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Abstract 

Rainwater harvesting (RWH) is a sustainable solution for mitigating water scarcity, 

particularly in regions experiencing irregular and declining precipitation. This research 

focuses on the Southern Province of Zambia, a region that is becoming increasingly 

susceptible to climate fluctuations and the resulting challenges to sustained water security. 

Despite previous studies have explored RWH, there remains a significant shortfall in 

developing integrated frameworks that are spatially optimized to address the unique 

requirements of semi-arid regions. Here, the study developed a hybrid model integrating 

Geographic Information Systems (GIS) with Multi-Criteria Decision Analysis (MCDA) 

to delineate suitable zones for RWH implementation. In the evaluation, twelve criteria 

were taken into account, addressing physical, environmental, and socio-economic factors, 

with the Standardized Precipitation Index (SPI) serving as a climatic indicator. The Fuzzy 

Analytic Hierarchy Process (Fuzzy-AHP) was applied to assess the relative weights of 

the criteria, identifying rainfall, curve number, and slope as the most influential factors. 

Suitability maps were generated and classified into five categories including not and low 

suitable regions, most, highly, and moderately suitable. Results from Fuzzy-AHP and the 

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) indicated 

that 62% and 37.5% of the study area, respectively, are favorable for RWH. The northern 

and southwestern regions exhibited the highest suitability due to their advantageous 

physical and socio-economic conditions. Sensitivity analysis, conducted by varying the 

fuzziness degree (FD), confirmed the robustness of the model. Validation through 

TOPSIS revealed a 63% spatial agreement and 67% accuracy, supporting reliability of 

the model. This research presents a reproducible, affordable, and climate-adaptive 

approach for sustainable RWH site selection and informed water resource planning in 

drought-prone regions. 
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Chapter 1: Introduction 

1.1 Background  

Water is essential for maintaining life, promoting development, and supporting the 

balance of ecosystem. The term is typically characterized by having sufficient water in 

both quantity and quality to sustain economic activities, human well-being, and the health 

of ecosystems (Alfonsov et al., 2008). Ensuring a dependable water supply is crucial for 

supporting household, farming, and industrial activities, especially as the global demand 

for water has increased dramatically in recent years due to growing pressures from both 

domestic and agricultural sectors (Buraihi & Shariff, 2015; Wu et al., 2018; Yegizaw et 

al., 2022). Additionally, Challenges related to water resources have become increasingly 

critical on a global scale, as numerous regions continue to experience severe water 

scarcity and prolonged droughts. These conditions deplete irrigation water supplies, 

leading to widespread crop failures, food shortages, and substantial socioeconomic and 

environmental losses (Odhiambo et al. 2021; Sopper 1992).  

Africa, with a particular emphasis on Southern Africa, exhibits significant 

vulnerability to drought, a condition exacerbated by climate change. The region's 

vulnerability largely stems from its dependence on sectors that are sensitive to climate, 

such as agriculture reliant on rainfall and services based on ecosystems. (Libanda et al., 

2019). In Zambia, the recurrence of droughts is largely attributed to variations in rainfall 

patterns, which are affected by the Inter-Tropical Convergence Zone (ITCZ) and El Niño–

Southern Oscillation (ENSO) phenomena (Musonda et al., 2020). These climatic 

conditions have led to increasingly frequent and severe drought events, resulting in 

widespread socioeconomic disruption across the country. 
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In the most recent 2023–2024 drought, approximately 6.6 million individuals across 

the three provinces were directly impacted. The 2023–2024 agricultural season was 

identified as the driest in over four decades, characterized by delayed rainfall onset and 

extended dry spells, resulting in significant disruptions to agriculture, water availability, 

livestock health, and ecosystem integrity (Water, 2024). Consequently, Zambia is 

increasingly facing growing challenges in meeting water needs for both household and 

farming purposes. This highlights the significant need to enhance sustainable water 

management approaches, particularly by developing and applying rainwater harvesting 

(RWH) methods. 

In response to these growing challenges, RWH is extensively recognized as an 

efficient strategy for alleviating water scarcity and bolstering water security. This involves 

the harvesting, conveyance, and storage of precipitation runoff, which can be utilized in 

domestic, agricultural, and groundwater recharge contexts (Cruz, 2013; Mouhoumed et 

al. 2024). As stated by Wu et al. (2018) , RWH serves as an essential additional water 

source, particularly in areas where water is scarce. 

RWH systems have been extensively adopted worldwide for various applications 

including domestic water supply, groundwater recharge, and agricultural purposes. The 

efficient application of RWH schemes is dependent upon diligent site identification and 

robust design methodology. To achieve this, relevant studies have utilized multi-criteria 

decision-making (MCDM) methods to identify the ideal sites for RWH structures, 

including terracing, ponds, sand dams, check dams, infiltration trenches, percolation 

tanks, and contour bunds. 

Although rainwater harvesting (RWH) is increasingly acknowledged as a viable 

method to address water shortages, there is a scarcity of research that systematically 
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pinpoints the best RWH locations in Zambia's Southern Province using a integration of 

Geographic Information Systems (GIS) and Multi-Criteria Decision-Making (MCDM) 

techniques. While previous research has largely focused on physical, environmental, and 

socio-economic aspects, there are still two significant gaps that have not been addressed. 

First, the Standardized Precipitation Index (SPI), a recognized measure of drought, has 

been largely excluded from current suitability evaluations, which restricts the 

consideration of climate variability and the risk of prolonged drought. Second, there is a 

noticeable absence of systematic evaluations comparing MCDM techniques to determine 

the spatial consistency and reliability of their outputs in informing planning decisions. 

This research fills these gaps by integrating SPI into the suitability analysis to improve 

climate adaptability and by performing a comparative assessment of Fuzzy-AHP and 

TOPSIS to evaluate the reliability of the models. Additionally, the framework offers a 

detailed, reproducible GIS–MCDM model specifically designed for the Southern 

Province, with potential use in other semi-arid areas. The outcomes of this research are 

designed to steer the strategic deployment of RWH systems and enhance efforts to achieve 

water security in the context of increasing climate unpredictability. 

 

1.2 Objectives  

This study primarily aims to pinpoint sustainable locations for harvesting rainwater 

by employing a GIS-based framework for MCDM. This framework integrates physical, 

socioeconomic, and environmental factors to improve the precision, efficiency, and long-

term sustainability of sites identification. 
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1.2.1 Specific objectives 

A. To determine and analyze the physical, environmental, and socioeconomic

parameters that affect RWH site suitability using GIS and remote sensing data.

B. To analyze the sensitivity of the assigned weights by evaluating the influence of

varying degrees of fuzziness on the weighting of selection criteria within the

Fuzzy Analytical Hierarchy Process (Fuzzy-AHP) framework

C. Generate and interpret suitability maps derived from the Fuzzy-AHP and the

technique for order of preference by similarity to ideal solution (TOPSIS) for the

determination of ideal RWH places.

D. To compare outputs from Fuzzy-AHP and TOPSIS models to assess their spatial

consistency, agreement, and reliability in supporting RWH planning decisions.

1.3 Thesis Organization 

This thesis is structured into six chapters. A comprehensive review of the existing 

literature on RWH techniques and methodologies used for site selection is presented in 

chapter two. Chapter three offers a comprehensive summary of the study region, 

including an explanation of the data sources and the processing methods used. Fourth 

chapter describes the methodological framework used for the analysis. The findings of 

the spatial analysis and suitability assessment are presented and critically discussed in 

Chapter Five. section, chapter six, concludes the paper by summarizing key insights and 

proposing recommendations for practical applications. 
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Chapter 2: Literature Review 

2.1 Overview of Global and Regional Context of Water Scarcity 

Water scarcity is becoming an increasingly pressing global concern, specifically in 

semi-arid and arid regions (SARs), where the aggregated consequences of climate change 

and escalating water demand place substantial pressure on traditional water sources 

(Matomela et al., 2020). As highlighted by Mahmoud and Alazba (2015)  and Tiwari et 

al. (2018), the decreasing availability of freshwater underscores the urgent necessity for 

innovative and viable approaches to water management. In many developing nations, the 

crisis is exacerbated by rapid population growth, expansion of agriculture, and rapid 

urbanization. These factors collectively heighten water demand while diminishing the 

dependability of the current supply systems under shifting climate conditions. 

In recent decades, the growth of the global population has resulted in significant 

increases in water consumption. According to the FAO (2015), the worldwide need for 

water is increasing at a pace that is more than twice as fast as population growth. This 

escalating demand is further exacerbated by the need for irrigated agriculture and 

industrial development (Yannopoulos et al. 2019). These converging pressures have 

raised global concerns regarding water scarcity and food security, particularly in regions 

where rainfall is highly variable and unreliable. Wu et al. (2018) noted that by 2025, 

approximately 1.8 billion individuals will inhabit areas facing severe water shortages, 

while nearly two-thirds of the global population will be living in regions under water 

scarcity. 

Countries in the Horn of Africa, such as Somalia, Eritrea, Ethiopia, and Djibouti, 

face severe water shortages and climate fluctuations that significantly threaten the 

livelihoods of millions and the region's ecosystems (Mouhoumed et al., 2023). The 
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situation in Somalia is particularly desperate, with approximately 6.1 million individuals 

affected by recurrent droughts, resulting in widespread internal displacement (Broek and 

Hodder, 2022). Studies by Ullah et al. (2022, 2023) and Mwelwa et al. (2024)have 

indicated that since the 1980s, Southern Africa has been witnessing a steady increase in 

temperatures coupled with a decline in rainfall. Recurring drought conditions in the region 

are primarily due to interannual climate fluctuations linked to the El Niño-Southern 

Oscillation (ENSO), which is a major role in these patterns. 

Similar to numerous other developing nations in Africa, Zambia encounters 

considerable hurdles due to the intertwined issues of socioeconomic development, 

climate change, and disaster risk.(Ghosh et al., 2024a; Ngoma et al., 2021). These 

interconnected factors increase the country's risk of experiencing severe weather 

phenomena such as floods and droughts. For instance, Musonda et al. (2020) highlighted 

noteworthy spatial differences in the occurrence of droughts throughout Zambia, noting 

that the southwestern region experienced more intense droughts than the northeastern 

region. As noted by Kaluba et al. (2017), the region of southern Zambia faces a heightened 

risk of experiencing both moderate and severe droughts, with these events expected to 

occur every 3-4 years and 5-10 years, respectively. Their observations indicate that 

drought occurrences were more frequent and severe in the southern region, whereas 

northern Zambia experienced relatively stable conditions. These findings collectively 

highlight the necessity of implementing region-specific drought mitigation strategies, 

including the development of a water-harvesting infrastructure, to mitigate the adverse 

impacts of recurrent droughts. 
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2.2 Global and Regional RWH Practices  

In regions with semi-arid and arid climates that rely on agriculture dependent on 

rainwater, rainfall usually occurs in a few intense bursts, often resulting in significant 

runoff losses. Within this framework, RWH has emerged as a promising strategy to bolster 

agricultural resilience. It can provide supplemental irrigation during extended dry spells, 

thereby aiding the stabilization and enhancement of crop yields (Sacolo & Mkhandi, 

2021). Additionally, rainwater collection efficiently captures runoff, which in turn 

enhances agricultural productivity through methods that are both economically sound and 

environmentally responsible (Ziadat et al., 2006). Besides its advantages for agriculture, 

this approach helps lessen the negative impacts of drought and climate change, while also 

enhancing the dependability and accessibility of water resources. 

RWH is increasingly being acknowledged as an environmentally sustainable 

method to enhance water availability, particularly in regions facing water scarcity. This 

approach is instrumental in alleviating water shortages, reducing reliance on 

overexploited groundwater resources, and boosting agricultural productivity, particularly 

in areas affected by climate variability (Mahmoud and Alazba, 2015; Tiwari et al., 2018; 

Ziadat et al., 2006). Rainwater harvesting  systems are generally categorized into three 

primary types: in situ techniques that conserve soil moisture, techniques for channeling 

surface runoff to irrigate crops within a field, and systems designed to gather and store 

runoff from rooftops or land surfaces into designated containers for both household and 

farming uses (Falkenmark & Rockström, 2004). Similarly, RWH refers to the process of 

collecting and storing surface runoff to meet the water demands for household, 

agricultural, and environmental purposes (Mouhoumed et al., 2024). Beyond augmenting 

the water supply during arid periods, RWH also aids in flood control and groundwater 

recharge. Furthermore, the capture and storage of rainwater runoff can mitigate the 
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limitations associated with the exclusive reliance on rain-fed agriculture in regions 

lacking irrigation infrastructure (de Winnaar et al., 2007).  

RWH techniques have been tailored to accommodate diverse geographical and 

climatic conditions worldwide. In India, traditional methods such as ponds and tanks have 

been incorporated into managed aquifer recharge initiatives (Yadav et al. 2022). Similarly, 

the ridge-furrow RWH technique has been utilized in China as a method for farming water 

collection. This involves constructing ridges, often covered with a plastic film to boost 

runoff and minimize infiltration and evaporation, alongside furrows where crops are 

grown. This setup facilitates effective rainwater collection and enhances soil moisture, 

thereby alleviating the consequences of drought (Sun et al., 2023; Zhou et al., 2012). 

Additionally, various RWH methods are practiced in Sri Lanka, ranging from traditional 

household techniques without dedicated infrastructure to conventional systems that 

utilize roof catchments and storage tanks. These include informal setups with small 

barrels and large-scale institutional systems that are supported by community and 

government initiatives. Notably, these approaches significantly contribute to enhancing 

household water security, particularly in remote regions (Vijitha et al. 2022).  

Australia presented a strong example of large-scale RWH adoption. Nearly 34% of 

urban households have implemented rainwater harvesting systems, collectively capturing 

approximately 177 billion liters of water annually and approximately 9% of residential 

water consumption (Khan et al., 2021). In response to recurring droughts, multiple 

Australian states have introduced policies and financial incentives to promote the 

widespread use of RWH, particularly in regions with limited municipal supply (Chubaka 

et al., 2018). While global examples highlight the success and adaptability of RWH 

systems, African countries, including Zambia, face unique climatic and infrastructural 

challenges that necessitate localized approaches to RWH site identification. 



doi:10.6342/NTU202503692

9 

 

In Africa, RWH systems are gradually being considered as practical solutions to 

persistent water shortages, particularly in sub-Saharan nations where erratic rainfall and 

limited infrastructure pose severe challenges. Despite the application of various practices 

to preserve soil and water, the adoption of runoff storage-based RWH techniques remains 

limited (Rockström, 2000). In response, countries such as Kenya, Ethiopia, and Uganda 

have promoted small-scale RWH systems, such as roof catchments and surface tanks, to 

buffer against seasonal variability and drought (Mati et al., 2005). Conversely, large-scale 

implementation is often constrained by socioeconomic, technical, and policy barriers, 

underscoring the need for robust spatial tools to support site suitability assessment and 

long-term planning. In Zambia, although technologies such as rooftop collection systems, 

small dams, weirs, and boreholes exist in some areas, their adoption remains 

geographically limited (Handia et al., 2003). This highlights the need for broader 

integration and strategic scaling of RWH systems to strengthen the national water 

resource management. 

2.3 Key Factors Influencing RWH Site Selection 

2.3.1 Factors Considered in Previous Studies 

Determining the ideal sites for RWH is crucial for ensuring the effectiveness and 

sustainability of these interventions. Prior to implementation, a thorough assessment of 

the physical, environmental, and socioeconomic parameters of the target area is essential 

to support long-term efficiency and successful incorporation of RWH systems into local 

water management strategies. Identifying potential locations not only enhances water 

availability and land productivity but also is essential in mitigating water scarcity and 

tackling environmental issues, especially in SARs. 
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Identifying appropriate decision criteria and parameters remains a central challenge 

in MCDA for  RWH, particularly given the increasing scope and complexity of these 

criteria in recent years (Mouhoumed et al. 2024b). The concept of employing specific 

physical parameters, such as LULC, soil type, slope, and drainage density, to determine 

potential sites for RWH was initially introduced in 1995 through the Integrated Mission 

for Sustainable Development (IMSD) initiative (Chowdhury & Paul, 2021; Mahamoud, 

2024). In the literature, the selection of RWH sites has been broadened to incorporate 

physical, socioeconomic, and environmental factors. As noted by Kahinda et al. (2008), 

referring to the 2003 standards of the Food and Agriculture Organization (FAO), the 

determination of suitable RWH locations requires consideration of multiple factors, 

including topography, climate, hydrology, agronomic requirements, soil properties, and 

socioeconomic considerations.  

Expanding upon this foundation, Rane et al. (2023) assessed suitable dam locations 

in the Ulhas River Basin in Western Maharashtra, India. The site selection process was 

based on a diverse set of criteria such as rainfall, curve number, drainage density, 

geological and geomorphological features, LULC, elevation, soil type, and proximity to 

critical infrastructure, including roads, rivers, and fault lines. Similarly, Mouhoumed et 

al. (2024b) conducted a study in the southern basin of Djibouti to map potential RWH 

sites for managed aquifer recharge (MAR). Their methodological framework 

incorporated a comprehensive range of indicators including LULC, drainage density, 

slope, soil texture, watershed area, NDVI, curve number, rainfall, geological 

characteristics, electrical conductivity, proximity to roads, settlements, and agricultural 

zones. 
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2.3.2 Standard Precipitation Index (SPI) 

SPI was developed to assess precipitation deficiencies  across multiple temporal 

scales, facilitating the evaluation of drought impacts on diverse water resources (Chisanga 

et al., 2025). It has since become one of the most commonly utilized tools for assessing 

drought severity. Among the available drought indices, the SPI is considered the most 

extensively applied for detecting and characterizing climate-related drought conditions 

(Chisanga et al., 2025; WMO, 2012). It is crucial to recognize that the widespread use of 

SPI can be attributed to several significant advantages. First, it is computationally 

efficient and based on a straightforward methodological framework (Chisanga et al., 2025; 

Nam et al., 2015). Second, it effectively identified the onset, intensity, duration, and 

development of drought events. Third, its exclusive dependence on precipitation data 

makes it particularly useful in areas with scarce hydrometeorological data ( Teuling et al., 

2013; Chisanga et al., 2025). Koudahe et al. (2017) highlighted that one of the key 

advantages of the SPI method is its straightforwardness and flexibility for use over 

various time frames, as it depends only on precipitation data gathered during a designated 

period. 

Several studies have highlighted the notable decline in rainfall across Africa 

(Koudahe et al. 2017). Consistent with these observations, Iradukunda et al. (2023) and  

Musonda et al. (2020) highlighted that Zambia is increasingly susceptible to drought 

because of the diminishing precipitation levels. Expanding on this, Chisanga et al. (2025) 

employed SPI to examine drought patterns in Zambia over the period 1981–2024. 

Through their examination, they uncovered a variety of drought conditions ranging from 

moderate to extreme over different periods. They also observed clear trends in the 

occurrence, intensity, and duration of these drought episodes. 
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Despite growing concerns about climate variability, many studies on rainwater 

harvesting (RWH) site selection have yet to adequately incorporate climate index factors, 

thereby limiting their capacity to address the long-term impacts of climate change (B. A. 

Ahmad et al., 2024). The Standardized Precipitation Index (SPI), a well-established tool 

for monitoring drought conditions(WMO, 2012), remains underutilized within GIS-based 

multi-criteria decision analysis (MCDA) frameworks for identifying suitable RWH 

locations. This study Seeks RWH site selection techniques by incorporating SPI as a 

dynamic climatic factor, allowing for a more precise depiction of temporal precipitation 

changes and enhancing the overall reliability of spatial suitability evaluations. By 

including the SPI, the model's capacity to detect and prioritize areas susceptible to drought 

is improved, thus facilitating climate-adaptive and cost-efficient RWH planning. By 

integrating SPI with physical and socioeconomic elements, this method offers a more 

comprehensive and contextually appropriate assessment of site suitability, especially in 

areas frequently experiencing rainfall shortages. 

2.4 GIS-Based MCDA for Identifying RWH Sites  

Given the growing demand for affordable and time-efficient approaches to 

identifying potential locations for RWH interventions, Ammar et al. (2016)organized the 

methods typically utilized over the past 30 years to determine ideal places for RWH in 

regions characterized by arid to semi-arid climates into four principal categories. The first 

category emphasizes the integration of GIS with Remote Sensing (RS) technologies. 

Forzieri et al. (2008) used these techniques to identify ideal locations for both subsurface 

and surface RWH systems in Kidal and Mali. The second group integrated hydrological 

modeling using GIS and RS. In this context, de Winnaar et al. (2007) utilized this method 

to identify optimal sites for collecting runoff in South Africa, whereas Gupta et al. (1997) 

estimated potential RWH zones in Rajasthan, India, using a similar combination.  
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The third group involved MCDA combined with hydrological modeling (HM), RS, 

and GIS. For example, Elewa et al. (2012) utilized this comprehensive approach to 

determine suitable runoff harvesting locations on Egypt’s Sinai Peninsula. Similarly, 

Weerasinghe et al. (2011) evaluated the allocation of water-collecting storage in the São 

Francisco and Nile catchments in Brazil. The fourth category combined MCA with GIS 

and RS alone. Prominent instances include the research conducted by Al-Adamat et al. 

(2010), which utilized this approach to determine optimal places for RWH ponds in 

Jordan. 

GIS-based MCDA has become an effective and widely adopted approach for 

collecting, managing, analyzing, and visualizing both spatial and non-spatial data to 

support informed and evidence-based decision making (Coskun & Musaoglu, 2004; 

Padmavathy et al., 1993). As stated by Al-Adamat et al. (2010), GIS, remote sensing, and 

HM techniques have been widely utilized to determine and evaluate potential sites for 

water-capturing projects within the framework of water resource planning. Among the 

different MCDA approaches, AHP is particularly notable for its robust ability to derive 

the relative importance of multiple assessment criteria. Approaches involving GIS, RS, 

and HM have been broadly adopted to determine ideal locations for water-harvesting 

schemes. In analyses utilizing GIS, decision-making processes frequently employ 

approaches such as Weighted Linear Combination (WLC) and Boolean operators to 

determine and rank viable sites based on various criteria (Al-Adamat et al., 2010).  

In southeastern Botswana, a comparative study by Mosase et al. (2017) evaluated 

the effectiveness of both the conventional AHP and its fuzzy logic-enhanced version in 

identifying suitable sites for rainwater harvesting (RWH). Their findings demonstrated 

that the Fuzzy-AHP approach yielded superior results, offering greater precision in 

delineating suitable areas than the conventional AHP method. Similarly, Mouhoumed et 
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al. (2024b) explored the feasibility of rainwater harvesting (RWH) in Djibouti's 

southeastern basin using a comprehensive decision-making framework. This framework 

integrates fuzzy AHP with the VIKOR method to evaluate and prioritize optimal RWH 

sites. Hassan et al. (2025) employed a GIS-based MCDM method to identify potential 

RWH zones in the Kerbala Desert region of Iraq.  

Furthermore, Mouhoumed et al. (2023) assessed suitable sites for managed aquifer 

recharge (MAR) in Djibouti by utilizing a comprehensive method that integrated Fuzzy-

AHP with TOPSIS. Tavakoli et al. (2025) introduced a comprehensive flood risk mapping 

strategy for South Khorasan, Iran, which integrates the Analytic Hierarchy Process–

Weighted Linear Combination (AHP–WLC) with the Fuzzy Ordered Weighted Averaging 

(FOWA) method. This approach was utilized to map out areas at risk of flooding and to 

propose long-term solutions for reducing these risks. Similarly, Baalousha et al. (2023) 

conducted a comparative evaluation of AHP and Fuzzy-AHP methodologies to assess 

flood exposure risks in the arid regions of Qatar, employing these two frameworks to 

highlight their performance.  

Despite the widespread application of integrated MCDA techniques, including AHP, 

Fuzzy-AHP, and MIF, in conjunction with TOPSIS or VIKOR for RWH site identification 

(Mouhoumed et al., 2023, 2024b; Rane et al., 2023), There is a considerable gap in 

research that quantitatively examines how effectively these methods' outputs align in 

terms of spatial distribution. Although change detection techniques have been extensively 

used to identify changes in time-series analyses of LULC (Kafi et al., 2014; Mahendra et 

al., 2024; Tahraoui & Kheddam, 2024; Usman et al., 2015), their application in the 

comparison of suitability maps generated through integrated MCDA approaches for RWH 

remains unexplored. Specifically, pixel-level comparison tools such as change detection 
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have not been employed to evaluate categorical differences among MCDA-derived 

suitability outputs. 

Confusion matrix analysis is a well-established method for assessing classification 

accuracy (Banko, 1998; Foody, 2001), it has not yet been used to examine the consistency 

between RWH suitability maps produced by different MCDA techniques. Additionally, 

although Spearman’s rho coefficient is frequently used to evaluate the robustness and 

direction of consistent relationships between attributes (Ali & Al-Hameed, 2022), its 

application to pixel-based suitability scores extracted from the raster outputs of methods 

such as Fuzzy-AHP and TOPSIS is limited. For instance,  Sazakli et al. (2007)utilized 

Spearman’s rho to investigate the relationship between microbiological and chemical 

factors in rainwater collected in Greece. However, this method has not yet been used to 

evaluate spatial agreement in RWH suitability models. This study addresses these 

methodological gaps by employing the Compute Change Raster tool, confusion matrix 

analysis, and Spearman’s rank correlation to systematically evaluate the spatial 

consistency between suitability maps generated using Fuzzy-AHP and TOPSIS. This 

approach provides a thorough framework for assessing the consistency and reliability of 

MCDM results in the selection of RWH sites.  
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 Chapter 3: Study Area and Data    

3.1 Study Area  

Zambia is a landlocked country situated in Southern Africa bordered by eight other 

nations: Zimbabwe, Tanzania, Mozambique, Namibia, the Democratic Republic of Congo, 

Angola, Botswana, and Malawi. Situated between latitudes of 8 °S and 18 °S and 

longitudes of 22 °E and 34 °E, the country experiences a wide range of climatic conditions. 

The amount of rainfall each year shows considerable variation, with the northern regions 

receiving an average of around 1,400 mm, while the southern areas get about 700 mm; 

Temperatures typically fluctuate from 15°C in the winter months to 30°C during the 

summer (Ghosh et al., 2024b) 

 

 

Figure 1: Study area 



doi:10.6342/NTU202503692

17 

 

This research focuses on the Southern Province of Zambia, as depicted in Figure 1, 

which is the third-largest province, covering approximately 67,517 square kilometers. 

This province is divided into 15 administrative districts: Chirundu, Chikankata, Choma, 

Gwembe, Kalomo, Itezhi-Tezhi, Kazungula, Monze, Mazabuka, Namwala, Livingstone, 

Pemba, Sinazongwe, Siavonga, and Zimba. The Central and Southern Provinces are the 

largest areas of commercial farmland in Zambia, contributing significantly to maize 

production. Nevertheless, the semi-arid climate and reliance on seasonal rainfall make 

these regions extremely vulnerable to drought, which is intensified by rainfall variability 

and broader climate fluctuations. The prevailing conditions significantly limit agricultural 

productivity and availability of water resources, resulting in diminished crop yields, 

heightened food insecurity, and economic losses, particularly among smallholder farmers 

who lack access to irrigation infrastructure. Furthermore, prolonged dry spells exacerbate 

the strain on limited water resources, jeopardizing rural livelihoods that rely heavily on 

rain-fed agriculture for both sustenance and income. 

3.2 Data Source  

This study utilized a variety of satellite-based datasets with a strong focus on the 

Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) product. CHIRPS 

is widely acknowledged and used throughout Africa, especially in Southern Africa, 

including Zambia, for purposes such as monitoring droughts, analyzing rainfall trends, 

and conducting hydrological modeling. The integration of satellite imagery with data 

from ground-based stations, coupled with its high spatial and temporal resolution, makes 

it particularly valuable in areas where data are scarce. CHIRPS has been utilized to 

examine the temporal and spatial distribution of rainfall in South Kivu, Democratic 

Republic of Congo(Ahana et al., 2024), as well as to evaluate drought characteristics in 

Zambia through the use of the SPI (Chisanga et al., 2025). Furthermore, Chisanga et 
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al.(2023) demonstrated that CHIRPS Version2 reliably estimates rainfall data using 

gauges for daily, monthly, and annual periods. Table 1 presents a concise summary of the 

datasets that were used in this research. 

Table 1: Description of data sources 

SN Dataset Source Feature 

1 Shapefile for Study 

area  

Global Administrative Areas: 

https://gadm.org 

Shapefile 

2 Digital Elevation 

Model (DEM) 

USGS Earth Explorer datasets 

portal: http://earthexplorer.usgs.gov/ 

30m x 30m 

3 Land Use/Land cover 

(LULC) 

Esri land use land cover 2023: 

https://livingatlas.arcgis.com/la

ndcover  

10m x 10m 

4 Curve Number (CN) global curve number datasets: 

 https://doi.org/10.6084/m9.figshare.7

756202 

250m 

5 Soil Texture FAO:  http://www.fao.org/soils-

portal/soil-survey/soil-maps-and-

databases 

1:5.000.000 

6 Rainfall spatial Data CHIRPS Rainfall data: 

 CHRS Data Portal (uci.edu) 

0.05° x 0.05°  

7 SPI data  CHIRPS:https://developers.google.c

om/earth-

engine/datasets/catalog/UCSB-

CHG_CHIRPS_PENTAD 

0.05° x 0.05° 

8 Road data  OpenStreetMap: 
https://www.openstreetmap.org 

 

9 Settlement  Open Buildings: 
https://sites.research.google/gr/open-

buildings  

Csv points 

 

 

https://gadm.org/
http://earthexplorer.usgs.gov/
https://livingatlas.arcgis.com/landcover
https://livingatlas.arcgis.com/landcover
https://doi.org/10.6084/m9.figshare.7756202
https://doi.org/10.6084/m9.figshare.7756202
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases
https://chrsdata.eng.uci.edu/
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_PENTAD
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_PENTAD
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_PENTAD
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_PENTAD
https://www.openstreetmap.org/
https://sites.research.google/gr/open-buildings/
https://sites.research.google/gr/open-buildings/
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3.3 Design of Expert-Based Pairwise Comparison Framework 

Table 2 summarizes the backgrounds of the seven experts involved in the pairwise 

comparison process. The experts were chosen based on their academic qualifications and 

professional backgrounds in fields pertinent to the study, such as civil engineering, 

hydraulic engineering, environmental engineering, and water resources. Their 

educational backgrounds range from master's to doctoral degrees, with professional 

experience varying from less than five years to more than fifteen years. 

Table 2: Profiles of Experts Involved in the Pairwise Comparison 

No. of 

Ex 

Expert 

ID  

Background Level of 

Education 

Experience 

(Yrs) 

1 Ex1 Civil Engineering PhD 10~15 

2 Ex2 Business Management PhD > 15

3 Ex3 Environmental 

Engineering  

MSc 0~5

4 Ex4 Hydraulic Engineering PhD 0~5 

5 Ex5 Hydraulic Engineering PhD 5~10 

6 Ex6 Water Resources 

engineering 

MSc 0~5 

7 Ex7 Hydraulic Engineering PhD 0~5 

Table 3 displays Saaty’s essential scale for assessing relative importance, which was 

employed to create the pairwise comparison matrices. This scale, which spans from 1 

(indicating equal importance) to 9 (indicating extreme importance), enables experts to 

quantitatively evaluate how one criterion compares in importance to another within the 

context of multi-criteria decision analysis (MCDA). 
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Table 3: Saaty’s Scale of relative importance 

Linguistic Term Scale of Importance 

Equal importance 1 

Equal to moderate importance 2 

Moderately important 3 

Moderate to strong importance 4 

Important 5 

Strong to very strong importance 6 

Very strong importance 7 

Very strong to the extreme importance 8 

Extreme important 9 

 

Table 4 to 10 present the individual pairwise comparison matrices provided by the 

seven experts. These matrices capture the experts' subjective evaluations of the relative 

importance of the selected criteria for rainwater harvesting site suitability. Each expert 

independently compared the criteria using Saaty’s fundamental scale of relative 

importance, as outlined in Table 3. The resulting matrices form the basis for calculating 

both individual and aggregated criterion weights through the Fuzzy Analytic Hierarchy 

Process (FAHP), which is applied within the broader multi-criteria decision-making 

(MCDM) framework. 

Table 4: Pairwise Comparison Matrix by Expert 1 

Criteria  RF CN SL El DD ST LULC PR DSO DS PA SPI 

RF 1 2 2 2 1 3 4 8 7 6 6 9 

CN 0.5 1 2 1 3 4 3 5 5 6 1 9 

SL 0.5 0.5 1 3 1 2 1 3 2 7 7 8 

El 0.5 1 0.33 1 2 1 4 4 2 7 7 7 

DD 1 0.33 1 1 1 1 2 4 3 5 3 9 

ST 0.33 0.25 0.5 1 1 1 2 3 2 2 5 5 

LULC 0.25 0.33 1 0.25 0.5 0.5 1 3 2 2 3 8 

PR 0.13 0.20 0.33 0.25 0.3 0.33 0.33 1 1 1 2 2 

DSO 0.14 0.20 0.5 0.5 0.33 0.5 0.5 1 1 7 3 5 

DS 0.17 0.17 0.14 0.14 0.2 0.5 0.5 1 0.14 1 2 2 

PA 0.17 1.00 0.14 0.14 0.33 0.2 0.333 1 0.33 0.5 1 2 

SPI 0.11 0.11 0.13 0.14 0.11 0.13 0.13 0.2 0.2 0.5 1 1 
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Table 5: Pairwise Comparison Matrix by Expert 2 

Criteria  RF CN SL El DD ST 

LU 

LC PR DSO DS PA SPI 

RF 1 3 5 6 6 4 5 7 6 8 9 7 

CN 0.33 1 4 3 6 5 5 5 4 7 8 6 

SL 0.20 0.25 1 0.33 5 4 4 4 3 6 7 5 

El 0.17 0.33 3 1 4 3 3 3 2 5 6 4 

DD 0.17 0.17 0.20 0.25 1 3 3 3 2 5 4 3 

ST 0.25 0.20 0.25 0.33 0.33 1 3 2 2 4 5 3 

LULC 0.20 0.20 0.25 0.33 0.33 0.33 1 2 2 4 5 3 

PR 0.14 0.20 0.25 0.33 0.33 0.5 0.5 1 0.5 4 4 0.5 

DSO 0.17 0.25 0.33 0.50 0.5 0.5 0.5 2 1 3 4 2 

DS 0.13 0.14 0.17 0.20 0.2 0.25 0.25 0.3 0.33 1 3 0.33 

PA 0.11 0.13 0.14 0.17 0.25 0.2 0.2 0.3 0.25 0.33 1 0.33 

SPI 0.14 0.17 0.2 0.25 0.33 0.33 0.33 0.5 0.5 3 3 1 

 

 

Table 6: Pairwise Comparison Matrix by Expert 3 

Criteria RF CN SL El DD ST LULC PR DSO DS PA SPI 

RF 1 3 5 3 5 7 7 7 7 7 7 1 

CN 0.33 1 3 3 5 5 3 5 5 5 5 1 

SL 0.2 0.33 1 1 1 3 1 3 5 3 3 0.33 

El 0.33 0.33 1 1 3 5 3 3 5 5 3 0.33 

DD 0.2 0.2 1 0.33 1 0.33 1 1 1 1 1 0.14 

ST 0.14 0.2 0.33 0.2 3 1 3 1 1 1 1 0.2 

LULC 0.14 0.33 1 0.33 1 0.33 1 3 1 0.33 3 0.2 

PR 0.14 0.2 0.3 0.3 1 1 0.33 1 3 3 1 0.2 

DSO 0.14 0.2 0.2 0.2 1 1 1 0.33 1 0.33 1 0.20 

DS 0.14 0.2 0.3 0.2 1 1 3 0.3 3 1 3 0.2 

PA 0.14 0.2 0.3 0.3 1 1 0.33 1 1 0.3 1 0.2 

SPI 1 1 3 3 7 5 5 5 5 5 5 1 

 

Table 7: Pairwise Comparison Matrix by Expert 4 

Factors Rf CN SL El DD ST LULC PR DR DS PA SPI 

Rf 1 3.00 3.00 3.00 3.00 3.00 4.00 4.00 3.00 4.00 4.00 2.00 

CN 0.33 1.00 0.33 0.50 0.25 2.00 2.00 3.00 0.50 3.00 3.00 0.33 

SL 0.33 3.00 1.00 2.00 0.33 2.00 3.00 4.00 0.50 4.00 4.00 0.50 

El 0.33 2.00 0.50 1.00 0.33 0.33 2.00 2.00 0.33 3.00 3.00 0.50 

DD 0.33 4.00 3.00 3.00 1.00 2.00 3.00 4.00 2.00 4.00 3.00 0.50 

ST 0.33 0.50 0.50 3.00 0.50 1.00 2.00 3.00 0.50 2.00 0.25 0.50 

LULC 0.25 0.50 0.33 0.50 0.33 0.50 1.00 3.00 0.50 2.00 0.50 0.33 
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PR 0.25 0.33 0.25 0.50 0.25 0.33 0.33 1.00 0.25 0.50 0.50 0.33 

DSO 0.33 2.00 2.00 3.00 0.50 2.00 2.00 4.00 1.00 2.00 3.00 0.50 

DS 0.25 0.33 0.25 0.33 0.25 0.50 0.50 2.00 0.50 1.00 2.00 0.50 

PA 0.25 0.33 0.25 0.33 0.33 4.00 2.00 2.00 0.33 0.50 1.00 0.25 

SPI 0.5 3 2 2 2 3 3 2 2 2 4 1 

 

Table 8: Pairwise Comparison Matrix by Expert 5 

Criteria RF CN SL El DD ST LULC PR DSO DS PA SPI 

RF 1 3.00 3 5 3 3 3 7 5 7 5 3 

CN 0.33 1 3 3 1 1 1 5 3 5 3 1 

SL 0.33 0.33 1 3 1 1 0.33 3 1 3 1 0.33 

El 0.2 0.33 0.33 1 0.33 0.22 0.33 1 0.33 1 0.33 0.22 

DD 0.33 1 1 3 1 1 1 3 5 3 3 1 

ST 0.33 1 1 5 1 1 3 5 3 5 3 3 

LULC 0.33 1 3 3 1 0.33 1 5 3 5 1 0.33 

PR 0.14 0.22 0.33 1 0.33 0.2 0.2 1 0.33 1 0.3 0.33 

DSO 0.14 0.33 1 3 0.2 0.33 0.33 3 1 3 1 0.33 

DS 0.14 0.22 0.33 1 0.33 0.2 0.2 1 0.33 1 0.3 0.2 

PA 0.2 0.33 1 3 0.33 0.33 1 3 1 3 1 0.33 

SPI 0.33 1 3 5 1 0.33 3 3 3 5 3 1 

 

Table 9: Pairwise Comparison Matrix by Expert 6 

Criteria  RF CN SL El DD ST LULC PR DSO DS PA SPI 

RF 1 2 4 3 2 3 4 5 4 6 5 3 

CN 0.5 1 2 3 2 3 2 6 5 6 4 3 

SL 0.25 0.50 1 2 2 2 2 4 4 3 5 4 

El 0.33 0.33 0.50 1 0.5 0.3 0.5 2 3 4 3 2 

DD 0.5 0.50 0.50 2.00 1 0.5 2 3 4 3 2 5 

ST 0.33 0.33 0.50 3.03 2.00 1 3 4 3 5 5 3 

LULC 0.25 0.50 0.50 2.00 0.50 0.33 1 4 3 4 3 4 

PR 0.2 0.17 0.25 0.50 0.33 0.25 0.25 1 0.33 3 0.3 0.5 

DSO 0.25 0.20 0.25 0.33 0.25 0.33 0.33 3.00 1 2 3 0.5 

DS 0.17 0.17 0.33 0.25 0.33 0.20 0.25 0.33 0.50 1 1 0.5 

PA 0.2 0.25 0.20 0.33 0.50 0.20 0.33 3.00 0.33 2.00 1 0.33 

SPI 0.33 0.33 0.25 0.5 0.2 0.3 0.25 2 2 2 3 1 
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Table 10: Pairwise Comparison Matrix by Expert 7 

Criteria RF CN SL EL DD ST LULC PR DSO DS PA SPI 

RF 1 5 3 9 7 6 8 8 8 9 9 4 

CN 0.2 1 0.33 8 5 4 6 6 6 7 7 0.33 

SL 0.3 3 1 9 6 5 7 7 7 8 8 0.5 

El 0.1 0.13 0.11 1 0.2 0.17 0.25 0.25 0.25 0.33 0.33 0.14 

DD 0.1 0.2 0.17 5 1 0.5 3 3 3 4 4 0.25 

ST 0.2 0.25 0.2 6 2 1 4 4 4 5 5 0.33 

LULC 0.1 0.17 0.14 4 0.3 0.25 1 2 2 3 3 0.2 

PR 0.1 0.17 0.14 4 0.3 0.25 0.5 1 1 2 2 0.17 

DSO 0.1 0.17 0.14 4 0.3 0.25 0.5 1 1 2 2 0.17 

DS 0.1 0.14 0.13 3 0.3 0.2 0.33 0.5 0.5 1 1 0.14 

PA 0.1 0.14 0.13 3 0.3 0.2 0.33 0.5 0.5 1 1 0.14 

SPI 0.3 3 2 7 4 3 5 6 6 7 7 1 

 

3.3 Preparation of Thematic Layers  

As indicated in Table 11, 12 criteria were employed to identify ideal RWH locations. 

Eleven of these factors were determined through a comprehensive assessment of relevant 

studies, while the remaining factor, The Standardized Precipitation Index (SPI) was 

included due to its crucial function in evaluating rainfall shortages, determining drought 

intensity, and pinpointing regions prone to drought conditions. The inclusion of SPI 

enhances the analytical rigor of this study by integrating a climatic indicator that 

facilitates sustainable site identification. 

These 12 criteria were categorized into three main categories: physical, 

environmental, and socioeconomic factors. Physical criteria including elevation, slope, 

LULC, drainage density, soil texture, and Environmental factors are rainfall, curve 

number, and the Standardized Precipitation Index (SPI). Socioeconomic factors include 

proximity to farming regions, distance from populated areas, proximity to roads, and 

proximity to rivers. The subsequent sections offer an in-depth analysis of each parameter. 
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Table 11: Selected Criteria for RWH Site Selection with References 

Cluster 

 

Criteria ID Stand-  

Function  

Membership Bound  Reference 

Low High 

1 Drainage 

Density 

DD ILFM 

 

0 0.51 (Mouhoumed et al., 2023), (Matomela 

et al., 2020), (Adham et al., 2016), 

(Karakuş & Yıldız, 2022), (Ahmed et 

al., 2023), (Moumane et al., 2024), 

(Meghanadh et al., 2022), (R. Ahmad 

et al., 2024), (Al-Hasani et al., 2023). 

2 Curve 

Number 

CN ILFM 

 

60 94.0 (Mouhoumed et al., 2023), (Mahmoud 

et al., 2016), (de Winnaar et al., 2007), 

(Meghanadh et al., 2022) 

 

3 Rainfall  RF ILFM 

 

887 2029 (Al-Adamat, 2008), (Mouhoumed et 

al., 2023), (Al-adamat et al., 2012), 

(Al-Adamat et al., 2010), (Mahmoud et 

al., 2016), (Mouhoumed et al., 2024b), 

(Adham et al., 2016), (Faisal & 

Abdaki, 2021), (Karakuş & Yıldız, 

2022), (Ahmed et al., 2023), 

(Mahmoud & Alazba, 2015), 

(Moumane et al., 2024), (R. Ahmad et 

al., 2024), (Al-Hasani et al., 2023). 

4 Land Use 

Land Cover  

LULC SW 

 

 

- 

 

- 

(Al-Adamat, 2008), (Wu et al., 2018), 

(Mahmoud et al., 2016), (Mouhoumed 

et al., 2024b), (Faisal & Abdaki, 2021), 

(Karakuş & Yıldız, 2022), (Ahmed et 

al., 2023), (Mahmoud & Alazba, 

2015), (Moumane et al., 2024), 

(Meghanadh et al., 2022), (Maina & 

Raude, 2016), (R. Ahmad et al., 2024), 

(Al-Hasani et al., 2023). 

5 Slope SP DLFM 

 

67.96 0.0 (Mouhoumed et al., 2023), (Wu et al., 

2018), (Matomela et al., 2020), (Al-

Adamat et al., 2010), (Mahmoud et al., 

2016), (Mouhoumed et al., 2024b), (de 

Winnaar et al., 2007), (Ramya & 

Devadas, 2019), (Adham et al., 2016), 

(Faisal & Abdaki, 2021), (Karakuş & 

Yıldız, 2022), (Ahmed et al., 2023), 

(Mahmoud & Alazba, 2015), 

(Moumane et al., 2024), (Meghanadh 

et al., 2022), (Maina & Raude, 2016), 

(R. Ahmad et al., 2024), (Al-Hasani et 

al., 2023). 

6 Elevation  EL DLFM 1544 365 (Al-adamat et al., 2012), (Ramya & 

Devadas, 2019), (Faisal & Abdaki, 

2021), (Karakuş & Yıldız, 2022) 

7 Distance  

to stream Or 

DR DLFM 10481 0 (Al-Adamat, 2008) 

(Ramya & Devadas, 2019) 

8 Proximity to 

Agriculture  

PA DLFM 45221.

8 

250 (Wu et al., 2018), (Mouhoumed et al., 

2024b), (de Winnaar et al., 2007), 

(Ramya & Devadas, 2019), (Faisal & 

Abdaki, 2021), (Ahmed et al., 2023). 

9 Distance to 

Settlement  

 

DS DLFM 62219.

9 

250 (Matomela et al., 2020), (Al-Adamat et 

al., 2010), (Mouhoumed et al., 2024b), 

(de Winnaar et al., 2007), (Ramya & 

Devadas, 2019), (Adham et al., 2016), 

(Faisal & Abdaki, 2021), (Karakuş & 

Yıldız, 2022), (Ahmed et al., 2023). 

10 Proximity to  

Roads 

 

PR DLFM 60651.

3 

250 (Wu et al., 2018), (Matomela et al., 

2020), (Mouhoumed et al., 2024b), 

(Ramya & Devadas, 2019), (Faisal & 

Abdaki, 2021), (Karakuş & Yıldız, 

2022), (Ahmed et al., 2023). 

11 Soil Texture 

 

ST SW 

 

 

 

- 

 

 

- 

(Al-Adamat, 2008), (Mouhoumed et 

al., 2023),(Wu et al., 2018), (Al-adamat 

et al., 2012), (Al-Adamat et al., 2010), 

(Mahmoud et al., 2016), (Mouhoumed 

et al., 2024b), (Ramya & Devadas, 

2019), (Adham et al., 2016), (Faisal & 

Abdaki, 2021), (Karakuş & Yıldız, 

2022), (Ahmed et al., 2023), (Mahmoud 

& Alazba, 2015), (Moumane et al., 

2024), (Meghanadh et al., 2022), 

(Maina & Raude, 2016), (R. Ahmad et 

al., 2024), (Al-Hasani et al., 2023). 

12 Standard 

Precipitation 

Index  

SPI DLFM 2.22 -1.63  

This study introduces a 

novel criterion that has not 

been utilized in previous 

research on RWH site 

selection 
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Where ILFM represents increasing linear fuzzy membership, DLFM is abbreviated 

decreasing linear fuzzy membership and SW is stepwise function for presenting ST and 

LULC scores. 

 

3.3.1 Physical Factors  

3.3.1.1 Elevation  

The Digital Elevation Model (DEM) represents a raster dataset that conveys the 

Earth's surface elevation, typically derived from topographic maps, satellite imagery, or 

aerial photographs (Al-Hasani, 2023). In this study, the DEM was sourced from the 

NASA Shuttle Radar Topography Mission (SRTM) with a resolution of 30 m, offering 

elevation information for the study region, as illustrated in Figure 2. Elevation is crucial 

in choosing locations for RWH, as it greatly influences the rate of surface runoff, the 

flow's direction, and the regions where water accumulates. Areas at lower elevations are 

generally more advantageous for RWH because they promote the accumulation of runoff, 

making them ideal for installing RWH structures. In contrast, regions at higher elevations 

tend to produce quicker runoff and have lower storage capacity. Consequently, lower 

elevation areas usually receive higher suitability ratings because of their enhanced ability 

to capture surface runoff and reduce the flow speed. 
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Figure 2: Elevation map 

 3.3.1.2 Slope 

The slope is an essential physical factor that greatly influences the effectiveness of 

RWH systems. This affects the speed of surface runoff, the ability to retain water, and the 

feasibility of constructing RWH infrastructure. Gently to moderately sloped areas are 

typically more favorable for rainwater harvesting (RWH) because they slow runoff, 

improve groundwater absorption, and reduce soil erosion. In contrast, steep slopes 

increase the speed of surface runoff, decrease water retention, and pose construction 

difficulties owing to their higher gradient and erosion risk. This study involved acquiring 

slope information from the DEM using raster-based spatial analysis performed in ArcGIS 

Pro. As shown in Figure 3, the spatial arrangement of the slopes varied throughout the 

study area. Regions with gentler slopes are more favorable for RWH than steeper areas, 

as they provide optimal conditions for capturing runoff and enhancing water infiltration. 
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Figure 3: Slope map of the study area 

 

 3.3.1.3 Soil texture 

Soil texture is essential in determining appropriate locations for rainwater 

harvesting (RWH) because it affects infiltration rates, the ability to retain water, and the 

generation of runoff. As noted by Al-Hasani et al. (2023)  and  Sayl et al. (2022), soils 

that possess a high capacity for retaining water, such as those rich in clay, are typically 

more suitable for RWH due to their low porosity and slow drainage characteristics. In 

contrast, sandy soil, which is known for its high permeability and rapid drainage, is 

generally less capable of holding water. 
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Figure 4: Soil texture map 

 

Figure 4 illustrates the spatial arrangement of soil texture across the study region, 

as categorized by the FAO Harmonized World Soil Database. According to this 

classification, Ferrasols, Luvisols, and Fluvisols are deemed to have moderate drainage, 

while Arenosols are categorized as having excessive drainage. In contrast, Vertisols and 

Leptosols are recognized as having poor and imperfect drainage, respectively. Suitability 

scores were determined based on these hydrological characteristics, with the highest 

scores given to imperfectly drained soils due to their excellent water retention ability as 

shown in Figure 5. 
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Figure 5: Assigned RWH suitability scores based on soil texture 

 3.3.1.4 Drainage Density  

Drainage density (DD) is characterized by the cumulative length of stream channels 

within a given watershed area, reflecting the extent to which the landscape is dissected 

and how efficiently the surface runoff is directed to the basin outlet. Within the realm of 

RWH, DD acts as a crucial physical factor that affects the concentration of runoff and 

hydrological response of the catchment area. Areas with a high density of drainage 

systems are often considered ideal for rainwater harvesting (RWH) site selection. This is 

because their extensive stream networks enable efficient collection and storage of 

concentrated surface runoff. Conversely, Regions with a high concentration of drainage 

systems are often considered optimal for selecting rainwater harvesting (RWH) sites. This 

is because of their extensive network of streams, which facilitates the effective collection 

and storage of concentrated surface runoff (Ahmed et al., 2023; Matomela et al., 2020).  
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Figure 6:Drainage density map 

 

Figure 6 illustrates the drainage density obtained from the stream networks, which 

were identified using a DEM by utilizing the line density in ArcGIS Pro. For the 

suitability analysis, drainage density was categorized according to its relative suitability 

for RWH. Areas with a highly dense network are considered more suitable, indicating 

their greater potential for effective surface runoff collection, whereas areas with a low 

stream network density are less preferable. 

3.3.1.5 Land Use Land Cover (LULC) 

Land surface conditions significantly affect surface runoff, infiltration, and water 

retention, with LULC being a key factor in these processes. LULC focuses on how water 

interacts with the surface. Natural vegetation, such as forest areas or grasslands, promotes 

water infiltration and reduces runoff velocity, trapping water streams due to the high 

permeability of the soil and the capacity for water retention of vegetation. However, land 

use related to human activities that influence landscape conditions, such as urban areas, 
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impervious surfaces such as roads, and buildings, increase surface runoff, making them 

ideal places for rooftop water harvesting systems.    

 

Figure 7: LULC classification map  

According to the current study, the Esri Land Cover 2023 dataset was utilized to 

provide spatial LULC at a 10-meter resolution that contains seven classes, as illustrated 

in Figure 7. For runoff harvesting, areas characterized by high surface runoff, such as bare 

ground, built-up, and rangelands zones, were considered more suitable, owing to their 

potential for efficient runoff collection. Forested areas, which exhibited lower runoff but 

higher infiltration capacity, were considered moderately suitable and assigned 

intermediate scores. Conversely, water bodies were considered inappropriate for runoff 

harvesting because they already possess ample water resources, as shown in Figure 8. 
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Figure 8: Stepwise function for LULC 

3.3.2 Environmental Factors 

3.3.2.1 Rainfall 

Rainfall serves a crucial role in determining the best sites for RWH, as it is the main 

factor influencing runoff and greatly affects the volume of water that can be gathered in 

a specific location. The study utilized rainfall data obtained from CHIRPS, a high-

resolution satellite dataset with a spatial resolution of 0.05°, which is available in raster 

format 2023, as depicted in Figure 9. The rainfall raster data were sorted into separate 

categories according to the spatial differences in the distribution of rainfall. Areas 

receiving higher rainfall were considered more suitable for RWH, whereas regions with 

lower rainfall were deemed less favorable. 
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Figure 9: Map of the rainfall 2023 

 

3.3.2.2 Curve Number (CN) 

The CN serves as an indicator to assess the portion of rainfall expected to be 

converted into surface runoff, considering elements such as land utilization, soil attributes, 

and prevailing ground conditions. This serves as a crucial criterion for identifying regions 

with a greater likelihood of runoff, which is essential for selecting appropriate locations 

for RWH. In this study, CN values were obtained from a high-resolution (250-meter) 

global gridded dataset developed by Jaafar et al. (2019), as presented in Figure 10, which 

integrated land cover and soil data to generate spatially detailed runoff estimates. These 

values were subsequently classified into suitability categories, with higher CN values 

indicating greater surface runoff potential and thus considered more favorable for RWH. 

Conversely, areas with lower CN values, which were more likely to absorb water than 

generate runoff, were deemed less suitable for harvesting purposes.  
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Figure 10: Curve number map 

 

3.3.2.3 Standardized Precipitation Index (SPI) 

SPI was determined using the approach outlined by McKee et al. (1993), which 

involves the normalization of precipitation data over a defined time period, as described 

in Equation (1). The SPI was calculated at a one-month scale (SPI-1) using 27 data points 

downloaded from CHIRPS rainfall across the study area, spanning from January 1990 to 

December 2023. SPI values can be either positive or negative, reflecting current climatic 

conditions, with positive values indicating better-than-normal conditions and negative 

values indicating the presence of dry or drought conditions. The classifications of drought 

and wetness intensity based on SPI values are summarized in Table 12. Subsequently, the 
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obtained values were converted into spatial maps using ArcGIS Pro as shown in Figure 

11. This was calculated using the following equation:

𝑆𝑃𝐼 =  
𝑋−𝑋̅

𝜎
(1) 

𝜎 = √∑ (𝑥𝑖−
𝑛
𝑖=1 𝑥̅)

2

𝑛−1
(2) 

where X is precipitation, X̅ is the average precipitation, σ is the standard deviation of the 

precipitation and 𝑛 is the number of data points 

Table 12: Classification of drought conditions based on SPI ranges 

SN SPI values Classification 

1 2 and above Extremely wet 

2 1.5 to 1.99 Very wet 

3 1.0 to 1.49 Moderately wet 

4 -0.9 to 0.99 Nearly normal 

5 -1.0 to -1.49 Moderately dry 

6 -1.50 to -1.99 Severely dry 

7 -2 and less Extremely dry  
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Figure 11: Standard precipitation index (SPI) map 

3.3.3 Socioeconomic Factors 

3.3.3.1 Proximity to Roads (PR) 

This study employed road network data from OpenStreetMap to develop a 

proximity map through spatial analysis. The vector-based road data was buffered by 250 

m to allow for potential future road development and prevent conflicts with the RWH 

infrastructure. was subsequently converted into a continuous raster surface using the 

Euclidean distance function to generate a proximity road (PR) raster, as shown in Figure 

12. The generated raster was then reclassified into suitability classes, with areas in close 

proximity to roads considered more suitable for RWH implementation. Conversely, far-

distance regions were considered less suitable.  
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Figure 12: Proximity to roads map 

3.3.3.2 Proximity to Agriculture (PA) 

Proximity to agriculture (PA) refers to the distance between a given location and 

cultivated areas. This layer is derived from Esri Land Use/Land Cover (LULC) data by 

clipping agricultural areas as a separate layer and applying the Euclidean Distance tool, 

as shown in Figure 13. The output obtained was refined by using the study area's boundary 

shapefile to define the area of interest. The generated raster layer was subsequently 

reclassified into suitability classes based on its relative accessibility to the agricultural 

land. Locations closer to cultivated areas were considered more suitable for RWH 

implementation than those farther from croplands. 
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Figure 13:Proximity to agriculture map 

 

3.3.3.3 Distance to Settlement (DS) 

Distance to settlements (DS) layer is obtained from Open Buildings data in CSV 

point format (https://sites.research.google/gr/open-buildings/ ). In ArcGIS Pro 3.3, the 

Euclidean Distance tool was utilized to create a raster layer that indicated the distance 

from each pixel to the closest settlement. The raster was subsequently trimmed using the 

boundary shape file of the study area to delineate the area of interest, as illustrated in 

Figure 14. The resulting distance layer was classified into five suitability classes, with 

areas closer to settlements considered more favorable for rainwater harvesting (RWH) 

site selection. Conversely, areas located farther from the settlements were considered less 

suitable. 

https://sites.research.google/gr/open-buildings/
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Figure 14:Distance to settlement map 

 

3.3.3.4 Distance to Stream Order (DSO) 

Distance to rivers (DR) is a crucial criterion in the selection of potential RWH 

locations, as it helps in identifying areas that are either favorable for capturing surface 

runoff or potentially vulnerable to erosion and flooding. Locations close to river channels 

often exhibit higher runoff accumulation, thereby increasing their hydrological viability 

for RWH. As illustrated in Figure 15, the DSO layer was created from a DEM by 

employing the Euclidean Distance tool to map a raster surface that indicates the closeness 

to the river network. Higher network areas are preferable for harvesting because of their 

high runoff potential, whereas lower network areas are less favorable. 
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Figure 15:Distance to streams orders     

               

3.4 Standardizing Decision Criteria  

Standardization involves adjusting all parameters to a uniform scale to ensure that 

they are compatible with integration within GIS systems. In this study, a standardization 

technique was applied using a linear fuzzy membership function to represent both the 

increasing and decreasing relationships, as shown in Table 11. The normalized values 

were categorized into five suitability levels: unsuitable, low, moderate, high, and optimal, 

with corresponding scores ranging from 1 to 5 (Mouhoumed et al., 2023). Additionally, 

they were classified into 10 scales ranging from 1 to 10 (Wu et al., 2018). This study 

adopted a 1 to 5 scale as shown in Figure 16, where higher values were indicative of more 

favorable conditions, while lower values denoted less suitable areas. For instance, the 

most appropriate areas were given a score of 5, while highly appropriate areas received 
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4, moderately appropriate areas of 3, less appropriate areas of 2, and inappropriate areas 

of 1. 

 

 

Figure 16: Standardizing decision criteria map 
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Chapter 4: Methodology  

4.1 Fuzzy Analytical Hierarchy Process (Fuzzy-AHP)  

Fuzzy AHP was originally developed by ZADEH (1965), which incorporates fuzzy 

set theory to efficiently tackle the complexity and uncertainty found in environmental 

conditions and expert evaluations (Mouhoumed et al., 2023). Fuzzy AHP involves four 

fundamental steps: fuzzification of crisp or linguistic values, standardization and 

geometric mean calculations, normalization of weights, and defuzzification of fuzzy 

numbers. Each step is explained in the subsequent sections. 

4.1.1 Constructing Fuzzy Pairwise Matrix 

The initial step in applying Fuzzy-AHP involves constructing a fuzzy pairwise 

matrix, which facilitates the creation of a decision matrix that includes all pertinent 

parameters. As shown in Table 4~10, a group of seven experts participated in the pairwise 

comparison process, utilizing Saaty’s scale of relative importance, as depicted Table 3. 

 

𝐴̃ =

[
 
 
 
 
𝐶11 𝐶12 ⋯ … 𝐶1𝑛

𝐶21 𝐶22 ⋯ … 𝐶2𝑛

⋮ ⋮ ⋱ ⋯ ⋮
⋮ ⋮ ⋯ ⋱ ⋮

𝐶𝑛1 𝐶𝑛2 ⋯ … 𝐶𝑛𝑛]
 
 
 
 

                                                              (3) 

 

Where 𝐴̃ is a fuzzy pairwise comparison matrix, 𝐶𝑖𝑗 is the fuzzy comparison value 

between criterion 𝑖 and criterion 𝑗 and 𝑛 is the total number of criteria (where 𝑛 = 12  

for this study)                     
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4.1.2 Consistency Ratio 

To evaluate the reliability of expert assessments within the Fuzzy-AHP, an extra 

step was added to determine the Consistency Ratio (CR), as proposed by Saaty (1980) 

and detailed in Equation (4). This step was utilized to verify the uniformity of the weights 

assigned in pairwise comparisons, ensuring that the criteria weights were determined 

through a systematic process rather than arbitrarily. 

𝐶𝑅 = 
𝜆𝑚𝑎𝑥−𝑛

𝑅𝐼(𝑛−1)
                                                                    (4) 

Where CR is for the consistency ratio, 𝜆𝑚𝑎𝑥 is the maximum eigenvalue of the 

pairwise comparison matrix, 𝑛  is the number of decision parameters, and RI is the 

random index (Table 13 ) (Velmurugan et al., 2011). 

Table 13: RI of AHP 

RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.58 

Size of 

Matrix 3 4 5 6 7 8 9 10 11 12 

 

If the calculated CR exceeds 0.1, it is necessary to reevaluate the assigned weights 

to ensure an acceptable level of consistency. Moreover, the AHP method was used to 

determine the CR. When the CR is within the acceptable range, the fuzzy AHP approach 

is applied. 

4.1.3 Fuzzification of Crip Value of AHP 

The procedure involves converting the crisp values in the AHP pairwise matrix into 

fuzzy numbers by determining the lower bound (lᵢⱼ), middle value (mᵢⱼ), and upper bound 

(uᵢⱼ), which represent the comparison of criterion 𝑖 to criterion 𝑗. The crisp values and their 
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reciprocals (Table 14), which are derived from linguistic terms, were established based 

on expert assessments of the criteria's relative importance. 

 

Table 14: Saaty’s Scale Used in AHP and Fuzzy-AHP Judgments 

Linguistic  

Term 

AHP Fuzzy-AHP 

Scale of 

Importance 

Reciprocal 

AHP 

Fuzzy-AHP TFN 

(𝑙𝑖𝑗, 𝑚𝑖𝑗, 𝑢𝑖𝑗) 

Reciprocal TFN 

(1 𝑢⁄ 𝑖𝑗
, 1 𝑚⁄ 𝑖𝑗

, 1 𝑙𝑖𝑗
⁄ ) 

Equal 

importance 

1 (1) (1, 1, 1) (1, 1, 1) 

Equal to 

moderate 

importance  

2 (1/2) (1, 2, 3) (1/3, 1/2, 1) 

Moderately 

important 

3 (1/3) (2, 3, 4) (1/4, 1/3, 1/2) 

Moderate to 

strong 

importance 

4 (1/4) (3, 4, 5) (1/5, 1/4, 1/3) 

Important 5 (1/5) (4, 5, 6) (1/6, 1/5, 1/4) 

Strong to very 

strong 

importance  

6 (1/6) (5, 6, 7) (1/7, 1/6, 1/5) 

Very strong 

importance 

7 (1/7) (6, 7, 8) (1/8, 1/7, 1/6) 

Very strong to 

the extreme 

importance  

8 (1/8) (7, 8, 9) (1/9, 1/8, 1/7) 

Extreme 

important 

9 (1/9) (9, 9, 9) (1/9, 1/9, 1/9) 

 

Where TFN is a triangular fuzzy number  

4.1.4 Geometric Mean Calculation 

Geometric means is frequently utilized to aggregate the pairwise comparisons 

provided by multiple experts, resulting in the values 𝑙𝑖𝑗 , 𝑚𝑖𝑗 , and 𝑙𝑢𝑖𝑗 , facilitating 

normalization, maintaining proportionality, and reducing the impact of extreme values 
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that are particularly crucial in decision-making processes. The 𝑙𝑖𝑗 represents the lower 

bound, which reflects the most optimistic evaluation, the 𝑚𝑖𝑗 is the middle value, which 

serves as the representative estimate of the fuzzy number and the 𝑢𝑖𝑗 is the upper bound 

value, which denotes the most pessimistic evaluation. This method ensures balanced and 

reliable synthesis of expert judgments within a pairwise comparison matrix. 

𝑙𝑖𝑗 = (∏ 𝑙𝑛
𝑗=1 𝑖𝑗

)

1

𝑘
,       𝑚𝑖𝑗 = (∏ 𝑚𝑖𝑗𝑛

𝑗=1 )
1

𝑘 ,   𝑢𝑖𝑗 = (∏ 𝑢𝑖𝑗𝑛
𝑗=1 )

1

𝑘                                   (5) 

Where k is the total number of experts (k=7 in this study) participating in the pairwise 

comparison evaluation process. 

4.1.5 Degree of Possibility and Weight Calculations   

In the extent analysis method introduced by Chang (1996), the aggregate extent 

value Si for each criterion was calculated by combining and standardizing the fuzzy extent 

values. This approach addresses the uncertainties in expert judgments by transforming 

crisp values into fuzzy numbers. In this approach, an object 𝑋 is defined to represent a set 

(𝑥1, 𝑥2 , …… . . 𝑥𝑛)  with a corresponding goal set 𝑈  containing (𝑢1, 𝑢2 , …… . . 𝑢𝑛) 

where extent analysis is applied to each goal individually.  

𝑆𝑖 = ∑ 𝑀𝑔𝑖
𝑗

∗ (∑ ∑ 𝑀𝑔𝑖
𝑗𝑚

𝑗=1
𝑛
𝑖=1 )

−1
𝑚
𝑗=1                                                      (6) 

Where 𝑗 = 1, 2, . . . . 𝑚, 𝑚 is number of criteria  𝑖 = 1, 2, … . . 𝑛, 𝑛 is number of 

alternatives 

𝑆𝑖 is a synthetic extent value for criterion 𝑖, 𝑀𝑔𝑖
𝑗

 is Fuzzy extent value for goal 𝑗  with 

respect to criterion 𝑖, based on the 𝑗𝑡ℎ alternative,  
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The calculation of the 𝑀  value for fuzzy extent analysis involves summing each 

triangular fuzzy number (TFN) across the rows of the matrix, as described by the 

following equation: 

∑ 𝑀𝑔𝑖
𝑗𝑚

𝑗=1 = (∑ 𝑙𝑗 , ∑ 𝑚𝑗 , ∑ 𝑢𝑗
𝑚
𝑗=1

𝑚
𝑗=1

𝑚
𝑗=1 )                                                (7) 

Similarly, the aggregated fuzzy extent value across all the alternatives is. 

[∑ ∑ 𝑀𝑔𝑖
𝑗𝑚

𝑗=1
𝑛
𝑖=1 ] = [∑ ∑ 𝑙𝑗

𝑚
𝑗=1

𝑛
𝑖=1 , ∑ ∑ 𝑚𝑗

𝑚
𝑗=1

𝑛
𝑖=1 , ∑ ∑ 𝑢𝑗

𝑚
𝑗=1

𝑛
𝑖=1 ]                                (8) 

The inverse of the aggregated fuzzy extent value was calculated to normalize the fuzzy 

numbers using Equation 8. 

[∑ ∑ 𝑀𝑔𝑖
𝑗𝑚

𝑗=1
𝑛
𝑖=1 ]

−1
= (

1

∑ 𝑢𝑖𝑗
𝑛
𝑖=1

,
1

∑ 𝑚𝑖𝑗
𝑛
𝑖=1

 ,
1

∑ 𝑙𝑖𝑗
𝑛
𝑖=1

)                                               (9) 

To evaluate the extent to which one triangular fuzzy number is at least as large as 

another, the possibility degree between them was determined. Let 𝑀1 = (𝑙1,   𝑚1,    𝑢1) 

and 𝑀2 = (𝑙2,   𝑚2,    𝑢2) is two triangular fuzzy membership functions. The degree of 

probability that  𝑀2 ≥ 𝑀1 is defined as: 

 

𝑀2 ≥ 𝑀1 = {

1, 𝑖𝑓 𝑚2 ≥ 𝑚1                                        
    0,     𝑖𝑓 𝑙1 ≥ 𝑢2                                               

(𝑙1−𝑢2)

(𝑚2−𝑢2)−(𝑚1−𝑙1)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                   (10) 
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Figure 17:Possibility of 𝑀2 ≥ 𝑀1 for Triangular Fuzzy Numbers (Chang, 1996) 

Determining the minimum value for the comparison of 𝑀1 and 𝑀2 it is calculated the 

value of  𝑉(𝑀2 ≥ 𝑀1) using equation 10 

𝑑′(𝐴𝑖) =  𝑚𝑖𝑛𝑉(𝑆𝑖 ≥ 𝑆𝑘                                                            (11) 

Where 𝑘 is 1, , 2, …𝑛; but 𝑘 ≠ 𝑖 ,  the weight vector is subsequently calculated using the 

following expression: 

𝑊′ = (𝑑′(𝐴1), 𝑑
′(𝐴2), …… , 𝑑′(𝐴𝑛))

𝑇
                                                        (12) 

Where 𝐴𝑖(𝑖 = 1, 2, … . 𝑛) are 𝑛 components, and 𝑑′(𝐴𝑖) represents the priority degree 

quantifying the evaluation of each alternative. 

4.1.6 Normalizing Weights of Criteria  

To obtain crisp values from the fuzzy weights, a defuzzification process was performed 

by normalizing the weights using Equation (12).  

𝑊 = (
𝑑′(𝐴𝑖)

∑ (𝑑′(𝐴𝑖))
𝑛
𝑖=1

)                                                                    (13) 

Where 𝑊 represents the normalized non-fuzzy weight, with 𝑖 = 1, 2, … . , 𝑛. 
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4.2 Sensitivity Analysis 

The concluding phase of Fuzzy-AHP involves conducting a sensitivity analysis, 

which is crucial for examining how changes in the level of fuzziness influence criteria 

weights and rankings, thereby evaluating the model's stability. The baseline scenario for 

fuzziness degrees is set to 1, representing the original fuzzy weight results, whereas the 

additional fuzziness degrees range from 0.85 to 1.75 with increments of 0.15. Changes in 

ranking order indicate that the criteria are sensitive to variations in the fuzziness degree, 

whereas criteria that remain unchanged demonstrate the stability of the proposed model 

(Ekmekcioğlu et al., 2021; Ishizaka and Labib, 2011).  

4.3 Mapping of RWH Suitability 

To create the RWH feasibility map, the weights calculated from the Fuzzy-AHP 

process were incorporated with GIS by utilizing the raster calculator tool. The normalized 

raster layer for each criterion is multiplied by its respective weight, and these weighted 

layers are then combined to create a composite raster that represents the RWH Suitability 

Index (RWHSI). The equation used is as follows: 

𝑅𝑊𝐻𝑆𝐼 =  ∑ 𝑊𝑗𝐶𝑗
𝑛
𝑗=1                                                                      (14) 

Where RWHSI is RWH suitable map Index, 𝑊𝑗 is a weight assigned to the 𝑗𝑡ℎ criterion, 

obtained through Fuzzy-AHP analysis, 𝐶𝑗 is normalized raster value of the 𝑗𝑡ℎ criterion, 

𝑛 is a total number of criteria. 

 



doi:10.6342/NTU202503692

49 

 

4.4 TOPSIS 

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 

developed by Hwang and Yoon (1981) is both logically sound and operationally effective, 

choosing options considered on their distance to the ideal positive solution and their 

remoteness from the ideal negative solution. As outlined by Behzadian et al. (2012), the 

TOPSIS method follows a structured six-step procedure: (1) creating the pairwise matrix, 

(2) standardizing the pairwise matrix, (3) allocating weights to the criteria, (4) calculating 

ideal positive and negative solutions, (5) computing the Euclidean distance, and (6) 

assessing the relative distance to the ideal solution. These steps are described in the 

following sections. 

4.4.1 Developing the Decision Matrix 

The determination matrix encompasses all attainable alternatives and integrates 

values across multiple criteria. As illustrated in figure 18, the decision matrix was 

developed through multiple steps, which included forming 1000m x 1000m grids by using 

the Fishnet tool in ArcGIS Pro to clip the study area. Following this, the Zonal Statistics 

as Table tool was utilized to calculate the average value for each pixel across the 12 input 

criteria raster datasets, as shown in Figure 18. The outcome of this process was a decision 

matrix consisting of 68,454 rows and 12 columns. This matrix is structured in an m × n 

format, where m signifies the number of choices and n represents the number of 

parameters, as indicated in Equation (14). 

 

𝐷̃ = [

𝐶1 𝐶2 𝐶𝑛

𝑎11 𝑎12 𝑎1𝑛

𝑎21 … ⋮
𝑎𝑚2 … 𝑎𝑚𝑛

]                                                                   (15) 
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Where 𝐷̃ is a decision matrix, 𝐶𝑖 is criteria, 𝑎𝑖 is alternatives, 𝑖 = 1, 2, 3, . . 𝑛; 𝑎𝑛𝑑 𝑗 =

1,2,3, . . 𝑚. 

4.4.2 Normalizing the Decision Matrix 

Normalization was performed to bring all criteria to a comparable scale, thereby ensuring 

a fair evaluation. The normalized pairwise matrix is calculated using Equation 15 as 

follows: 

𝐷𝑖𝑗 =
𝑎𝑖𝑗

√∑ 𝑋𝑖𝑗𝑚
𝑖=1

                                                                    (16) 

Where 𝐷𝑖𝑗 is a normalized decision matrix,  𝑖 = 1, 2, … .𝑚; and 𝑗 = 1, 2, … . 𝑛. 

4.4.3 Assigning Weights to Criteria 

Expert judgment was applied to assign weights to each criterion, and the Fuzzy-

AHP method was used to compute the normalized weights of the decision matrix by 

multiplying each normalized value with its corresponding criterion weight. 

𝑉𝑖𝑗 = 𝑊𝑗𝐷𝑖𝑗                                                                    (17) 

Where 𝑉𝑖𝑗 is a weighted normalized decision matrix, 𝑊𝑗 is a criterion weight obtained 

through Fuzzy AHP analysis                                                                                           

4.4.4 Identifying the Ideal Solution 

The Positive Ideal Solution (PIS) represents the most advantageous choice, 

characterized by attaining the maximum possible values for all criteria. For criteria that 

are beneficial, the highest values are selected, while for those that are not beneficial, the 

lowest values are taken into account. In contrast, the Negative Ideal Solution (NIS) 
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represents the least desirable choice, identified by selecting the minimum values for 

beneficial criteria and the maximum values for detrimental criteria. 

i. Positive ideal solution (A+)  

𝐴+ = {𝑣1+ …………𝑣𝑛+}                                        (18) 

Where 𝑣𝑗
+ = {

𝑚𝑎𝑥(𝑉𝑖𝑗) , 𝑖𝑓 𝑗 𝑖𝑠 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

𝑚𝑖𝑛(𝑉𝑖𝑗) , 𝑖𝑓 𝑗 𝑖𝑠 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛
 

ii. negative ideal solution (A−) 

𝐴− = {𝑣1− …………𝑣𝑛−}                                             (19) 

Where 𝑣𝑗
− = {

𝑚𝑖𝑛(𝑉𝑖𝑗) , 𝑖𝑓 𝑗 𝑖𝑠 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

𝑚𝑎𝑥(𝑉𝑖𝑗) , 𝑖𝑓 𝑗 𝑖𝑠 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛
 

 

4.4.5 Determination of the Euclidean Distance 

To identify the proximity of each alternative to the Positive Ideal Solution (PIS) and 

the Negative Ideal Solution (NIS), Euclidean distance is utilized. The proximity to the 

PIS indicates how close an option is to being the best choice, whereas the distance from 

the NIS shows how far it is from the least desirable option. 

• Separation from the most preferred (ideal) alternative (Di
+): 

𝐷𝑖
+ = √∑ (𝑉𝑖𝑗 − 𝑉𝑖𝑗

+)𝑛
𝑗=1

2
                                                            (20) 

• Separation from the least preferred (worst) alternative (Di
−): 

𝐷𝑖
− = √∑ (𝑉𝑖𝑗 − 𝑉𝑖𝑗

́ )𝑛
𝑗=1

2
                                                             (21) 
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4.4.6 Calculating Relative Closeness (CR)  

The relative closeness coefficient (RC) evaluates how near each option is to the Positive 

Ideal Solution while also taking into account its distance from the Negative Ideal Solution. 

𝑅𝐶𝑖 = 
𝐷𝑖

−

𝐷𝑖
++𝐷𝑖

−                                                                    (22)                                                             

The RC value is expected to fall within the range of 0 to 1, where a value 

approaching 1 suggests closer alignment with the ideal solution. and a value closer to zero 

indicates proximity to the negative ideal solution. Choices are arranged from highest to 

lowest based on their values, with higher values indicating more desirable options. 

Moreover, the obtained result was imported into GIS and joined with the sampling grid 

created in Section 3.2.1 and subsequently converted into a raster map as described in 

Figure 18. 

 

 

Figure 18: Spatial Mapping Workflow of TOPSIS Results 
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4.5 Comparing Fuzzy-AHP and TOPSIS for Suitability Raster Maps 

4.5.1 Change Detection Analysis 

The Compute Change Raster tool was utilized to conduct a change detection 

analysis using the Categorical Difference approach. The Filter Method was set to change 

pixels only, ensuring that the analysis focused exclusively on category transitions by 

excluding unchanged pixels from the classification results. Table 15 summarizes the input 

parameters used in the change-detection process, including their labels, definitions, and 

data types. 

Table 15: Input parameters for compute change raster 

Label Definition Data Type 

From Raster Old Raster (Fuzzy-AHP raster) Raster Dataset 

To Raster  New/latter Raster (TOPSIS raster) Raster Dataset 

Computer Change Method Categorical difference  String 

Filter Method  Changed Pixels Only String 

 

4.5.2 Confusion Matrix Analysis 

In the confusion matrix analysis, certain suitable RWH classes occupied very small 

areas, leading to a class imbalance when selecting random sampling points. To address 

this issue, the suitability map was reclassified into a binary format. Specifically, moderate, 

high, and optimal suitability of zones were merged into a single class labeled as suitable 

(assigned a value of 1), while the low suitability and unsuitable categories were grouped 

into an unsuitable class (assigned a value of 0). This reclassification enabled stratified 

random sampling with balanced representation across classes. In this procedure, the user’s 

accuracy was calculated using Equation (23), producer’s accuracy was used for Equation 
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(24), and Overall Accuracy was determined using Equation (25) to assess the 

effectiveness of the classification. 

𝑈𝐴 = 
𝑃𝐶𝐶𝐶

𝑃𝑇𝑐
                                                                    (23) 

Where UA is user’s Accuracy, PCCC is correctly classified pixels for a class, and PTcc is 

total pixels classified into that class. 

𝑃𝐴 = 
𝑃𝐶𝐶𝐶

𝑃𝑇𝑟𝑐
                                                                    (24) 

Where PRA is producer’s accuracy, PCCC is correctly classified as pixels for a class and 

PTrc is total reference pixels for that class. 

𝑂𝐴 = 
𝑃𝑛𝑐𝑐

𝑃𝑇𝑛𝑟
                                                                    (25) 

Where 𝑂𝐴 is overall accuracy, 𝑃𝑛𝑐𝑐  is a number of correctly classified pixels and 𝑃𝑇𝑛𝑟 is 

a total number of reference pixels.  

4.5.3 Correlation Analysis of Fuzzy-AHP and TOPSIS 

4.5.3.1 Sample Size Determination 

To ensure a statistically valid comparison between the raster maps of Fuzzy-AHP 

and TOPSIS, Cochran's sample size formula was employed to determine the necessary 

sample size (Olofsson et al., 2014). The observed overall accuracy, derived from the 

confusion matrix comparing the agreement between the TOPSIS and Fuzzy-AHP raster 

maps, was used as the input parameter. A confidence level of 95% and a margin of error 

of 5% were utilized. The formula is as follows: 

𝑛 =
𝑍2𝑂(1−𝑂)

𝑑2
                                                                    (26) 
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In this scenario, n is the required sample size, O represents the observed overall 

accuracy, Z is the standard normal deviation for a 95% confidence level, and d indicates 

the margin of error, which was set at 0.05. 

4.5.3.2 Descriptive Statistical Analysis and Normality Test 

After determining the sample size, the corresponding suitability scores at each 

sampled location were extracted from the Fuzzy-AHP and TOPSIS raster layers. These 

paired values served as inputs for the correlation analysis. Descriptive statistical measures 

include the average, middle value, variability, asymmetry, and peakedness (Joanes & Gill, 

1998; Murray et al., 2009), were computed to evaluate the distributional characteristics 

and normality of the samples extracted from the Fuzzy-AHP and TOPSIS raster datasets.  

Measurement of Central Tendency and dispersion 

𝑥̅ = ∑ 𝑥𝑖;    𝑎𝑛𝑑   𝑛
𝑖=1  𝑆 = √

∑ (𝑥𝑖−
𝑛
𝑖=1 𝑥̅)2

𝑛−1
                                                  (27) 

Where xi represents an extracted data from datasets, n is a sample size, x̅ is sample 

mean, and 𝑆 is a standard deviation of the sample data.   

Measure of Symmetry:  

𝐶𝑠 = 
𝑛 ∑ (𝑥𝑖−

𝑛
𝑖=1 𝑥̅)3

(𝑛−1)(𝑛−2)𝑆3                                                                    (28) 

Where Cs is coefficient of skewness.  

 

Measure of Kurtosis: 

𝐾 = 
𝑛2 ∑ (𝑥𝑖−

𝑛
𝑖=1 𝑥̅)4

(𝑛−1)(𝑛−2)(𝑛−3)𝑆4                                                                    (29) 
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Where 𝐾 is coefficient of Kurtosis. 

The Anderson–Darling (AD) test, as represented in equation (29), was used 

to assess the normality of the extracted sample data. This statistical technique evaluates 

how well the empirical data distribution aligns with a theoretical normal distribution with 

heightened sensitivity to variations in the distribution tails(Stephens, 1974).  

𝐴𝐷 = −𝑁 −
1

𝑁
∑ (2𝑖 − 1)[𝑙𝑛 (𝐹(𝑋𝑖)) + 𝑙𝑛(1 − 𝐹(𝑋𝑁+1−𝑖))]

𝑁
𝑖=1                  (30) 

Where AD is Anderson Darling test, N is number of samples, F (Xi ) the cumulative 

distribution function (CDF) evaluated at the ith ordered sample Xi  , and  X(N+1−i) is an  

ith value in descending order. 

4.5.3.3 Spearman’s Rho Analysis 

Spearman's rho coefficient, as introduced by Spearman (1904), is a non-

parametric statistical tool used to evaluate the strength and direction of a monotonic 

relationship between two variables. This study utilized a technique to evaluate the 

relationship between the suitability scores obtained from Fuzzy-AHP and TOPSIS. The 

coefficient was determined using the following formula: 

𝜌 = 1 −
6∗∑𝑑𝑖2

𝑛(𝑛2−1)
                                                                    (31) 

where ρ is Spearman’s rho coefficient and d is the ranking difference. 

𝑡 =
𝜌∗√𝑛−2

√1−𝜌2
                                                                    (32) 

Where 𝑡 is a t-statistic, 𝑛 − 2 is degree of freedom. 
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At a 95% confidence level, the calculated t-statistics and corresponding p-values 

indicate that a p-value below 0.05 indicates a statistically significant connection between 

the two sets of scores. 

 

Figure 19: Flowchart of the Methodological Framework 
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Chapter 5: Results and Discussions 

5.1 Fuzzy-AHP Result 

 5.1.1 Determination of Relative Weights for Decision Criteria  

This research evaluated the appropriateness of RWH locations using the Fuzzy-

AHP method, considering 12 decision criteria. This study primarily aimed to evaluate 

how each criterion contributes to the RWH potential across the study area. To accomplish 

this, expert opinions were collected through pairwise comparison surveys involving seven 

experts, each independently assessing the relative significance of the criteria. These 

responses served as the basis for constructing individual matrices for pairwise 

comparisons, which served as the basis for calculating weights using Fuzzy-AHP, as 

displayed in Figure 20. This approach facilitates the incorporation of expert insights into 

the structured and systematic nature of a formal decision-making framework, effectively 

capturing the uncertainty and variability inherent in expert evaluations. 

A crucial aspect of the Fuzzy-AHP approach is to verify the consistency of expert 

evaluations. To ensure the logical consistency of these assessments, the consistency ratio 

(CR) was determined for each expert comparison matrix. The CR values were 

subsequently evaluated against a standard limit of 0.1 (10%), which signifies an 

acceptable level of consistency. Figure 21 illustrates the CR values for all seven experts. 

As shown, all CR values remained below the threshold, indicating that pairwise 

comparisons were both consistent and methodologically sound. This validation process 

is essential for verifying the reliability of the calculated weights and reducing the impact 

of inconsistencies that might arise from subjective assessments. 
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Figure 20: Criteria weights obtained from experts' survey 

 

 

Figure 21: Consistency ratio of seven experts' survey 
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After conducting a consistency check, the fuzzy weights for each criterion were 

determined and expressed as triangular fuzzy numbers that included the lower, middle, 

and upper bounds. These weights are detailed in Table 16, offering a range-based 

representation that captures the uncertainty inherent in expert evaluations. To facilitate 

direct comparison and practical use, the fuzzy weights were defuzzified using a suitable 

method, transforming each triangular fuzzy number into a single representative value. 

Subsequently, the defuzzified weights were normalized so that their total equaled one, 

ensuring that they were interpretable and appropriate for further spatial analysis within 

the GIS framework. These procedures ensured that the resulting weights could be 

effectively utilized for spatial suitability mapping of the RWH sites. 

Table 16: Fuzzy-AHP Output Weights 

Criteria  Fuzzy Weight 

De-

fuzzifying 

Normalizing 

Final Weight 

RF 0.16011 0.26010 0.40325 0.27449 0.25311 

CN 0.08729 0.14396 0.23397 0.15508 0.1430 

SL 0.06772 0.11284 0.18714 0.12257 0.11302 

EL 0.03635 0.05986 0.10425 0.06682 0.06162 

DD 0.04956 0.08205 0.13416 0.08859 0.08169 

ST 0.04588 0.07727 0.13006 0.08440 0.07783 

LULC 0.03473 0.05703 0.09977 0.06385 0.05887 

PR 0.01919 0.03044 0.05270 0.03411 0.03145 

DSO 0.02692 0.04624 0.08048 0.05121 0.04722 

DS 0.01685 0.02667 0.04509 0.02954 0.02724 

PA 0.01843 0.02879 0.04774 0.03165 0.02919 

SPI 0.04457 0.07476 0.12720 0.08217 0.07577 

 

Table 17 displays the criteria weights and the rankings of decision factors 

determined using the Fuzzy-AHP method, categorized into three main areas: Physical, 

Environmental, and Socioeconomic parameters. The environmental category played the 

most significant role in the decision-making process, representing 47.19% of the total 

weight. This is followed by the physical category, which accounts for 39.30%, and the 
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socioeconomic category, which contributes 13.51%. For each category, both local weights 

(reflecting the relative importance within each group) and global weights (representing 

the overall influence across all criteria) are provided, along with corresponding rankings 

to support comparative analysis. 

Table 17: Computed weights and priority rankings of decision factors 

    Weight % Ranking 

Group Weight Criteria ID Local Global Local Global 

Physical 39.30 SL SL 28.75 11.3 3 3 

  ST ST 19.8 7.78 10 5 

  EL EL 15.67 6.16 5 7 

  DD DD 20.79 8.17 7 4 

  LULC  LULC 15.0 5.89 12 8 

Environmental 
47.19 RF RF 53.63 25.31 1 1 

  CN  CN 36.39 14.3 4 2 

  SPI SPI 19.29 7.58 11 6 

Socioeconomic 13.51 DSO DR 34.94 4.72 2 9 

  PA  PA 20.13 2.92 9 11 

  PR PR 23.32 3.15 6 10 

  DS DS 21.61 2.72 8 12 

 

A comprehensive assessment of the criteria revealed that rainfall (RF) holds the 

greatest significance, achieving a maximum local influence of 53.63% and a top global 

weight of 25.31%, thereby securing the first position overall. Curve number (CN) ranks 

second globally, with a global significance of 14.30% and a local significance of 36.39%. 

In terms of physical factors, slope (SL) ranks third globally, with a local weight of 28.75% 

and a global weight of 11.30%. Drainage density (DD) followed, with a local weight of 

20.79% and a global ranking of fourth. The other important physical parameters were soil 

texture (ST) with a local weight of 19.80% and a global rank of fifth, elevation (EL) with 

a local weight of 15.67%, LULC with a local significance of 15.00%, and a global rank 

of eighth. 
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On the other hand, the Socioeconomic category had a relatively low impact on the 

overall suitability evaluation. Within this group, distance-to-stream orders (DSO) stand 

out as the most significant factor locally, with a weight of 34.94%. However, on a global 

scale, it was ranked ninth, contributing only 4.72% of the total weight. Other 

socioeconomic factors, such as proximity to agriculture (PA), proximity to roads (PR), 

and distance to settlements (DS), had global weights of 2.92%, 3.15%, and 2.72%, 

respectively, placing them towards the bottom of the global rankings. 

These results have important consequences for the planning and execution of RWH 

techniques. These findings suggested that environmental and hydrological elements, such 

as rainfall, curve number, and slope, highlight the necessity of focusing on these factors 

during the initial phases of site selection. The significant global weights suggest that the 

suitability of RWH is primarily influenced by the natural features of the landscape, which 

impact both runoff production and the capacity to retain water. This observation is in line 

with the body of research underscoring the pivotal influence of rainfall intensity and its 

spatial and temporal distribution in selecting optimal sites for rainwater harvesting (Tsubo 

et al., 2005).Therefore, planners should first focus on these parameters to determine 

technically viable sites before considering the social or infrastructural factors. 

In semi-arid areas, such as Zambia's Southern Province, where water shortages are 

exacerbated by unpredictable rainfall, paying attention to hydrological and topographic 

suitability is particularly crucial. Even though socioeconomic aspects, such as proximity 

to roads, settlements, and agricultural zones, have a relatively minor global impact, they 

are vital for the practical application and long-term sustainability of systems. Although 

their lower positions in the model might indicate the study area's limited spatial variability, 

these criteria are crucial for effective operational planning. For instance, locations that 
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are far from road systems might sustain increased costs for building and transportation, 

whereas remote communities could face challenges in terms of access, upkeep, and use. 

These findings align with research from other semi-arid regions where 

environmental and physical factors have been recognized as the main influences on RWH 

suitability (Matomela et al., 2020; Mouhoumed et al., 2024b). The significant influence 

of rainfall and runoff-related factors underscores their essential role in determining 

effective site prioritization. This highlights the usefulness of hydrologically based spatial 

analyses, particularly in data-scarce conditions where field validation is resource-

intensive. These insights lay the groundwork for refining spatial decision support models 

to achieve an optimal balance between environmental accuracy and practical feasibility 

in implementation.  

5.1.2 Fuzzy-AHP-Based RWH Suitability Mapping 

The spatial arrangement of the RWH suitability zones in Zambia's Southern 

Province was determined by combining the criterion weights from the Fuzzy-AHP 

method with their respective parameters in ArcGIS Pro. The classification framework was 

organized into five levels: very low, low, moderate, high, and optimal. As depicted in 

Figure 22, the resulting spatial pattern revealed varied distribution throughout the 

province. The high and most suitable zones are relatively continuous in northern 

Mazabuka and Monze, Namwala, central and northern parts of Sinazongwe, Livingstone, 

and southwestern Kazungula districts. In contrast, other areas exhibited a more 

fragmented layout, with scattered occurrences of moderate and optimal suitability patches. 
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Figure 22: Spatial classification map obtained through Fuzzy-AHP 

As depicted in Figure 23 (a) and (b), the suitable zone covers the largest area, 

approximately 18,676.4 km², accounting for 28% of the entire study region. This indicates 

that a considerable portion of the province offers moderately favorable conditions for 

selecting RWH sites. The Low Suitable zone, spanning 17,037.18 km² (26%), consists of 

areas that only satisfy a portion of the evaluation criteria. 

Figure 23: Suitability class distribution: (a) Area, (b) Proportion 
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The high suitable and most suitable zones cover 14,835.77 km² (22%) and 7,971.42 

km² (12%), respectively. These areas exhibit highly favorable conditions, including 

balanced decision criteria. Interestingly, the most advantageous areas were mainly 

situated in the northern, southeastern, and southwestern parts of the province. These zones 

are considered ideal for large-scale RWH interventions owing to their advantageous 

physical, environmental, and socioeconomic factors. On the other hand, the regions 

classified as Not Suitable, which also account for 12% of the area (7,901.66 km²), are 

predominantly located in the western and central parts of the region of interest. These 

zones are identified by multiple limiting factors, including poor accessibility, remoteness 

from settlements and agricultural fields, and unfavorable soil conditions with low water 

retention capacity, which reduce the feasibility of implementing RWH systems. 

Approximately 62% of the provinces comprising the suitable, highly suitable, and 

most suitable zones were considered favorable for RWH development. These results offer 

an essential direction for policymakers and planners in determining priority areas. To 

enhance the process of selecting sites and enable a comparative ranking of choices based 

on their closeness to an ideal solution, the criteria weights derived from Fuzzy-AHP 

analysis were subsequently utilized in the TOPSIS method. By combining the unique 

advantages of both decision-making tools, this method enables a more comprehensive 

and detailed assessment of the potential RWH sites. 

 5.2 Sensitivity Analysis 

To assess the stability and robustness of the proposed framework, a sensitivity 

analysis was performed by altering the fuzziness degree (FD). In this study, the focus was 

on how different degrees of uncertainty affected the significance assigned to decision 

criteria, thus evaluating the consistency of the findings. The fuzziness degrees varied from 
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0.85 to 1.75, in increments of 0.15. Table 18 illustrates that as the FD values increased, 

the importance of the various criteria changed. Specifically, the significance of rainfall 

(RF), curve number (CN), and slope (SL) consistently increased with increasing FD 

values, enabling these criteria to maintain their rankings. By contrast, most other criteria 

experienced a decrease in weight, leading to changes in their rankings. 

To better understand the stability of the rankings, when FD is set to 1, it acts as the 

standard scenario for comparison. At an FD of 0.85, seven criteria retained their original 

positions, whereas five others, EL, DD, ST, LULC, and SPI, underwent changes in their 

rankings. At FD values of 1.3 and 1.45, only elevation and SPI experienced shifts in 

ranking. As FD rose to 1.6 and 1.75, additional criteria, such as elevation (EL), distance 

to settlements (DS), proximity to agriculture (PA), and SPI, exhibited changes in their 

rankings. Interestingly, at FD = 1.15, the rankings of all criteria remained stable. Across 

all FD levels, the rankings for rainfall (RF), curve number (CN), slope (SL), proximity to 

roads (PR), and distance to rivers (DR) remained consistent, underscoring the reliability 

of these factors. Moreover, when FD surpassed 1.0, the eight criteria consistently 

maintained their rankings, demonstrating their stability under increased fuzziness. 

Table 18: Sensitivity of criteria weights across varying fuzziness degrees 

FD 𝑊0.85 𝑊𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑊1.15 𝑊1.30 𝑊1.45 𝑊1.60 𝑊1.75 

RF 0.22689 0.25311 0.27616 0.29650 0.314622 0.33089 0.34562 

CN 0.13330 0.14300 0.15086 0.15727 0.16255 0.16696 0.17067 

SL 0.10825 0.11302 0.11649 0.11897 0.12075 0.12201 0.12287 

EL 0.06135 0.06162 0.06143 0.06093 0.06026 0.05947 0.05863 

DD 0.08260 0.08169 0.08037 0.07879 0.07711 0.07540 0.07370 

ST 0.08026 0.07783 0.07528 0.07272 0.07023 0.06785 0.06560 

LULC 0.06240 0.05887 0.05539 0.05232 0.04953 0.04701 0.04471 

PR 0.03480 0.03145 0.02851 0.02608 0.02398 0.02217 0.02060 

DSO 0.05308 0.04722 0.04222 0.03814 0.03471 0.03178 0.02926 

DS 0.03166 0.02724 0.02377 0.02098 0.01870 0.01680 0.01521 

PA 0.03464 0.02919 0.02485 0.02156 0.01892 0.01677 0.01499 

SPI 0.09081 0.07577 0.06467 0.05574 0.04863 0.04288 0.03815 
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As depicted in Figure 24 (a), there is a steady upward trend in rainfall (RF), 

signifying a notable increase in its weight as FD escalates. This trend implies that RF 

becomes more influential in decision making when uncertainty is higher. CN and SL also 

showed upward trends, albeit at a slower pace than that of RF. Conversely, several criteria, 

including EL, ST, SPI, PA, and DS, exhibited decreasing weight trends, indicating a 

decline in their relative importance as FD increased. These findings suggest that greater 

uncertainty amplifies the influence of the most critical criteria, while reducing the impact 

of less significant ones. Furthermore, Figure 24 (b) supports this pattern by showing the 

variation of weights across all the criteria at different FD levels. The graph demonstrates 

that certain criteria, such as RF and CN, maintain consistent rankings, whereas others 

show small variation, as indicated by overlapping weight lines. The close overlap among 

the weight curves indicates the stability and robustness of the method, as only minor 

variations in criterion weights are observed across different fuzziness degrees (FDs). 

 

Figure 24: (a) Criteria Weight Trends, (b) Weight Variation Across FD Levels 

To evaluate the influence of fuzziness on spatial decision-making, Figure 25 

presents the spatial impact of different fuzziness degrees (FD) on RWH suitability 

classifications obtained through the Fuzzy-AHP method. Each map is associated with a 



doi:10.6342/NTU202503692

68 

 

specific FD value, ranging from 0.85 to 1.75 in 0.15 increments, and shows the spatial 

variation in RWH suitability zones across the study area. In a manner similar to the 

baseline scenario, each map was classified into five zones: not, low, moderate, high, and 

optimal suitability. As the FD value increased, the maps revealed a gradual transition from 

sharply defined boundaries to more generalized and spatially diffuse patterns. This 

suggests that lower FD values impose stricter classification thresholds, resulting in clearer 

delineations, whereas higher FD values allow for greater uncertainty, leading to broader 

and more adaptable suitability zones. 

 

Figure 25: RWH Suitability Maps Generated Under Varying FD Levels 
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Figure 26: Variation in Suitability Class Areas Across Different FD 

Figure 26 illustrates how the total area assigned to each RWH suitability category 

changes with varying FDs in the fuzzy-AHP framework. Despite experiencing slight 

variations as the FD increases, the Suitable category consistently occupies the largest 

segment of the study area. A noticeable trend is that the areas labeled as Most Suitable 

and Highly Suitable gradually shrink with higher FD values, suggesting a more cautious 

assessment, as the model becomes less decisive in pinpointing ideal locations. Conversely, 

the regions marked as low suitability and not suitable grow with increasing FD, indicating 

a heightened sensitivity to uncertainty and a broader classification of less favorable areas. 

These patterns imply that higher FD values result in smoother and more generalized 

suitability distributions, aligning with the theoretical notion that increased fuzziness 

introduces more ambiguity and diminishes the model’s discrimination precision. 

Therefore, to supplement the Fuzzy-AHP analysis and facilitate a comparative assessment, 

TOPSIS was employed independently, as outlined in Section 5.4, using the same input 

parameters and criterion weights obtained from the Fuzzy-AHP method. 
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 5.3 TOPSIS Results and Alternative Rankings 

5.3.1 Alternative Analysis 

To utilize the TOPSIS technique for selecting locations for RWH, a sampling grid 

with cells measuring 1000 m x 1000 m was generated throughout the study region. Zonal 

statistics were employed to calculate the mean values of the 12 criteria used for decision-

making for each grid cell. These input variables, sourced from thematic raster datasets, 

provided a uniform and spatially explicit foundation for the TOPSIS analysis. This 

approach produced a dataset comprising 68,454 alternatives, with each grid cell assigned 

a Relative Closeness (RC) value ranging from 0.046 to 0.998, as determined through 

TOPSIS analysis.  The considerable number of alternatives generated is illustrated in 

Table 19.  

Table 19: Obtained RC through TOPSIS analysis 

Alternative  S+ S- RC Class 

Alter1 0.000856 0.051193 0.983549431 Most Suitable 

Alter2 0.045909 0.008531 0.156704124 Not Suitable 

Alter3 0.005983 0.030451 0.835774173 Most Suitable 

Alter4 0.026752 0.009342 0.258819117 Low Suitable 

Alter5 0.041066 0.008371 0.16933419 Not Suitable 

Alter6 0.043921 0.008761 0.166303124 Not Suitable 

Alter7 0.00316 0.040599 0.927784698 Most Suitable 

Alter8 0.026486 0.011127 0.295820562 Low Suitable 

Alter9 0.008748 0.025054 0.741200205 High Suitable 

Alter10 0.020312 0.013815 0.404819799 Suitable 

⋯ ⋯ ⋯ ⋯ ⋯ 

⋯ ⋯ ⋯ ⋯ ⋯ 

⋯ ⋯ ⋯ ⋯ ⋯ 

Alter68454 0.049687 0.009207 0.156334046 Not Suitable 

 

To enhance clarity and facilitate decision-making, RC scores were divided into five 

categories of suitability.  Alternatives with RC values of 0.80 or higher were labeled as 
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Most Suitable, indicating the greatest potential for RWH implementation. Values from 

0.60 to 0.80 were deemed highly suitable, while those between 0.40 and 0.60 were 

considered suitable. RC values from 0.20 to 0.40 were classified as low suitable, and 

those below 0.20 were marked as unsuitable, representing the least favorable options for 

RWH development as illustrated Figure 27 (a). Figure 27 (b) presents the percentage 

distribution of alternatives across the five suitability categories, based on a total of 68,454 

grid cells. It is crucial to understand that the figure represents the percentage of options 

allocated to each category rather than the physical area occupied by each class. 

 

Figure 27: (a) Relative closeness values; (b) Percentage of categories in Alternatives 

 

The results indicated that about 35.9% of the options were considered to have low 

suitability, while 27.0% were classified as unsuitable. In comparison, 16.3% were 

categorized as moderate, 11.9% as high, and only 8.8% as optimal, highlighting the 

limited availability of highly favorable sites for RWH within the study area. Collectively, 

this classification pattern illustrates the discriminatory power and internal consistency of 

the TOPSIS model in effectively ranking alternatives, depending on their closeness to the 

optimal solution. The relative closeness (RC) values assigned to each class provide a 
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robust framework for prioritizing potential RWH sites and contribute to spatially 

informed decision making supported by quantitative multi-criteria evaluation.  

5.3.2 Application of the TOPSIS Method for Mapping RWH Suitability 

The resulting dataset, comprising 68,454 alternatives with their corresponding 

Relative Closeness (RC) values, was exported as a CSV file and integrated with a spatial 

sampling grid (1000 m × 1000 m) within a GIS environment to associate each RC value 

with its geographic location. To facilitate the spatial visualization of RWH suitability, the 

joined dataset was rasterized as a 30-meter resolution. As illustrated in Figure 28: (a) 

Potential mapping for RWH sites, (b) Area of different classes and (c) percentage 

distribution of area through TOPSIS (a), the final output map classified RC values into 

five suitability categories, enabling a spatially explicit interpretation of optimal locations 

for RWH site selection based on the TOPSIS evaluation. 

Figure 28 (b) shows the total land area covered by each suitability class. The 

unsuitable category accounted for the largest portion of the study area, covering 

approximately 17852.02 km², and represented locations that were least favorable for 

effective RWH implementation. This is followed by the low suitability (24434.64 km²) 

and suitable (11121.13 km²) classes, which denote areas of moderate feasibility. The 

highly suitable and most suitable categories occupy smaller areas of the region, covering 

8135.12 km² and 5973.63 km², respectively. This descending trend from less to more 

suitable classifications underscore the selective spatial distribution of the optimal sites for 

RWH site selection. 
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Figure 28: (a) Potential mapping for RWH sites, (b) Area of different classes and (c) 

percentage distribution of area through TOPSIS 

 

As shown in Figure 28 (c), the relative proportion of each suitability class is 

calculated as a percentage of the entire area. The unsuitable category accounted for 26.40% 

of the total area, followed by low suitability (36.2%), suitable (16.50%), Highly Suitable 

(12.1%), and Most Suitable (8.9%). These proportions reaffirm the predominance of less 

favorable zones within the region and emphasize the limited spatial extent of highly 

suitable areas for the selection of potential RWH locations. Furthermore, these 

visualizations substantiate the spatial interpretation presented in the TOPSIS-based 

suitability map by quantifying the distribution of the suitability classes. The findings 

confirm the TOPSIS model's ability to effectively differentiate between regions, with 

varying potential for RWH. Although the suitability map generated by the TOPSIS 

method does not exactly mirror the spatial distribution created by the Fuzzy-AHP model, 
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it demonstrates a significant level of agreement in identifying the most advantageous 

areas. Importantly, regions labeled as Most Suitable, Highly Suitable, and Suitable in the 

TOPSIS results tend to coincide with the equivalent zones on the Fuzzy-AHP map. To 

further evaluate and measure the extent of concordance between these two approaches, 

subsequent sections offer a comparative analysis of their results. 

5.4 Comparative Analysis of Fuzzy-AHP and TOPSIS Outputs 

5.4.1 Change Detection 

Figure 29 presents a comparative spatial analysis of site suitability classification 

outputs derived from the Fuzzy-AHP and TOPSIS models along with the resulting change 

detection raster. Both maps employ a consistent five-class system ranging from unsuitable 

to the most suitable. This raster was generated using the Categorical Difference method 

with the changed pixel-only filter, focusing exclusively on areas of disagreement. A 

comprehensive visual representation of the change detection workflow is provided in 

Appendix, Figure A1. 

The change detection map was color-coded to indicate the direction of transitions 

between suitability classes, as defined in the accompanying legend. Green represents 

areas where both models agree (No Change), while various shades of red and other colors 

depict transitions between classes (e.g., suitable to unsuitable, highly suitable to most 

suitable). These transitions visually demonstrate how classification differences are 

distributed, and how intense they are throughout the study area. 
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Figure 29: Change Detection Map Comparing Suitability Classifications from Fuzzy-

AHP and TOPSIS 

 

To enhance the understanding of the model agreement, Table 20 presents the 

evolution from the Fuzzy-AHP results (input raster) to TOPSIS results (comparison 

raster). Approximately 63% of the study area exhibited spatial agreement between the 

two models, either through precise alignment or minor shifts between adjacent suitability 

categories. As shown in Table 20, these minor changes include transitions from unsuitable 

to low suitable (1.6%), low suitability to not suitable (12.72%), Suitable to Highly 

Suitable (4.53%), and Highly Suitable to Suitable (3.93%). Given the conceptual 

closeness of neighboring categories, these transitions are regarded as spatially consistent. 

Furthermore, 29.14% of the area experienced no change, with both models categorizing 
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it into the same suitability class, further emphasizing the level of concordance between 

the Fuzzy-AHP and TOPSIS results. 

Table 20: Spatial Agreement Analysis of Suitability Scores 

Class From 

(Fuzzy-AHP) 

Class To 

(TOPSIS) Transition 

Count 

Pixels 

Area 

(sq.km) 

Per-

Area % 

Not Suitable 

Low 

Suitable 

Not Suitable ->Low 

Suitable 1178086 1067.41 1.6 

Low Suitable 

Not 

Suitable 

Low Suitable ->Not 

Suitable 9387842 8505.88 12.72 

Suitable 

Highly 

Suitable 

Suitable->Highly 

Suitable 3345320 3031.04 4.53 

Suitable 

Most 

Suitable 

Suitable->Most 

Suitable 2145460 1943.90 2.91 

Highly 

Suitable Suitable 

Highly Suitable 

->Suitable 2901419 2628.84 3.93 

Highly 

Suitable 

Most 

Suitable 

Highly Suitable 

->Most Suitable 3337862 3024.28 4.52 

Most 

Suitable Suitable 

Most Suitable 

->Suitable 1352891 1225.79 1.83 

Most 

Suitable 

Highly 

Suitable 

Most Suitable 

->Highly Suitable 1340797 1214.83 1.82 

Same Same No Change 21502755 19482.63 29.14 

  

 

 

Percent-

Area 63% 

 

In contrast, 37% of the area exhibited notable classification differences between 

Fuzzy AHP and TOPSIS, as indicated in Table 21. These differences involved 

reclassification across non-adjacent categories, highlighting a more pronounced 

methodological divergence. Significant instances include transitions from suitable to 

unsuitable (7.49%), highly suitable to unsuitable (5.5%), and most suitable to unsuitable 

(2.72%). These inconsistencies might significantly influence the prioritization of RWH 

sites, potentially leading to inefficient resource allocation and difficulties during 

execution. The spatial distribution of these differences was prominently visible in the red-

dominated areas of the change detection map. 
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Table 21: Spatial Discrepancies in Suitability Classifications 

Class From 

(Fuzzy-AHP) 

Class To 

(TOPSIS) Class name 

Count 

Pixels 

Area 

(sq.km) 

Per-

Area % 

Not 

Suitable Suitable 

Not 

Suitable->Suitable 305488 276.79 0.41 

Not 

Suitable 

Highly 

Suitable 

Not 

Suitable->Highly 

Suitable 109528 99.24 0.15 

Not 

Suitable 

Most 

Suitable 

Not Suitable->Most 

Suitable 27210 24.65 0.04 

Low 

Suitable Suitable 

Low 

Suitable->Suitable 2430305 2201.98 3.29 

Low 

Suitable 

Highly 

Suitable 

Low 

Suitable->Highly 

Suitable 1327754 1203.02 1.8 

Low 

Suitable 

Most 

Suitable 

Low 

Suitable->Most 

Suitable 498471 451.64 0.68 

Suitable 

Not 

Suitable 

Suitable->Not 

Suitable 5524456 5005.45 7.49 

Suitable 

Low 

Suitable 

Suitable->Low 

Suitable 5630136 5101.20 7.63 

Highly 

Suitable 

Not 

Suitable 

Highly 

Suitable->Not 

Suitable 4059163 3677.82 5.5 

Highly 

Suitable 

Low 

Suitable 

Highly 

Suitable->Low 

Suitable 3344570 3030.36 4.53 

Most 

Suitable 

Not 

Suitable 

Most Suitable->Not 

Suitable 2003300 1815.10 2.72 

Most 

Suitable 

Low 

Suitable 

Most 

Suitable->Low 

Suitable 2028077 1837.54 2.75 

    

Percent-

Area  37 % 

 

The change detection analysis highlighted both the similarities and differences 

between the Fuzzy-AHP and TOPSIS models, indicating the need for a more thorough 

evaluation to accurately assess their spatial consistency. Although the models generally 

concur in identifying the most and least suitable areas for rainwater harvesting, they show 

significant discrepancies in categorizing zones that are marginally or moderately suitable. 

These variations underscore the importance of systematic comparative evaluations, such 



doi:10.6342/NTU202503692

78 

 

as confusion matrices and correlation analyses, to assess the consistency of the 

classification results. Considering that methodological differences can greatly influence 

site prioritization, especially in critical applications, such as selecting sites for harvesting, 

a confusion matrix analysis was subsequently utilized to assess the binary classification 

agreement between the models in Section 5.4.2. 

5.4.2 Confusion Matrix Analysis 

To assess the spatial agreement between the outputs of the Fuzzy-AHP and TOPSIS 

models, confusion matrix analysis was performed. Figure 1 demonstrates the use of a 

confusion matrix to assess the overall precision and reliability of the two models in 

identifying potential RWH sites. In this evaluation, the Fuzzy-AHP binary raster acted as 

the reference layer, whereas the TOPSIS binary raster was used as the input, and pixels 

were categorized into two groups: unsuitable (0) and suitable (1) as illustrated figure. The 

evaluation process involved three steps: (1) creating random points for accuracy 

assessment, (2) revising the classifications according to the reference raster, and (3) 

utilizing the confusion matrix tool to measure the agreement between the two models as 

illustrated in Figure 30. The resulting matrix provides a summary of the classification 

performance and the degree of alignment between the methods. 
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Figure 30: Binary classification of TOPSIS and Fuzzy-AHP suitability maps 

 

As observed in Figure 31, the overall classification accuracy was determined to be 

67%, indicating that approximately two-thirds of the pixels were consistently classified 

using both approaches. The user accuracy for suitable areas was relatively high at 80%, 

indicating a strong consensus in identifying favorable zones for RWH implementation. 

Conversely, the user accuracy for unsuitable areas was significantly lower at 53%, 

suggesting that TOPSIS tends to assign higher suitability to areas deemed unsuitable by 

Fuzzy-AHP. Additionally, the producer’s accuracy for unsuitable areas was 72%, showing 

that most areas identified as unsuitable in the Fuzzy-AHP model were similarly classified 

by TOPSIS. However, the producer’s accuracy for suitable areas decreased to 63%, 

indicating moderate consistency in this category. 
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Figure 31: Accuracy results of confusion matrix 

The variations in classification outcomes between the Fuzzy-AHP and TOPSIS 

models highlight their methodological differences, particularly in how they interpret 

regions of marginal or transitional suitability. In some cases, TOPSIS rated the locations 

as more suitable, whereas Fuzzy-AHP deemed them unsuitable. Despite these 

discrepancies, confusion matrix analysis indicated a moderate level of spatial agreement, 

suggesting a basic alignment between the two models. However, the binary nature of the 

confusion matrix does not fully reflect the variability of the continuous suitability scores 

produced by each method. To overcome this limitation and evaluate the capability of the 

consistent association between the model outputs, Spearman’s rho was used on the pixel-

based suitability scores extracted from both raster maps, as explained in the following 

section. 
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5.4.3 Correlation Analysis  

To evaluate the results of the TOPSIS and Fuzzy-AHP models, an association 

analysis was conducted to supplement the insights from the change raster analysis and 

confusion matrix. Both approaches involved categorizing the raster maps into five levels 

of suitability and using binary classification for confusion matrix analysis. To determine 

a suitable sample size for data extraction, Cochran's formula was utilized, taking into 

account the overall accuracy derived from the confusion matrix. This calculation indicates 

that a minimum sample size of 340 points is necessary. To ensure comprehensive spatial 

representation throughout the study area, 500 random sampling points were generated for 

each raster map using fuzzy AHP and TOPSIS. 

Table 22: Descriptive Statistics for ANOVA 

 Fuzzy-AHP data  TOPSIS data  

Sample size X̅ S2 X̅ S2 

(n=500) 0.5083 0.0164 0.390 0.0562 

(n=500) 0.507 0.0168 0.391 0.0551 

(n=500) 0.5083 0.0157 0.392 0.0545 

 P-Value 0.9832 P-Value 0.9964 

 

To improve the reliability of the comparison, the sampling process was repeated 

three times for each map, with 500 points being randomly selected in each iteration. The 

values obtained were then subjected to statistical analysis using one-way ANOVA (single-

factor analysis). As shown in Table 22, the findings reveal that the three samples taken 

from each model output do not show significant differences, confirming that they come 

from the same population and that random sampling was consistent. For the correlation 

analysis explained in the subsequent sections, the initial data of the extracted sample 

points were utilized for both the Fuzzy-AHP and TOPSIS raster layers. 
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5.4.3.1 Descriptive Statistical Analysis and Normality Testing  

Table 23 provides an overview of the descriptive statistics of the suitability scores 

derived from the fuzzy analytical hierarchy process (AHP) and TOPSIS methods. The 

results obtained using Fuzzy-AHP indicate a distribution that is nearly symmetrical, as 

the mean (0.508) is very close to the median (0.504), with a low skewness of 0.178 and a 

slightly negative kurtosis of −0.271, suggesting a distribution that is flatter than a normal 

curve. Conversely, the TOPSIS scores revealed a lower central tendency, with a mean of 

0.390 and median of 0.302, and showed greater variability, as evidenced by a higher 

standard deviation of 0.237. This distribution is more right-skewed, with a skewness of 

0.899, and has a more pronounced negative kurtosis of −0.437, indicating a flatter and 

more asymmetrical shape. The distributional properties justify the use of non-parametric 

statistical techniques such as Spearman's rho to compare the results of the two models. 

Table 23: Descriptive Statistics 

Fuzzy_AHP   TOPSIS   

Sample mean 0.508 Mean 0.390 

Standard Deviation  0.128  Median 0.302 

Sample median 0.504 Standard Deviation 0.237 

Skewness  0.178 Kurtosis -0.437 

Kurtosis -0.271  Skewness 0.899 

Maximum 0.844  Minimum 0.111 

Minimum 0.206 Maximum 0.993 

No. of Observations  500 No. of Observations 500 

 

The normality of suitability scores derived from the Fuzzy-AHP and TOPSIS 

models was evaluated using the Anderson–Darling (AD) test, as shown in Figure 32 and 

Figure 33. For the Fuzzy-AHP data, the AD test statistics were 0.45773, which was below 

the critical value of 0.781, indicating statistical acceptance at a significance threshold of 

5%. As a result, there was not enough evidence to dismiss the null hypothesis of normality. 

This conclusion is further corroborated by the histogram, which exhibits a symmetric 
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shape, and the Q–Q plot, in which the observed values align closely with the theoretical 

quantiles for both, suggesting that the Fuzzy-AHP scores approximate a normal 

distribution. 

 

 

Figure 32: normality testing for data extracted from Fuzzy-AHP map 

 

On the other hand, TOPSIS scores demonstrated a clear departure from normality. 

The AD test yielded a statistic of 24.149, which greatly exceeded the critical value, 

leading to the null hypothesis being rejected. The associated histogram highlights a 

significant right-skewed distribution, whereas the Q–Q plot shows a notable divergence 

from the diagonal reference line. Owing to the non-normal distribution of the TOPSIS 

scores, utilizing Spearman’s rho coefficient is more suitable for comparing the outcomes 

of the two models. 



doi:10.6342/NTU202503692

84 

 

 

Figure 33: Normality test for data extracted from TOPSIS map 

 

5.4.3.2 Spearman’s Correlation Analysis 

Table 24  presents a summary of the output analysis, showing that the Spearman’s 

coefficient (ρ) between the Fuzzy-AHP and TOPSIS suitability scores is 0.46, derived 

from a dataset of 500 observations. This coefficient reflects a moderate positive 

correlation, indicating that areas deemed highly suitable by one method are likely to be 

ranked similarly by the other. Although the correlation is not particularly strong, the 

findings suggest a fair level of agreement between the two methods in prioritizing 

potential sites for harvesting rainwater (RWH). 

Table 24: Spearman’s rho coefficient 

Parameters Value  Interpretation  

Spearman’s ρ 0.46 
Moderate positive correlation 

t-statistics (Ho=0) 11.52 
p < 0.001 (reject H₀) 

Degrees of Freedom (DF) 498                  — 
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The rankings produced by Fuzzy-AHP and TOPSIS show a statistically significant 

correlation (p < 0.001), providing strong evidence to reject the null hypothesis that there 

is no relationship between these two methods. The observed correlation is statistically 

significant and unlikely to have arisen from random variation, thereby reinforcing the 

credibility of the comparative analysis. Specifically, the integration of change detection 

using the Compute Change Raster tool, confusion matrix evaluation, and Spearman’s rank 

correlation enabled a comprehensive assessment of spatial agreement and model 

consistency.  

The change detection revealed notable transitions in suitability classifications, with 

a spatial agreement of 63% between the Fuzzy-AHP and TOPSIS models. The confusion 

matrix further quantified classification accuracy, yielding an overall agreement rate of 

67%, which indicates a moderate level of consistency between the predicted suitability 

outputs. Additionally, the Spearman’s rho coefficient of 0.46 demonstrated a moderate 

positive monotonic relationship between the suitability rankings generated by the two 

models. Collectively, these findings indicate that, despite methodological differences, 

both models exhibit converging spatial patterns in identifying appropriate RWH sites. 

This complementarity underscores their potential as integrated tools within spatial 

decision-support frameworks, offering a more robust and reliable foundation for 

sustainable water resource planning. 
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Chapter 6: Conclusions and Recommendations 

6.1 Conclusion  

In Zambia’s Southern Province, where climate variability exacerbates water 

insecurity, identifying optimal rainwater harvesting (RWH) sites is critical for sustainable 

water resource management. This study focused on developing a climate-responsive, 

geospatial decision-making framework to pinpoint the best sites for RWH. This was 

achieved by combining GIS with MCDA. The study employed twelve carefully selected 

criteria encompassing physical, environmental, and socioeconomic factors. The inclusion 

of the SPI notably improved the model’s capacity to identify areas vulnerable to drought, 

thereby enhancing the spatial accuracy of site selection. Utilizing the Fuzzy-AHP, the 

study found rainfall, curve number, and slope to be the most significant determinants of 

RWH suitability, maintaining consistent influence across varying levels of uncertainty. 

The findings present important implications for climate-resilient water resource 

planning and management. Suitability assessments using both Fuzzy-AHP and TOPSIS 

indicate that approximately 62% and 37.5 %, respectively, of the study area exhibits 

moderate to high potential for placing RWH structures. The regions identified as Most 

Suitable and Highly Suitable were mainly situated in the northern and southeastern areas 

of the province, where advantageous environmental and socioeconomic factors align. 

While minor discrepancies were observed in marginal suitability classes, the spatial 

concordance between the two models was substantial, with a 63% overlap, 67% 

classification accuracy, and a Spearman’s rank correlation coefficient of 0.46, 

demonstrating methodological reliability and consistency. These outcomes affirm the 

robustness and complementary nature of the applied approaches and underscore the 

framework’s value in guiding spatially informed decision-making. 



doi:10.6342/NTU202503692

87 

 

This research primarily benefits government, water resource investors and planners, 

NGOs, and local communities involved in climate adaptation and sustainable rural 

development. The framework provides spatially detailed insights into the suitability of 

RWH, facilitating data-driven decisions and aiding in the strategic distribution of 

resources for water infrastructure. The integration of climatic indicators alongside 

conventional criteria enhances the framework’s adaptability to changing environmental 

conditions, ensuring its continued relevance in regions affected by climate stress. 

This research lays strong groundwork for future studies focused on improving the 

model's accuracy and relevance. Potential extensions include the incorporation of 

advanced hydrological modeling, expanding socioeconomic factors and cost-benefit 

analyses to improve operational functionality across different geographic and 

administrative scales. Applying this framework in other semi-arid or arid environments 

could generate comparative insights and facilitate the development of scalable, 

transferable strategies for sustainable water resource management. Ultimately, this 

research contributes not only to academic scholarship but also to practical, actionable 

solutions for enhancing water security in vulnerable, climate-sensitive regions. 

6.2 Recommendations 

This research offers several key suggestions to improve the planning and 

implementation of RWH projects in areas with limited water resources, focusing 

particularly on Zambia's Southern Province. Priority should be given to developing RWH 

infrastructure in areas classified as very high and highly suitable, which collectively 

comprise around 62% of the area of interest. These high-potential locations are 

predominantly within the districts of Choma, Kalomo, Pemba, Monze, Mazabuka, and 

Livingstone, where conditions are optimal for the successful deployment of RWH 
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interventions. Although these areas should be the primary focus, moderately suitable 

regions also warrant consideration, particularly where local needs or constraints justify 

their inclusion. To ensure efficient allocation of resources, investments should be 

strategically directed toward the most favorable sites to enhance the overall impact and 

sustainability of RWH initiatives. 

Second, the inclusion of SPI within the site selection framework proved valuable 

for identifying drought-prone areas, highlighting the importance of incorporating 

dynamic climatic indicators into spatial planning processes. It is recommended that 

national and regional agencies integrate the SPI or similar indices to enhance climate 

resilience and improve the anticipation of rainfall variability. Third, the combined 

application of Fuzzy-AHP and TOPSIS, validated through a spatial agreement rate of 63% 

and a computed Spearman coefficient of 0.46, illustrated the advantages of employing 

multiple MCDA methods. This integrated approach improves analytical robustness and 

provides decision makers with greater confidence in prioritizing suitable RWH sites. To 

enable the broader adoption of this GIS–MCDA framework in other regions, targeted 

investments in high-resolution spatial data, remote sensing tools, and capacity building in 

GIS and MCDA methodologies are essential. 

Fourth, the design of rainwater harvesting (RWH) systems should be meticulously 

aligned with key biophysical parameters such as rainfall distribution, curve number, and 

slope to ensure hydrological feasibility. Particular attention should be given to areas 

where discrepancies between the two models are most pronounced, as these zones require 

targeted field validation and iterative refinement to improve site-specific accuracy and 

adaptability. Moreover, RWH should be advanced not merely as a localized water 

management solution, but as an integral component of broader national strategies for 

climate adaptation and disaster risk reduction. Realizing this vision necessitates the 
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establishment of supportive policy frameworks and sustained engagement of local 

communities throughout the planning, implementation, and maintenance stages. 

Collectively, these strategies can foster the sustainable management of water resources 

and bolster climate resilience in SAR areas that are at risk. 
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 Appendix A 

Figure 34 illustrates the methodology used to compute the change raster between 

Fuzzy-AHP and TOPSIS suitability classification results. The procedure entails 

categorizing similar classes for both raster maps from each method and utilizing the 

Compute Change Raster tool in ArcGIS Pro with the categorical difference method. The 

output highlights spatial reclassifications and areas of agreement or disagreement 

between the two models. 

 

 

 

Figure 34:Workflow for Raster-Based Change Detection Between Fuzzy-AHP and 

TOPSIS Outputs 

 




