing, Y., Iyakaremye, V., & Ojara, M. (2020). Analysis of long-term variations of drought characteristics using standardized precipitation index over Zambia. Atmosphere, 11(12), 1–20. https://doi.org/10.3390/atmos11121268
Mwelwa, D., Mwaanga, P., Nguvulu, A., & Tena, T. M. (2024). Heliyon Assessment of catchment water resources allocation under climate change in Luwombwa sub-catchment , Zambia. Heliyon, 10(21), e39962. https://doi.org/10.1016/j.heliyon.2024.e39962
Nam, W. H., Choi, J. Y., & Hong, E. M. (2015). Irrigation vulnerability assessment on agricultural water supply risk for adaptive management of climate change in South Korea. Agricultural Water Management, 152, 173–187. https://doi.org/10.1016/j.agwat.2015.01.012
Ngoma, H., Lupiya, P., Kabisa, M., & Hartley, F. (2021). Correction to: Impacts of climate change on agriculture and household welfare in Zambia: an economy-wide analysis (Climatic Change, (2021), 167, 3-4, (55), 10.1007/s10584-021-03168-z). Climatic Change, 169(3–4), 1–20. https://doi.org/10.1007/s10584-021-03251-5
Odhiambo, K. O., Iro Ong’Or, B. T., & Kanda, E. K. (2021). Optimization of rainwater harvesting system design for smallholder irrigation farmers in Kenya: A review. Aqua Water Infrastructure, Ecosystems and Society, 70(4), 483–492. https://doi.org/10.2166/aqua.2021.087
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015
Padmavathy, A. S., Ganesha Raj, K., Yogarajan, N., Thangavel, P., & Chandrasekhar, M. G. (1993). Checkdam site selection using GIS approach. Advances in Space Research, 13(11), 123–127. https://doi.org/10.1016/0273-1177(93)90213-U
Ramya, S., & Devadas, V. (2019). Integration of GIS, AHP and TOPSIS in evaluating suitable locations for industrial development: A case of Tehri Garhwal district, Uttarakhand, India. Journal of Cleaner Production, 238, 117872. https://doi.org/10.1016/j.jclepro.2019.117872
Rane, N. L., Achari, A., Choudhary, S. P., Mallick, S. K., Pande, C. B., Srivastava, A., & Moharir, K. N. (2023). A decision framework for potential dam site selection using GIS, MIF and TOPSIS in Ulhas river basin, India. Journal of Cleaner Production, 423(April), 138890. https://doi.org/10.1016/j.jclepro.2023.138890
Rockström, J. (2000). Water resources management in smallholder farms in Eastern and Southern Africa: An overview. In Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere (Vol. 25, Issue 3, pp. 275–283). https://doi.org/10.1016/S1464-1909(00)00015-0
Sacolo, S. J., & Mkhandi, S. H. (2021). Assessment of the potential of rainwater harvesting for maize production in the Lubombo plateau. Physics and Chemistry of the Earth, 124(P1), 102935. https://doi.org/10.1016/j.pce.2020.102935
Sayl, K. N., Sulaiman, S. O., Kamel, A. H., & Al Ansari, N. (2022). Towards the Generation of a Spatial Hydrological Soil Group Map Based on the Radial Basis Network Model and Spectral Reflectance Band Recognition. International Journal of Design and Nature and Ecodynamics, 17(5), 761–766. https://doi.org/10.18280/ijdne.170514
Sazakli, E., Alexopoulos, A., & Leotsinidis, M. (2007). Rainwater harvesting, quality assessment and utilization in Kefalonia Island, Greece. Water Research, 41(9), 2039–2047. https://doi.org/10.1016/j.watres.2007.01.037
Sopper, W. E. (1992). Irrigation with Treated Sewage Effluent. In Soil Science (Vol. 153, Issue 3). https://doi.org/10.1097/00010694-199203000-00010
Spearman, & Spearman, C. (1904). The Proof and Measurement of Association between Two Things Author ( s ): C . Spearman Source : The American Journal of Psychology , Vol . 15 , No . 1 ( Jan ., 1904 ), pp . 72-101 Published by : University of Illinois Press Stable URL : http://www.jstor.o. The American Journal of Psychology, 15(1), 72–101.
Stephens, M. A. (1974). EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69(347), 730–737. https://doi.org/10.1080/01621459.1974.10480196
Sun, M., Chen, W., Lapen, D. R., Ma, B., Lu, P., & Liu, J. (2023). Effects of ridge-furrow with plastic film mulching combining with various urea types on water productivity and yield of potato in a dryland farming system. Agricultural Water Management, 283, 108318. https://doi.org/10.1016/j.agwat.2023.108318
Tahraoui, A., & Kheddam, R. (2024). LULC Change Detection Using Combined Machine and Deep Learning Classifiers. 7th IEEE International Conference on Advanced Technologies, Signal and Image Processing, ATSIP 2024, 1, 403–408. https://doi.org/10.1109/ATSIP62566.2024.10638952
Tavakoli, M., Motlagh, Z. K., Dąbrowska, D., Youssef, Y. M., Đurin, B., & Saqr, A. M. (2025). Harnessing AHP and Fuzzy Scenarios for Resilient Flood Management in Arid Environments: Challenges and Pathways Toward Sustainability. Water (Switzerland), 17(9). https://doi.org/10.3390/w17091276
Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., & Spank, U. (2013). Evapotranspiration amplifies European summer drought. Geophysical Research Letters, 40(10), 2071–2075. https://doi.org/10.1002/grl.50495
Tiwari, K., Goyal, R., & Sarkar, A. (2018). GIS-based Methodology for Identification of Suitable Locations for Rainwater Harvesting Structures. Water Resources Management, 32(5), 1811–1825. https://doi.org/10.1007/s11269-018-1905-9
Tsubo, M., Walker, S., & Hensley, M. (2005). Quantifying risk for water harvesting under semi-arid conditions: Part I. Rainfall intensity generation. Agricultural Water Management, 76(2), 77–93. https://doi.org/10.1016/j.agwat.2005.01.008
Ullah, A., Pohl, B., Pergaud, J., Dieppois, B., & Rouault, M. (2022). Intraseasonal descriptors and extremes in South African rainfall. Part I: Summer climatology and statistical characteristics. International Journal of Climatology, 42(9), 4538–4563. https://doi.org/10.1002/joc.7489
Ullah, A., Pohl, B., Pergaud, J., Dieppois, B., & Rouault, M. (2023). Intraseasonal descriptors and extremes in South African rainfall. Part II: Summer teleconnections across multiple timescales. International Journal of Climatology, 43(8), 3799–3827. https://doi.org/10.1002/joc.8059
Usman, M., Liedl, R., Shahid, M. A., & Abbas, A. (2015). Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data. Journal of Geographical Sciences, 25(12), 1479–1506. https://doi.org/10.1007/s11442-015-1247-y
Velmurugan, R., Selvamuthukumar, S., & Manavalan, R. (2011). Multi criteria decision making to select the suitable method for the preparation of nanoparticles using an analytical hierarchy process. Pharmazie, 66(11), 836–842. https://doi.org/10.1691/ph.2011.1034
Vijitha, V., Sayanthan, S., & Mikunthan, T. (2022). A Review on Rainwater Harvesting in Sri Lanka. Vavuniya Journal of Science, 1(1), 31–37. https://doi.org/10.4038/vjs.v1i1.5
Waqed H. Hassan, K. M. Z. K. K. (2025). GIS‑based multi‑criteria decision making for identifying rainwater.pdf.
Water, M. O. F. (2024). DEVELOPMENT AND SANITATION NATIONAL RAINWATER HARVESTING STRATEGY AND IMPLEMENTATION PLAN. September.
Weerasinghe, H., Schneider, U. a., & Löw, a. (2011). Water harvest- and storage- location assessment model using GIS and remote sensing. Hydrology and Earth System Sciences Discussions, 8(2), 3353–3381. https://doi.org/10.5194/hessd-8-3353-2011
WMO. (2012). Standardized Precipitation Index User Guide. Journal of Applied Bacteriology, 63(3), 197–200.
Wu, R. S., Molina, G. L. L., & Hussain, F. (2018). Optimal Sites Identification for Rainwater Harvesting in Northeastern Guatemala by Analytical Hierarchy Process. Water Resources Management, 32(12), 4139–4153. https://doi.org/10.1007/s11269-018-2050-1
Yadav, B., Patidar, N., Sharma, A., Panigrahi, N., Sharma, R. K., Loganathan, V., Krishan, G., Singh, J., Kumar, S., & Parker, A. (2022). Assessment of traditional rainwater harvesting system in barren lands of a semi-arid region: A case study of Rajasthan (India). Journal of Hydrology: Regional Studies, 42, 101149. https://doi.org/10.1016/j.ejrh.2022.101149
Yannopoulos, S., Giannopoulou, I., & Kaiafa-Saropoulou, M. (2019). Investigation of the current situation and prospects for the development of rainwater harvesting as a tool to confront water scarcity worldwide. Water (Switzerland), 11(10), 1–16. https://doi.org/10.3390/w11102168
Yegizaw, E. S., Ejegu, M. A., Tolossa, A. T., Teka, A. H., Andualem, T. G., Tegegne, M. A., Walle, W. M., Shibeshie, S. E., & Dirar, T. M. (2022). Geospatial and AHP Approach Rainwater Harvesting Site Identification in Drought-Prone Areas, South Gonder Zone, Northwest Ethiopia. Journal of the Indian Society of Remote Sensing, 50(7), 1321–1331. https://doi.org/10.1007/s12524-022-01528-5
ZADEH, L. A., & Department. (1965). Fuzzy Sets*. Procedia Computer Science, 207, 4525–4534. https://doi.org/10.1016/j.procs.2022.09.516
Zhou, L. M., Jin, S. L., Liu, C. A., Xiong, Y. C., Si, J. T., Li, X. G., Gan, Y. T., & Li, F. M. (2012). Ridge-furrow and plastic-mulching tillage enhances maize-soil interactions: Opportunities and challenges in a semiarid agroecosystem. Field Crops Research, 126, 181–188. https://doi.org/10.1016/j.fcr.2011.10.010
Ziadat, F. M., Mazahreh, S. S., & Oweis, T. Y. (2006). A GIS-based Approach for Assessing Water Harvesting Suitability in a Badia Benchmark Watershed in Jordan. 2006(Isco), 1–4.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98858-
dc.description.abstractRainwater harvesting (RWH) is a sustainable solution for mitigating water scarcity, particularly in regions experiencing irregular and declining precipitation. This research focuses on the Southern Province of Zambia, a region that is becoming increasingly susceptible to climate fluctuations and the resulting challenges to sustained water security. Despite previous studies have explored RWH, there remains a significant shortfall in developing integrated frameworks that are spatially optimized to address the unique requirements of semi-arid regions. Here, the study developed a hybrid model integrating Geographic Information Systems (GIS) with Multi-Criteria Decision Analysis (MCDA) to delineate suitable zones for RWH implementation. In the evaluation, twelve criteria were taken into account, addressing physical, environmental, and socio-economic factors, with the Standardized Precipitation Index (SPI) serving as a climatic indicator. The Fuzzy Analytic Hierarchy Process (Fuzzy-AHP) was applied to assess the relative weights of the criteria, identifying rainfall, curve number, and slope as the most influential factors. Suitability maps were generated and classified into five categories including not and low suitable regions, most, highly, and moderately suitable. Results from Fuzzy-AHP and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) indicated that 62% and 37.5% of the study area, respectively, are favorable for RWH. The northern and southwestern regions exhibited the highest suitability due to their advantageous physical and socio-economic conditions. Sensitivity analysis, conducted by varying the fuzziness degree (FD), confirmed the robustness of the model. Validation through TOPSIS revealed a 63% spatial agreement and 67% accuracy, supporting reliability of the model. This research presents a reproducible, affordable, and climate-adaptive approach for sustainable RWH site selection and informed water resource planning in drought-prone regions.zh_TW
dc.description.abstractRainwater harvesting (RWH) is a sustainable solution for mitigating water scarcity, particularly in regions experiencing irregular and declining precipitation. This research focuses on the Southern Province of Zambia, a region that is becoming increasingly susceptible to climate fluctuations and the resulting challenges to sustained water security. Despite previous studies have explored RWH, there remains a significant shortfall in developing integrated frameworks that are spatially optimized to address the unique requirements of semi-arid regions. Here, the study developed a hybrid model integrating Geographic Information Systems (GIS) with Multi-Criteria Decision Analysis (MCDA) to delineate suitable zones for RWH implementation. In the evaluation, twelve criteria were taken into account, addressing physical, environmental, and socio-economic factors, with the Standardized Precipitation Index (SPI) serving as a climatic indicator. The Fuzzy Analytic Hierarchy Process (Fuzzy-AHP) was applied to assess the relative weights of the criteria, identifying rainfall, curve number, and slope as the most influential factors. Suitability maps were generated and classified into five categories including not and low suitable regions, most, highly, and moderately suitable. Results from Fuzzy-AHP and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) indicated that 62% and 37.5% of the study area, respectively, are favorable for RWH. The northern and southwestern regions exhibited the highest suitability due to their advantageous physical and socio-economic conditions. Sensitivity analysis, conducted by varying the fuzziness degree (FD), confirmed the robustness of the model. Validation through TOPSIS revealed a 63% spatial agreement and 67% accuracy, supporting reliability of the model. This research presents a reproducible, affordable, and climate-adaptive approach for sustainable RWH site selection and informed water resource planning in drought-prone regions.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:28:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:28:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents

MASTER'S THESIS ACCEPTANCE CERTIFICATE I
Acknowledgement II
Abstract III
Table of Contents V
List of figures VII
List of Tables IX
Chapter 1: Introduction 1
1.1 Background 1
1.2 Objectives 3
1.2.1 Specific objectives 4
1.3 Thesis Organization 4
Chapter 2: Literature Review 5
2.1 Overview of Global and Regional Context of Water Scarcity 5
2.2 Global and Regional RWH Practices 7
2.3 Key Factors Influencing RWH Site Selection 9
2.3.1 Factors Considered in Previous Studies 9
2.3.2 Standard Precipitation Index (SPI) 11
2.4 GIS-Based MCDA for Identifying RWH Sites 12
Chapter 3: Study Area and Data 16
3.1 Study Area 16
3.2 Data Source 17
3.3 Design of Expert-Based Pairwise Comparison Framework 19
3.3 Preparation of Thematic Layers 23
3.3.1 Physical Factors 25
3.3.2 Environmental Factors 32
3.3.3 Socioeconomic Factors 36
3.4 Standardizing Decision Criteria 40
Chapter 4: Methodology 42
4.1 Fuzzy Analytical Hierarchy Process (Fuzzy-AHP) 42
4.1.1 Constructing Fuzzy Pairwise Matrix 42
4.1.2 Consistency Ratio 43
4.1.3 Fuzzification of Crip Value of AHP 43
4.1.4 Geometric Mean Calculation 44
4.1.5 Degree of Possibility and Weight Calculations 45
4.1.6 Normalizing Weights of Criteria 47
4.2 Sensitivity Analysis 48
4.3 Mapping of RWH Suitability 48
4.4 TOPSIS 49
4.4.1 Developing the Decision Matrix 49
4.4.2 Normalizing the Decision Matrix 50
4.4.3 Assigning Weights to Criteria 50
4.4.4 Identifying the Ideal Solution 50
4.4.5 Determination of the Euclidean Distance 51
4.4.6 Calculating Relative Closeness (CR) 52
4.5 Comparing Fuzzy-AHP and TOPSIS for Suitability Raster Maps 53
4.5.1 Change Detection Analysis 53
4.5.2 Confusion Matrix Analysis 53
4.5.3 Correlation Analysis of Fuzzy-AHP and TOPSIS 54
Chapter 5: Results and Discussions 58
5.1 Fuzzy-AHP Result 58
5.1.1 Determination of Relative Weights for Decision Criteria 58
5.1.2 Fuzzy-AHP-Based RWH Suitability Mapping 63
5.2 Sensitivity Analysis 65
5.3 TOPSIS Results and Alternative Rankings 70
5.3.1 Alternative Analysis 70
5.3.2 Application of the TOPSIS Method for Mapping RWH Suitability 72
5.4 Comparative Analysis of Fuzzy-AHP and TOPSIS Outputs 74
5.4.1 Change Detection 74
5.4.2 Confusion Matrix Analysis 78
5.4.3 Correlation Analysis 81
Chapter 6: Conclusions and Recommendations 86
6.1 Conclusion 86
6.2 Recommendations 87
Reference 90
Appendix A 99

List of figures

Figure 1: Study area 16
Figure 2: Elevation map 26
Figure 3: Slope map of the study area 27
Figure 4: Soil texture map 28
Figure 5: Assigned RWH suitability scores based on soil texture 29
Figure 6:Drainage density map 30
Figure 7: LULC classification map 31
Figure 8: Stepwise function for LULC 32
Figure 9: Map of the rainfall 2023 33
Figure 10: Curve number map 34
Figure 11:Standard precipitation index (SPI) map 36
Figure 12: Proximity to roads map 37
Figure 13:Proximity to agriculture map 38
Figure 14:Distance to settlement map 39
Figure 15:Distance to streams orders 40
Figure 16: Standardizing decision criteria map 41
Figure 17:Possibility of M2≥M1 for Triangular Fuzzy Numbers (Chang, 1996) 47
Figure 18: Spatial Mapping Workflow of TOPSIS Results 52
Figure 19: Flowchart of the Methodological Framework 57
Figure 20: Criteria weights obtained from experts' survey 59
Figure 21: Consistency ratio of seven experts' survey 59
Figure 22: Spatial classification map obtained through Fuzzy-AHP 64
Figure 23: Suitability class distribution: (a) Area, (b) Proportion 64
Figure 24: (a) Criteria Weight Trends, (b) Weight Variation Across FD Levels 67
Figure 25: RWH Suitability Maps Generated Under Varying FD Levels 68
Figure 26: Variation in Suitability Class Areas Across Different FD 69
Figure 27: (a) Relative closeness values; (b) Percentage of categories in Alternatives 71
Figure 28: (a) Potential mapping for RWH sites, (b) Area of different classes and (c) percentage distribution of area through TOPSIS 73
Figure 29: Change Detection Map Comparing Suitability Classifications from Fuzzy-AHP and TOPSIS 75
Figure 30: Binary classification of TOPSIS and Fuzzy-AHP suitability maps 79
Figure 31: Accuracy results of confusion matrix 80
Figure 32: normality testing for data extracted from Fuzzy-AHP map 83
Figure 33: Normality test for data extracted from TOPSIS map 84
Figure 34:Workflow for Raster-Based Change Detection Between Fuzzy-AHP and TOPSIS Outputs 99

List of Tables

Table 1: Description of data sources 18
Table 2: Profiles of Experts Involved in the Pairwise Comparison 19
Table 3: Saaty’s Scale of relative importance 20
Table 4: Pairwise Comparison Matrix by Expert 1 20
Table 5: Pairwise Comparison Matrix by Expert 2 21
Table 6: Pairwise Comparison Matrix by Expert 3 21
Table 7: Pairwise Comparison Matrix by Expert 4 21
Table 8: Pairwise Comparison Matrix by Expert 5 22
Table 9: Pairwise Comparison Matrix by Expert 6 22
Table 10: Pairwise Comparison Matrix by Expert 7 23
Table 11: Selected Criteria for RWH Site Selection with References 24
Table 12: Classification of drought conditions based on SPI ranges 35
Table 13: RI of AHP 43
Table 14: Saaty’s Scale Used in AHP and Fuzzy-AHP Judgments 44
Table 15: Input parameters for compute change raster 53
Table 16: Fuzzy-AHP Output Weights 60
Table 17: Computed weights and priority rankings of decision factors 61
Table 18: Sensitivity of criteria weights across varying fuzziness degrees 66
Table 19: Obtained RC through TOPSIS analysis 70
Table 20: Spatial Agreement Analysis of Suitability Scores 76
Table 21: Spatial Discrepancies in Suitability Classifications 77
Table 22: Descriptive Statistics for ANOVA 81
Table 23: Descriptive Statistics 82
Table 24: Spearman’s rho coefficient 84
-
dc.language.isoen-
dc.subjectnonezh_TW
dc.subjectFuzzy-AHPen
dc.subjectRainwater Harvesting (RWH)en
dc.subjectSemi-Arid and Arid Regions (SARs)en
dc.subjectMulti-Criteria Decision Analysis (MCDA)en
dc.subjectTOPSISen
dc.subjectGeographic Information Systems (GIS)en
dc.title半乾旱與乾旱地區永續雨水收集適址之最佳化方法zh_TW
dc.titleAn Optimized Method for Sustainable Rainwater Harvesting Sites in Semi-Arid and Arid regionsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李鴻源;葉克家zh_TW
dc.contributor.oralexamcommitteeHong-Yuan Lee;Keh-Chia Yehen
dc.subject.keywordnone,zh_TW
dc.subject.keywordRainwater Harvesting (RWH),Geographic Information Systems (GIS),Fuzzy-AHP,TOPSIS,Multi-Criteria Decision Analysis (MCDA),Semi-Arid and Arid Regions (SARs),en
dc.relation.page99-
dc.identifier.doi10.6342/NTU202503692-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-08-20-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf5.88 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved