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Abstract

Rainwater harvesting (RWH) is a sustainable solution for mitigating water scarcity,
particularly in regions experiencing irregular and declining precipitation. This research
focuses on the Southern Province of Zambia, a region that is becoming increasingly
susceptible to climate fluctuations and the resulting challenges to sustained water security.
Despite previous studies have explored RWH, there remains a significant shortfall in
developing integrated frameworks that are spatially optimized to address the unique
requirements of semi-arid regions. Here, the study developed a hybrid model integrating
Geographic Information Systems (GIS) with Multi-Criteria Decision Analysis (MCDA)
to delineate suitable zones for RWH implementation. In the evaluation, twelve criteria
were taken into account, addressing physical, environmental, and socio-economic factors,
with the Standardized Precipitation Index (SPI) serving as a climatic indicator. The Fuzzy
Analytic Hierarchy Process (Fuzzy-AHP) was applied to assess the relative weights of
the criteria, identifying rainfall, curve number, and slope as the most influential factors.
Suitability maps were generated and classified into five categories including not and low
suitable regions, most, highly, and moderately suitable. Results from Fuzzy-AHP and the
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) indicated
that 62% and 37.5% of the study area, respectively, are favorable for RWH. The northern
and southwestern regions exhibited the highest suitability due to their advantageous
physical and socio-economic conditions. Sensitivity analysis, conducted by varying the
fuzziness degree (FD), confirmed the robustness of the model. Validation through
TOPSIS revealed a 63% spatial agreement and 67% accuracy, supporting reliability of
the model. This research presents a reproducible, affordable, and climate-adaptive
approach for sustainable RWH site selection and informed water resource planning in

drought-prone regions.
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Chapter 1: Introduction
1.1 Background

Water is essential for maintaining life, promoting development, and supporting the
balance of ecosystem. The term is typically characterized by having sufficient water in
both quantity and quality to sustain economic activities, human well-being, and the health
of ecosystems (Alfonsov et al., 2008). Ensuring a dependable water supply is crucial for
supporting household, farming, and industrial activities, especially as the global demand
for water has increased dramatically in recent years due to growing pressures from both
domestic and agricultural sectors (Buraihi & Shariff, 2015; Wu et al., 2018; Yegizaw et
al., 2022). Additionally, Challenges related to water resources have become increasingly
critical on a global scale, as numerous regions continue to experience severe water
scarcity and prolonged droughts. These conditions deplete irrigation water supplies,
leading to widespread crop failures, food shortages, and substantial socioeconomic and

environmental losses (Odhiambo et al. 2021; Sopper 1992).

Africa, with a particular emphasis on Southern Africa, exhibits significant
vulnerability to drought, a condition exacerbated by climate change. The region's
vulnerability largely stems from its dependence on sectors that are sensitive to climate,
such as agriculture reliant on rainfall and services based on ecosystems. (Libanda et al.,
2019). In Zambia, the recurrence of droughts is largely attributed to variations in rainfall
patterns, which are affected by the Inter-Tropical Convergence Zone (ITCZ) and El Nifio—
Southern Oscillation (ENSO) phenomena (Musonda et al., 2020). These climatic
conditions have led to increasingly frequent and severe drought events, resulting in

widespread socioeconomic disruption across the country.
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In the most recent 2023-2024 drought, approximately 6.6 million individuals across
the three provinces were directly impacted. The 2023-2024 agricultural season was
identified as the driest in over four decades, characterized by delayed rainfall onset and
extended dry spells, resulting in significant disruptions to agriculture, water availability,
livestock health, and ecosystem integrity (Water, 2024). Consequently, Zambia is
increasingly facing growing challenges in meeting water needs for both household and
farming purposes. This highlights the significant need to enhance sustainable water
management approaches, particularly by developing and applying rainwater harvesting

(RWH) methods.

In response to these growing challenges, RWH is extensively recognized as an
efficient strategy for alleviating water scarcity and bolstering water security. This involves
the harvesting, conveyance, and storage of precipitation runoff, which can be utilized in
domestic, agricultural, and groundwater recharge contexts (Cruz, 2013; Mouhoumed et
al. 2024). As stated by Wu et al. (2018) , RWH serves as an essential additional water

source, particularly in areas where water is scarce.

RWH systems have been extensively adopted worldwide for various applications
including domestic water supply, groundwater recharge, and agricultural purposes. The
efficient application of RWH schemes is dependent upon diligent site identification and
robust design methodology. To achieve this, relevant studies have utilized multi-criteria
decision-making (MCDM) methods to identify the ideal sites for RWH structures,
including terracing, ponds, sand dams, check dams, infiltration trenches, percolation

tanks, and contour bunds.

Although rainwater harvesting (RWH) is increasingly acknowledged as a viable

method to address water shortages, there is a scarcity of research that systematically
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pinpoints the best RWH locations in Zambia's Southern Province using a integration of
Geographic Information Systems (GIS) and Multi-Criteria Decision-Making (MCDM)
techniques. While previous research has largely focused on physical, environmental, and
socio-economic aspects, there are still two significant gaps that have not been addressed.
First, the Standardized Precipitation Index (SPI), a recognized measure of drought, has
been largely excluded from current suitability evaluations, which restricts the
consideration of climate variability and the risk of prolonged drought. Second, there is a
noticeable absence of systematic evaluations comparing MCDM techniques to determine
the spatial consistency and reliability of their outputs in informing planning decisions.
This research fills these gaps by integrating SPI into the suitability analysis to improve
climate adaptability and by performing a comparative assessment of Fuzzy-AHP and
TOPSIS to evaluate the reliability of the models. Additionally, the framework offers a
detailed, reproducible GIS-MCDM model specifically designed for the Southern
Province, with potential use in other semi-arid areas. The outcomes of this research are
designed to steer the strategic deployment of RWH systems and enhance efforts to achieve

water security in the context of increasing climate unpredictability.

1.2 Objectives

This study primarily aims to pinpoint sustainable locations for harvesting rainwater
by employing a GIS-based framework for MCDM. This framework integrates physical,
socioeconomic, and environmental factors to improve the precision, efficiency, and long-

term sustainability of sites identification.
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1.2.1 Specific objectives

A. To determine and analyze the physical, environmental, and socioeconomic
parameters that affect RWH site suitability using GIS and remote sensing data.

B. To analyze the sensitivity of the assigned weights by evaluating the influence of
varying degrees of fuzziness on the weighting of selection criteria within the
Fuzzy Analytical Hierarchy Process (Fuzzy-AHP) framework

C. Generate and interpret suitability maps derived from the Fuzzy-AHP and the
technique for order of preference by similarity to ideal solution (TOPSIS) for the
determination of ideal RWH places.

D. To compare outputs from Fuzzy-AHP and TOPSIS models to assess their spatial

consistency, agreement, and reliability in supporting RWH planning decisions.

1.3 Thesis Organization

This thesis is structured into six chapters. A comprehensive review of the existing
literature on RWH techniques and methodologies used for site selection is presented in
chapter two. Chapter three offers a comprehensive summary of the study region,
including an explanation of the data sources and the processing methods used. Fourth
chapter describes the methodological framework used for the analysis. The findings of
the spatial analysis and suitability assessment are presented and critically discussed in
Chapter Five. section, chapter six, concludes the paper by summarizing key insights and

proposing recommendations for practical applications.
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Chapter 2: Literature Review
2.1 Overview of Global and Regional Context of Water Scarcity

Water scarcity is becoming an increasingly pressing global concern, specifically in
semi-arid and arid regions (SARs), where the aggregated consequences of climate change
and escalating water demand place substantial pressure on traditional water sources
(Matomela et al., 2020). As highlighted by Mahmoud and Alazba (2015) and Tiwari et
al. (2018), the decreasing availability of freshwater underscores the urgent necessity for
innovative and viable approaches to water management. In many developing nations, the
crisis is exacerbated by rapid population growth, expansion of agriculture, and rapid
urbanization. These factors collectively heighten water demand while diminishing the

dependability of the current supply systems under shifting climate conditions.

In recent decades, the growth of the global population has resulted in significant
increases in water consumption. According to the FAO (2015), the worldwide need for
water is increasing at a pace that is more than twice as fast as population growth. This
escalating demand is further exacerbated by the need for irrigated agriculture and
industrial development (Yannopoulos et al. 2019). These converging pressures have
raised global concerns regarding water scarcity and food security, particularly in regions
where rainfall is highly variable and unreliable. Wu et al. (2018) noted that by 2025,
approximately 1.8 billion individuals will inhabit areas facing severe water shortages,
while nearly two-thirds of the global population will be living in regions under water

scarcity.

Countries in the Horn of Africa, such as Somalia, Eritrea, Ethiopia, and Djibouti,
face severe water shortages and climate fluctuations that significantly threaten the

livelihoods of millions and the region's ecosystems (Mouhoumed et al., 2023). The

5
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situation in Somalia is particularly desperate, with approximately 6.1 million individuals
affected by recurrent droughts, resulting in widespread internal displacement (Broek and
Hodder, 2022). Studies by Ullah et al. (2022, 2023) and Mwelwa et al. (2024)have
indicated that since the 1980s, Southern Africa has been witnessing a steady increase in
temperatures coupled with a decline in rainfall. Recurring drought conditions in the region
are primarily due to interannual climate fluctuations linked to the El Nifio-Southern

Oscillation (ENSO), which is a major role in these patterns.

Similar to numerous other developing nations in Africa, Zambia encounters
considerable hurdles due to the intertwined issues of socioeconomic development,
climate change, and disaster risk.(Ghosh et al., 2024a; Ngoma et al., 2021). These
interconnected factors increase the country's risk of experiencing severe weather
phenomena such as floods and droughts. For instance, Musonda et al. (2020) highlighted
noteworthy spatial differences in the occurrence of droughts throughout Zambia, noting
that the southwestern region experienced more intense droughts than the northeastern
region. As noted by Kaluba et al. (2017), the region of southern Zambia faces a heightened
risk of experiencing both moderate and severe droughts, with these events expected to
occur every 3-4 years and 5-10 years, respectively. Their observations indicate that
drought occurrences were more frequent and severe in the southern region, whereas
northern Zambia experienced relatively stable conditions. These findings collectively
highlight the necessity of implementing region-specific drought mitigation strategies,
including the development of a water-harvesting infrastructure, to mitigate the adverse

impacts of recurrent droughts.
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2.2 Global and Regional RWH Practices

In regions with semi-arid and arid climates that rely on agriculture dependent on
rainwater, rainfall usually occurs in a few intense bursts, often resulting in significant
runoff losses. Within this framework, RWH has emerged as a promising strategy to bolster
agricultural resilience. It can provide supplemental irrigation during extended dry spells,
thereby aiding the stabilization and enhancement of crop yields (Sacolo & Mkhandi,
2021). Additionally, rainwater collection efficiently captures runoff, which in turn
enhances agricultural productivity through methods that are both economically sound and
environmentally responsible (Ziadat et al., 2006). Besides its advantages for agriculture,
this approach helps lessen the negative impacts of drought and climate change, while also

enhancing the dependability and accessibility of water resources.

RWH is increasingly being acknowledged as an environmentally sustainable
method to enhance water availability, particularly in regions facing water scarcity. This
approach 1is instrumental in alleviating water shortages, reducing reliance on
overexploited groundwater resources, and boosting agricultural productivity, particularly
in areas affected by climate variability (Mahmoud and Alazba, 2015; Tiwari et al., 2018;
Ziadat et al., 2006). Rainwater harvesting systems are generally categorized into three
primary types: in situ techniques that conserve soil moisture, techniques for channeling
surface runoff to irrigate crops within a field, and systems designed to gather and store
runoff from rooftops or land surfaces into designated containers for both household and
farming uses (Falkenmark & Rockstrom, 2004). Similarly, RWH refers to the process of
collecting and storing surface runoff to meet the water demands for household,
agricultural, and environmental purposes (Mouhoumed et al., 2024). Beyond augmenting
the water supply during arid periods, RWH also aids in flood control and groundwater

recharge. Furthermore, the capture and storage of rainwater runoff can mitigate the
7
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limitations associated with the exclusive reliance on rain-fed agriculture in regions

lacking irrigation infrastructure (de Winnaar et al., 2007).

RWH techniques have been tailored to accommodate diverse geographical and
climatic conditions worldwide. In India, traditional methods such as ponds and tanks have
been incorporated into managed aquifer recharge initiatives (Yadav et al. 2022). Similarly,
the ridge-furrow RWH technique has been utilized in China as a method for farming water
collection. This involves constructing ridges, often covered with a plastic film to boost
runoff and minimize infiltration and evaporation, alongside furrows where crops are
grown. This setup facilitates effective rainwater collection and enhances soil moisture,
thereby alleviating the consequences of drought (Sun et al., 2023; Zhou et al., 2012).
Additionally, various RWH methods are practiced in Sri Lanka, ranging from traditional
household techniques without dedicated infrastructure to conventional systems that
utilize roof catchments and storage tanks. These include informal setups with small
barrels and large-scale institutional systems that are supported by community and
government initiatives. Notably, these approaches significantly contribute to enhancing

household water security, particularly in remote regions (Vijitha et al. 2022).

Australia presented a strong example of large-scale RWH adoption. Nearly 34% of
urban households have implemented rainwater harvesting systems, collectively capturing
approximately 177 billion liters of water annually and approximately 9% of residential
water consumption (Khan et al.,, 2021). In response to recurring droughts, multiple
Australian states have introduced policies and financial incentives to promote the
widespread use of RWH, particularly in regions with limited municipal supply (Chubaka
et al.,, 2018). While global examples highlight the success and adaptability of RWH
systems, African countries, including Zambia, face unique climatic and infrastructural

challenges that necessitate localized approaches to RWH site identification.
8
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In Africa, RWH systems are gradually being considered as practical solutions to
persistent water shortages, particularly in sub-Saharan nations where erratic rainfall and
limited infrastructure pose severe challenges. Despite the application of various practices
to preserve soil and water, the adoption of runoff storage-based RWH techniques remains
limited (Rockstrom, 2000). In response, countries such as Kenya, Ethiopia, and Uganda
have promoted small-scale RWH systems, such as roof catchments and surface tanks, to
buffer against seasonal variability and drought (Mati et al., 2005). Conversely, large-scale
implementation is often constrained by socioeconomic, technical, and policy barriers,
underscoring the need for robust spatial tools to support site suitability assessment and
long-term planning. In Zambia, although technologies such as rooftop collection systems,
small dams, weirs, and boreholes exist in some areas, their adoption remains
geographically limited (Handia et al., 2003). This highlights the need for broader
integration and strategic scaling of RWH systems to strengthen the national water

resource management.

2.3 Key Factors Influencing RWH Site Selection

2.3.1 Factors Considered in Previous Studies

Determining the ideal sites for RWH is crucial for ensuring the effectiveness and
sustainability of these interventions. Prior to implementation, a thorough assessment of
the physical, environmental, and socioeconomic parameters of the target area is essential
to support long-term efficiency and successful incorporation of RWH systems into local
water management strategies. Identifying potential locations not only enhances water
availability and land productivity but also is essential in mitigating water scarcity and

tackling environmental issues, especially in SARs.
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Identifying appropriate decision criteria and parameters remains a central challenge
in MCDA for RWH, particularly given the increasing scope and complexity of these
criteria in recent years (Mouhoumed et al. 2024b). The concept of employing specific
physical parameters, such as LULC, soil type, slope, and drainage density, to determine
potential sites for RWH was initially introduced in 1995 through the Integrated Mission
for Sustainable Development (IMSD) initiative (Chowdhury & Paul, 2021; Mahamoud,
2024). In the literature, the selection of RWH sites has been broadened to incorporate
physical, socioeconomic, and environmental factors. As noted by Kahinda et al. (2008),
referring to the 2003 standards of the Food and Agriculture Organization (FAO), the
determination of suitable RWH locations requires consideration of multiple factors,
including topography, climate, hydrology, agronomic requirements, soil properties, and

socioeconomic considerations.

Expanding upon this foundation, Rane et al. (2023) assessed suitable dam locations
in the Ulhas River Basin in Western Maharashtra, India. The site selection process was
based on a diverse set of criteria such as rainfall, curve number, drainage density,
geological and geomorphological features, LULC, elevation, soil type, and proximity to
critical infrastructure, including roads, rivers, and fault lines. Similarly, Mouhoumed et
al. (2024b) conducted a study in the southern basin of Djibouti to map potential RWH
sites for managed aquifer recharge (MAR). Their methodological framework
incorporated a comprehensive range of indicators including LULC, drainage density,
slope, soil texture, watershed area, NDVI, curve number, rainfall, geological
characteristics, electrical conductivity, proximity to roads, settlements, and agricultural

zones.
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2.3.2 Standard Precipitation Index (SPI)

SPI was developed to assess precipitation deficiencies across multiple temporal
scales, facilitating the evaluation of drought impacts on diverse water resources (Chisanga
et al., 2025). It has since become one of the most commonly utilized tools for assessing
drought severity. Among the available drought indices, the SPI is considered the most
extensively applied for detecting and characterizing climate-related drought conditions
(Chisanga et al., 2025; WMO, 2012). It is crucial to recognize that the widespread use of
SPI can be attributed to several significant advantages. First, it is computationally
efficient and based on a straightforward methodological framework (Chisanga et al., 2025;
Nam et al., 2015). Second, it effectively identified the onset, intensity, duration, and
development of drought events. Third, its exclusive dependence on precipitation data
makes it particularly useful in areas with scarce hydrometeorological data ( Teuling et al.,
2013; Chisanga et al., 2025). Koudahe et al. (2017) highlighted that one of the key
advantages of the SPI method is its straightforwardness and flexibility for use over
various time frames, as it depends only on precipitation data gathered during a designated

period.

Several studies have highlighted the notable decline in rainfall across Africa
(Koudahe et al. 2017). Consistent with these observations, Iradukunda et al. (2023) and
Musonda et al. (2020) highlighted that Zambia is increasingly susceptible to drought
because of the diminishing precipitation levels. Expanding on this, Chisanga et al. (2025)
employed SPI to examine drought patterns in Zambia over the period 1981-2024.
Through their examination, they uncovered a variety of drought conditions ranging from
moderate to extreme over different periods. They also observed clear trends in the

occurrence, intensity, and duration of these drought episodes.
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Despite growing concerns about climate variability, many studies on rainwater
harvesting (RWH) site selection have yet to adequately incorporate climate index factors,
thereby limiting their capacity to address the long-term impacts of climate change (B. A.
Ahmad et al., 2024). The Standardized Precipitation Index (SPI), a well-established tool
for monitoring drought conditions(WMO, 2012), remains underutilized within GIS-based
multi-criteria decision analysis (MCDA) frameworks for identifying suitable RWH
locations. This study Seeks RWH site selection techniques by incorporating SPI as a
dynamic climatic factor, allowing for a more precise depiction of temporal precipitation
changes and enhancing the overall reliability of spatial suitability evaluations. By
including the SPI, the model's capacity to detect and prioritize areas susceptible to drought
is improved, thus facilitating climate-adaptive and cost-efficient RWH planning. By
integrating SPI with physical and socioeconomic elements, this method offers a more
comprehensive and contextually appropriate assessment of site suitability, especially in

areas frequently experiencing rainfall shortages.

2.4 GIS-Based MCDA for Identifying RWH Sites

Given the growing demand for affordable and time-efficient approaches to
identifying potential locations for RWH interventions, Ammar et al. (2016)organized the
methods typically utilized over the past 30 years to determine ideal places for RWH in
regions characterized by arid to semi-arid climates into four principal categories. The first
category emphasizes the integration of GIS with Remote Sensing (RS) technologies.
Forzieri et al. (2008) used these techniques to identify ideal locations for both subsurface
and surface RWH systems in Kidal and Mali. The second group integrated hydrological
modeling using GIS and RS. In this context, de Winnaar et al. (2007) utilized this method
to identify optimal sites for collecting runoff in South Africa, whereas Gupta et al. (1997)

estimated potential RWH zones in Rajasthan, India, using a similar combination.
12
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The third group involved MCDA combined with hydrological modeling (HM), RS,
and GIS. For example, Elewa et al. (2012) utilized this comprehensive approach to
determine suitable runoff harvesting locations on Egypt’s Sinai Peninsula. Similarly,
Weerasinghe et al. (2011) evaluated the allocation of water-collecting storage in the Sao
Francisco and Nile catchments in Brazil. The fourth category combined MCA with GIS
and RS alone. Prominent instances include the research conducted by Al-Adamat et al.
(2010), which utilized this approach to determine optimal places for RWH ponds in

Jordan.

GIS-based MCDA has become an effective and widely adopted approach for
collecting, managing, analyzing, and visualizing both spatial and non-spatial data to
support informed and evidence-based decision making (Coskun & Musaoglu, 2004;
Padmavathy et al., 1993). As stated by Al-Adamat et al. (2010), GIS, remote sensing, and
HM techniques have been widely utilized to determine and evaluate potential sites for
water-capturing projects within the framework of water resource planning. Among the
different MCDA approaches, AHP is particularly notable for its robust ability to derive
the relative importance of multiple assessment criteria. Approaches involving GIS, RS,
and HM have been broadly adopted to determine ideal locations for water-harvesting
schemes. In analyses utilizing GIS, decision-making processes frequently employ
approaches such as Weighted Linear Combination (WLC) and Boolean operators to

determine and rank viable sites based on various criteria (Al-Adamat et al., 2010).

In southeastern Botswana, a comparative study by Mosase et al. (2017) evaluated
the effectiveness of both the conventional AHP and its fuzzy logic-enhanced version in
identifying suitable sites for rainwater harvesting (RWH). Their findings demonstrated
that the Fuzzy-AHP approach yielded superior results, offering greater precision in

delineating suitable areas than the conventional AHP method. Similarly, Mouhoumed et
13

doi:10.6342/NTU202503692



al. (2024b) explored the feasibility of rainwater harvesting (RWH) in Djibouti's
southeastern basin using a comprehensive decision-making framework. This framework
integrates fuzzy AHP with the VIKOR method to evaluate and prioritize optimal RWH
sites. Hassan et al. (2025) employed a GIS-based MCDM method to identify potential

RWH zones in the Kerbala Desert region of Iraq.

Furthermore, Mouhoumed et al. (2023) assessed suitable sites for managed aquifer
recharge (MAR) in Djibouti by utilizing a comprehensive method that integrated Fuzzy-
AHP with TOPSIS. Tavakoli et al. (2025) introduced a comprehensive flood risk mapping
strategy for South Khorasan, Iran, which integrates the Analytic Hierarchy Process—
Weighted Linear Combination (AHP—WLC) with the Fuzzy Ordered Weighted Averaging
(FOWA) method. This approach was utilized to map out areas at risk of flooding and to
propose long-term solutions for reducing these risks. Similarly, Baalousha et al. (2023)
conducted a comparative evaluation of AHP and Fuzzy-AHP methodologies to assess
flood exposure risks in the arid regions of Qatar, employing these two frameworks to

highlight their performance.

Despite the widespread application of integrated MCDA techniques, including AHP,
Fuzzy-AHP, and MIF, in conjunction with TOPSIS or VIKOR for RWH site identification
(Mouhoumed et al., 2023, 2024b; Rane et al., 2023), There is a considerable gap in
research that quantitatively examines how effectively these methods' outputs align in
terms of spatial distribution. Although change detection techniques have been extensively
used to identify changes in time-series analyses of LULC (Kafi et al., 2014; Mahendra et
al., 2024; Tahraoui & Kheddam, 2024; Usman et al., 2015), their application in the
comparison of suitability maps generated through integrated MCDA approaches for RWH

remains unexplored. Specifically, pixel-level comparison tools such as change detection

14
doi:10.6342/NTU202503692



have not been employed to evaluate categorical differences among MCDA-derived

suitability outputs.

Confusion matrix analysis is a well-established method for assessing classification
accuracy (Banko, 1998; Foody, 2001), it has not yet been used to examine the consistency
between RWH suitability maps produced by different MCDA techniques. Additionally,
although Spearman’s rho coefficient is frequently used to evaluate the robustness and
direction of consistent relationships between attributes (Ali & Al-Hameed, 2022), its
application to pixel-based suitability scores extracted from the raster outputs of methods
such as Fuzzy-AHP and TOPSIS is limited. For instance, Sazakli et al. (2007)utilized
Spearman’s rho to investigate the relationship between microbiological and chemical
factors in rainwater collected in Greece. However, this method has not yet been used to
evaluate spatial agreement in RWH suitability models. This study addresses these
methodological gaps by employing the Compute Change Raster tool, confusion matrix
analysis, and Spearman’s rank correlation to systematically evaluate the spatial
consistency between suitability maps generated using Fuzzy-AHP and TOPSIS. This
approach provides a thorough framework for assessing the consistency and reliability of

MCDM results in the selection of RWH sites.
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Chapter 3: Study Area and Data
3.1 Study Area

Zambia is a landlocked country situated in Southern Africa bordered by eight other
nations: Zimbabwe, Tanzania, Mozambique, Namibia, the Democratic Republic of Congo,
Angola, Botswana, and Malawi. Situated between latitudes of 8 °S and 18 °S and
longitudes of 22 °E and 34 °E, the country experiences a wide range of climatic conditions.
The amount of rainfall each year shows considerable variation, with the northern regions
receiving an average of around 1,400 mm, while the southern areas get about 700 mm;
Temperatures typically fluctuate from 15°C in the winter months to 30°C during the

summer (Ghosh et al., 2024b)
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Figure 1: Study area
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This research focuses on the Southern Province of Zambia, as depicted in Figure 1,
which is the third-largest province, covering approximately 67,517 square kilometers.
This province is divided into 15 administrative districts: Chirundu, Chikankata, Choma,
Gwembe, Kalomo, Itezhi-Tezhi, Kazungula, Monze, Mazabuka, Namwala, Livingstone,
Pemba, Sinazongwe, Siavonga, and Zimba. The Central and Southern Provinces are the
largest areas of commercial farmland in Zambia, contributing significantly to maize
production. Nevertheless, the semi-arid climate and reliance on seasonal rainfall make
these regions extremely vulnerable to drought, which is intensified by rainfall variability
and broader climate fluctuations. The prevailing conditions significantly limit agricultural
productivity and availability of water resources, resulting in diminished crop yields,
heightened food insecurity, and economic losses, particularly among smallholder farmers
who lack access to irrigation infrastructure. Furthermore, prolonged dry spells exacerbate
the strain on limited water resources, jeopardizing rural livelihoods that rely heavily on

rain-fed agriculture for both sustenance and income.

3.2 Data Source

This study utilized a variety of satellite-based datasets with a strong focus on the
Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) product. CHIRPS
1s widely acknowledged and used throughout Africa, especially in Southern Africa,
including Zambia, for purposes such as monitoring droughts, analyzing rainfall trends,
and conducting hydrological modeling. The integration of satellite imagery with data
from ground-based stations, coupled with its high spatial and temporal resolution, makes
it particularly valuable in areas where data are scarce. CHIRPS has been utilized to
examine the temporal and spatial distribution of rainfall in South Kivu, Democratic
Republic of Congo(Ahana et al., 2024), as well as to evaluate drought characteristics in

Zambia through the use of the SPI (Chisanga et al., 2025). Furthermore, Chisanga et
17
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al.(2023) demonstrated that CHIRPS Version2 reliably estimates rainfall data using

gauges for daily, monthly, and annual periods. Table 1 presents a concise summary of the

datasets that were used in this research.

Table 1: Description of data sources

SN  Dataset Source Feature
1 Shapefile for Study Global Administrative Areas: Shapefile
area https://gadm.org
2 Digital Elevation USGS Earth Explorer datasets 30m x 30m
Model (DEM) portal: http:/earthexplorer.usgs.gov/
3 Land Use/Land cover Esri land use land cover 2023: 10m x 10m
LULC .. .
( ) https://livingatlas.arcgis.com/la
ndcover
4 Curve Number (CN) global curve number datasets: 250m
https://doi.org/10.6084/m9.figshare.7
756202
5 Soil Texture FAOQO: http://www.fao.org/soils- 1:5.000.000
portal/soil-survey/soil-maps-and-
databases
6 Rainfall spatial Data CHIRPS Rainfall data: 0.05° x 0.05°
CHRS Data Portal (uci.edu)
7 SPI data CHIRPS:https://developers.google.c  0.05° x 0.05°
om/earth-
engine/datasets/catalog/UCSB-
CHG_CHIRPS _PENTAD
8 Road data OpenStreetMap:
https://www.openstreetmap.org
9 Settlement Open Buildings: Csv points

https://sites.research.google/gr/open-
buildings
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https://gadm.org/
http://earthexplorer.usgs.gov/
https://livingatlas.arcgis.com/landcover
https://livingatlas.arcgis.com/landcover
https://doi.org/10.6084/m9.figshare.7756202
https://doi.org/10.6084/m9.figshare.7756202
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases
https://chrsdata.eng.uci.edu/
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_PENTAD
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_PENTAD
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_PENTAD
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_PENTAD
https://www.openstreetmap.org/
https://sites.research.google/gr/open-buildings/
https://sites.research.google/gr/open-buildings/

3.3 Design of Expert-Based Pairwise Comparison Framework

Table 2 summarizes the backgrounds of the seven experts involved in the pairwise
comparison process. The experts were chosen based on their academic qualifications and
professional backgrounds in fields pertinent to the study, such as civil engineering,
hydraulic engineering, environmental engineering, and water resources. Their
educational backgrounds range from master's to doctoral degrees, with professional

experience varying from less than five years to more than fifteen years.

Table 2: Profiles of Experts Involved in the Pairwise Comparison

No. of  Expert Background Level of Experience

Ex ID Education (Yrs)

1 Ex1 Civil Engineering PhD 10~15

2 Ex2 Business Management PhD > 15

3 Ex3 Environmental MSc 0~5
Engineering

4 Ex4 Hydraulic Engineering PhD 0~5

5 Ex5 Hydraulic Engineering PhD 5~10

6 Ex6 Water Resources MSc 0~5
engineering

7 Ex7 Hydraulic Engineering PhD 0~5

Table 3 displays Saaty’s essential scale for assessing relative importance, which was
employed to create the pairwise comparison matrices. This scale, which spans from 1
(indicating equal importance) to 9 (indicating extreme importance), enables experts to
quantitatively evaluate how one criterion compares in importance to another within the

context of multi-criteria decision analysis (MCDA).
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Table 3: Saaty’s Scale of relative importance

Linguistic Term

Scale of Importance

Equal importance
Equal to moderate importance

Moderately important

Moderate to strong importance

Important

Strong to very strong importance
Very strong importance
Very strong to the extreme importance

Extreme important

O 0 3 N Ui A W N —

Table 4 to 10 present the individual pairwise comparison matrices provided by the

seven experts. These matrices capture the experts' subjective evaluations of the relative

importance of the selected criteria for rainwater harvesting site suitability. Each expert

independently compared the criteria using Saaty’s fundamental scale of relative

importance, as outlined in Table 3. The resulting matrices form the basis for calculating

both individual and aggregated criterion weights through the Fuzzy Analytic Hierarchy

Process (FAHP), which is applied within the broader multi-criteria decision-making

(MCDM) framework.

Table 4: Pairwise Comparison Matrix by Expert 1

Criteria RF CN SL El DD ST LULC PR DSO DS PA SPI
RF 1 2 2 2 1 3 4 8 7 6 6 9
CN 0.5 1 2 1 3 4 3 5 5 6 1 9
SL 0.5 0.5 1 3 1 2 1 3 2 7 7 8
El 0.5 1 0.33 1 2 1 4 4 2 7 7 7
DD 1 033 1 1 1 1 2 4 3 5 3 9
ST 033 025 0.5 1 1 1 2 3 2 2 5 5
LULC 0.25 0.33 1 025 05 05 I 3 2 2 3 8
PR 0.13 020 033 025 03 0.33 033 1 1 1 2 2
DSO 0.14 020 05 05 033 05 05 1 17 3 5
DS 0.17 0.17 0.14 0.14 02 0.5 05 1 014 1 2 2
PA 0.17 1.00 0.14 0.14 033 02 0333 1 033 05 1 2
SPI 0.11 0.11 0.13 0.14 0.11 0.13 0.13 02 02 0.5 1 1
20
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Table 5: Pairwise Comparison Matrix by Expert 2

LU

Criteria RF CN SL El DD ST LC PR DSO DS PA SPI

RF 1 3 5 6 6 4 5 7 6 8 9 7
CN 0.33 1 4 3 6 5 5 5 4 7 8 6
SL 0.20 0.25 1 033 5 4 4 4 3 6 7 5
El 0.17 0.33 3 1 4 3 3 3 2 5 6 4
DD 0.17 0.17 0.20 0.25 1 3 3 3 2 5 4 3
ST 0.25 0.20 0.25 0.33 0.33 1 3 2 2 4 5 3
LULC 0.20 0.20 0.25 0.33 0.33 0.33 1 2 2 4 5 3
PR 0.14 020 0.25 0.33 033 05 05 1 05 4 4 0.5
DSO 0.17 025 033 050 05 0.5 05 2 1 3 4 2
DS 0.13 0.14 0.17 020 02 025 025 03 0.33 1 3 033
PA 0.11 0.13 0.14 0.17 025 0.2 0.2 03 025 033 1 033
SPI 0.14 0.17 0.2 025 033 033 033 05 0.5 3 3 1

Table 6: Pairwise Comparison Matrix by Expert 3

Criteria RF CN SL El DD ST LULC PR DSO DS PA SPI

RF 1 3 5 3 5 7 7 7 7 7 7 1
CN 0.33 1 3 3 5 5 3 5 5 5 5 1
SL 0.2 0.33 1 1 1 3 1 3 5 3 3 033
El 0.33 0.33 1 1 3 5 3 3 5 5 3 033
DD 02 02 1 033 1 033 1 1 1 1 1 0.14
ST 0.14 02 033 02 3 1 3 1 1 1 1 0.2
LULC 0.14 0.33 1 033 1 033 1 3 1 033 3 0.2
PR 0.14 02 03 03 1 1 0.33 1 3 3 1 0.2
DSO 0.14 02 02 02 1 1 1 0.33 1 033 1 020
DS 0.14 02 03 02 1 1 3 03 3 1 3 0.2
PA 0.14 02 03 03 1 1 0.33 1 1 03 1 0.2
SPI 1 1 3 3 7 5 5 5 5 5 5 1

Table 7: Pairwise Comparison Matrix by Expert 4

Factors Rf CN SL El DD ST LULC PR DR DS PA SPI

Rf 1 3.00 3.00 3.00 3.00 3.00 4.00 4.00 3.00 4.00 4.00 2.00
CN 0.33 1.00 0.33 050 0.25 2.00 2.00 3.00 0.50 3.00 3.00 0.33
SL 0.33 3.00 1.00 2.00 0.33 2.00 3.00 4.00 0.50 4.00 4.00 0.50
El 0.33 2.00 0.50 1.00 0.33 0.33 2.00 2.00 033 3.00 3.00 0.50

DD 033 4.00 3.00 3.00 1.00 2.00 3.00 4.00 2.00 4.00 3.00 0.50
ST 033 0.50 0.50 3.00 0.50 1.00 2.00 3.00 0.50 2.00 0.25 0.50
LULC 0.25 0.50 0.33 0.50 0.33 0.50 1.00 3.00 0.50 2.00 0.50 0.33
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PR 0.25 033 0.25 0.50 0.25 0.33 0.33 1.00 0.25 0.50 0.50 0.33
DSO 033 2.00 2.00 3.00 0.50 2.00 2.00 4.00 1.00 2.00 3.00 0.50
DS 025 033 025 033 025 050 050 2.00 050 1.00 2.00 0.50
PA 0.25 033 025 033 033 4.00 200 200 033 0.50 1.00 0.25
SPI 0.5 3 2 2 2 3 3 2 2 2 4 1

Table 8: Pairwise Comparison Matrix by Expert 5

Criteria RF CN SL EI DD ST LULC PR DSO DS PA SPI
RF 1 3.00 3 5 3 3 3 7 5 7 5 3
CN 0.33 1 3 3 1 1 1 5 3 5 3 1
SL 0.33 0.33 1 3 1 1 0.33 3 1 3 1 033
El 02 033 033 1 033 0.22 0.33 1 033 1 033 0.22
DD 033 1 3 1 1 1 3 5 3 3 1
ST 033 1 5 1 1 3 5 3 5 3 3
LULC 033 1 3 1 033 1 5 3 5 1 033
PR 0.14 022 033 1 033 02 0.2 1 033 1 0.3 0.33
DSO 0.14 033 1 3 02 033 033 3 1 3 1 033
DS 0.14 022 033 1 033 02 0.2 1 033 1 0.3 0.2
PA 0.2 0.33 3 033 033 1 3 1 3 1 033
SPI 033 1 3 5 1 033 3 3 3 5 3 1
Table 9: Pairwise Comparison Matrix by Expert 6

Criteria RF CN SL ElI DD ST LULC PR DSO DS PA SPI
RF 1 2 4 3 2 3 4 5 4 6 5 3
CN 0.5 1 2 3 2 3 2 6 5 6 4 3
SL 0.25 0.50 1 2 2 2 2 4 4 3 5 4
El 0.33 033 0.50 1 05 03 0.5 2 3 4 3 2
DD 0.5 0.50 0.50 2.00 1 05 2 3 4 3 2 5
ST 0.33 033 0.50 3.03 2.00 1 3 4 3 5 5 3
LULC 0.25 0.50 0.50 2.00 0.50 0.33 1 4 3 4 3 4
PR 0.2 0.17 025 0.50 0.33 025 0.25 1 033 3 03 0.5
DSO 0.25 0.20 0.25 033 0.25 0.33 0.33 3.00 1 2 3 0.5
DS 0.17 0.17 033 0.25 033 020 025 033 0.50 1 1 0.5
PA 0.2 025 0.20 0.33 0.50 020 033 3.00 033 200 1 0.33
SPI 033 033 025 05 02 03 0.25 2 2 2 3 1
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Table 10: Pairwise Comparison Matrix by Expert 7

Criteria RF CN SL EL DD ST LULC PR DSO DS PA SPI

RF 1 5 3 9 7 6 8 8 8 9 9 4
CN 0.2 1 033 8 5 4 6 6 6 7 7 033
SL 03 3 1 9 6 5 7 7 7 8 8 0.5
El 0.1 0.13 0.11 1 02 0.17 025 0.25 0.25 033 033 0.14
DD 0.1 02 0.17 5 I 05 3 3 3 4 4 025
ST 02 025 02 6 2 1 4 4 4 5 5 033
LULC 0.1 0.17 0.14 4 03 025 1 2 2 3 3 0.2
PR 0.1 0.17 0.14 4 03 025 05 1 1 2 2 0.17
DSO 0.1 0.17 0.14 4 03 025 05 1 1 2 2 0.17
DS 0.1 0.14 013 3 03 02 033 05 0.5 1 1 0.14
PA 0.1 0.14 013 3 03 02 033 05 0.5 1 1 0.14
SPI 03 3 2 7 4 3 5 6 6 7 7 1

3.3 Preparation of Thematic Layers

As indicated in Table 11, 12 criteria were employed to identify ideal RWH locations.
Eleven of these factors were determined through a comprehensive assessment of relevant
studies, while the remaining factor, The Standardized Precipitation Index (SPI) was
included due to its crucial function in evaluating rainfall shortages, determining drought
intensity, and pinpointing regions prone to drought conditions. The inclusion of SPI
enhances the analytical rigor of this study by integrating a climatic indicator that

facilitates sustainable site identification.

These 12 criteria were categorized into three main categories: physical,
environmental, and socioeconomic factors. Physical criteria including elevation, slope,
LULC, drainage density, soil texture, and Environmental factors are rainfall, curve
number, and the Standardized Precipitation Index (SPI). Socioeconomic factors include
proximity to farming regions, distance from populated areas, proximity to roads, and

proximity to rivers. The subsequent sections offer an in-depth analysis of each parameter.
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Table 11: Selected Criteria for RWH Site Selection with References

Cluster Criteria

ID

Stand- Membership Bound

Reference

Function

Low High

10

11

12

Drainage
Density

Curve
Number

Rainfall

Land Use
Land Cover

Slope

Elevation

Distance

to stream Or
Proximity to
Agriculture
Distance to
Settlement

Proximity to
Roads

Soil Texture

Standard
Precipitation
Index

DD

CN

RF

LULC

SP

EL
DR

PA

DS

PR

ST

SPI

ILFM 0 0.51

ILFM 60 94.0

ILFM 887 2029

SW

DLFM 67.96 0.0

DLFM 1544

10481 0

365
DLFM
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This study introduces a
novel criterion that has not
been utilized in previous
research on RWH site
selection
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Where ILFM represents increasing linear fuzzy membership, DLFM is abbreviated
decreasing linear fuzzy membership and SW is stepwise function for presenting ST and
LULC scores.

3.3.1 Physical Factors

3.3.1.1 Elevation

The Digital Elevation Model (DEM) represents a raster dataset that conveys the
Earth's surface elevation, typically derived from topographic maps, satellite imagery, or
aerial photographs (Al-Hasani, 2023). In this study, the DEM was sourced from the
NASA Shuttle Radar Topography Mission (SRTM) with a resolution of 30 m, offering
elevation information for the study region, as illustrated in Figure 2. Elevation is crucial
in choosing locations for RWH, as it greatly influences the rate of surface runoff, the
flow's direction, and the regions where water accumulates. Areas at lower elevations are
generally more advantageous for RWH because they promote the accumulation of runoff,
making them ideal for installing RWH structures. In contrast, regions at higher elevations
tend to produce quicker runoft and have lower storage capacity. Consequently, lower
elevation areas usually receive higher suitability ratings because of their enhanced ability

to capture surface runoft and reduce the flow speed.
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Figure 2: Elevation map

3.3.1.2 Slope

The slope is an essential physical factor that greatly influences the effectiveness of
RWH systems. This affects the speed of surface runoff, the ability to retain water, and the
feasibility of constructing RWH infrastructure. Gently to moderately sloped areas are
typically more favorable for rainwater harvesting (RWH) because they slow runoff,
improve groundwater absorption, and reduce soil erosion. In contrast, steep slopes
increase the speed of surface runoff, decrease water retention, and pose construction
difficulties owing to their higher gradient and erosion risk. This study involved acquiring
slope information from the DEM using raster-based spatial analysis performed in ArcGIS
Pro. As shown in Figure 3, the spatial arrangement of the slopes varied throughout the
study area. Regions with gentler slopes are more favorable for RWH than steeper areas,

as they provide optimal conditions for capturing runoff and enhancing water infiltration.
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Figure 3: Slope map of the study area

3.3.1.3 Soil texture

Soil texture is essential in determining appropriate locations for rainwater
harvesting (RWH) because it affects infiltration rates, the ability to retain water, and the
generation of runoff. As noted by Al-Hasani et al. (2023) and Sayl et al. (2022), soils
that possess a high capacity for retaining water, such as those rich in clay, are typically
more suitable for RWH due to their low porosity and slow drainage characteristics. In
contrast, sandy soil, which is known for its high permeability and rapid drainage, is

generally less capable of holding water.
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Figure 4: Soil texture map

Figure 4 illustrates the spatial arrangement of soil texture across the study region,
as categorized by the FAO Harmonized World Soil Database. According to this
classification, Ferrasols, Luvisols, and Fluvisols are deemed to have moderate drainage,
while Arenosols are categorized as having excessive drainage. In contrast, Vertisols and
Leptosols are recognized as having poor and imperfect drainage, respectively. Suitability
scores were determined based on these hydrological characteristics, with the highest
scores given to imperfectly drained soils due to their excellent water retention ability as

shown in Figure 5.
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Figure 5: Assigned RWH suitability scores based on soil texture

3.3.1.4 Drainage Density

Drainage density (DD) is characterized by the cumulative length of stream channels
within a given watershed area, reflecting the extent to which the landscape is dissected
and how efficiently the surface runoff is directed to the basin outlet. Within the realm of
RWH, DD acts as a crucial physical factor that affects the concentration of runoff and
hydrological response of the catchment area. Areas with a high density of drainage
systems are often considered ideal for rainwater harvesting (RWH) site selection. This is
because their extensive stream networks enable efficient collection and storage of
concentrated surface runoff. Conversely, Regions with a high concentration of drainage
systems are often considered optimal for selecting rainwater harvesting (RWH) sites. This
is because of their extensive network of streams, which facilitates the effective collection

and storage of concentrated surface runoff (Ahmed et al., 2023; Matomela et al., 2020).
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Figure 6:Drainage density map

Figure 6 illustrates the drainage density obtained from the stream networks, which
were identified using a DEM by utilizing the line density in ArcGIS Pro. For the
suitability analysis, drainage density was categorized according to its relative suitability
for RWH. Areas with a highly dense network are considered more suitable, indicating
their greater potential for effective surface runoff collection, whereas areas with a low

stream network density are less preferable.

3.3.1.5 Land Use Land Cover (LULC)

Land surface conditions significantly affect surface runoff, infiltration, and water
retention, with LULC being a key factor in these processes. LULC focuses on how water
interacts with the surface. Natural vegetation, such as forest areas or grasslands, promotes
water infiltration and reduces runoff velocity, trapping water streams due to the high
permeability of the soil and the capacity for water retention of vegetation. However, land

use related to human activities that influence landscape conditions, such as urban areas,

30
doi:10.6342/NTU202503692



impervious surfaces such as roads, and buildings, increase surface runoff, making them

ideal places for rooftop water harvesting systems.
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Figure 7: LULC classification map

According to the current study, the Esri Land Cover 2023 dataset was utilized to
provide spatial LULC at a 10-meter resolution that contains seven classes, as illustrated
in Figure 7. For runoff harvesting, areas characterized by high surface runoff, such as bare
ground, built-up, and rangelands zones, were considered more suitable, owing to their
potential for efficient runoff collection. Forested areas, which exhibited lower runoff but
higher infiltration capacity, were considered moderately suitable and assigned
intermediate scores. Conversely, water bodies were considered inappropriate for runoff

harvesting because they already possess ample water resources, as shown in Figure 8.
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Figure 8: Stepwise function for LULC

3.3.2 Environmental Factors

3.3.2.1 Rainfall

Rainfall serves a crucial role in determining the best sites for RWH, as it is the main
factor influencing runoff and greatly affects the volume of water that can be gathered in
a specific location. The study utilized rainfall data obtained from CHIRPS, a high-
resolution satellite dataset with a spatial resolution of 0.05°, which is available in raster
format 2023, as depicted in Figure 9. The rainfall raster data were sorted into separate
categories according to the spatial differences in the distribution of rainfall. Areas
receiving higher rainfall were considered more suitable for RWH, whereas regions with

lower rainfall were deemed less favorable.
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3.3.2.2 Curve Number (CN)

Figure 9: Map of the rainfall 2023

The CN serves as an indicator to assess the portion of rainfall expected to be

converted into surface runoff, considering elements such as land utilization, soil attributes,

and prevailing ground conditions. This serves as a crucial criterion for identifying regions

with a greater likelihood of runoff, which is essential for selecting appropriate locations

for RWH. In this study, CN values were obtained from a high-resolution (250-meter)

global gridded dataset developed by Jaafar et al. (2019), as presented in Figure 10, which

integrated land cover and soil data to generate spatially detailed runoff estimates. These

values were subsequently classified into suitability categories, with higher CN values

indicating greater surface runoff potential and thus considered more favorable for RWH.

Conversely, areas with lower CN values, which were more likely to absorb water than

generate runoff, were deemed less suitable for harvesting purposes.
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Figure 10: Curve number map

3.3.2.3 Standardized Precipitation Index (SPI)

SPI was determined using the approach outlined by McKee et al. (1993), which
involves the normalization of precipitation data over a defined time period, as described
in Equation (1). The SPI was calculated at a one-month scale (SPI-1) using 27 data points
downloaded from CHIRPS rainfall across the study area, spanning from January 1990 to
December 2023. SPI values can be either positive or negative, reflecting current climatic
conditions, with positive values indicating better-than-normal conditions and negative
values indicating the presence of dry or drought conditions. The classifications of drought

and wetness intensity based on SPI values are summarized in Table 12. Subsequently, the
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obtained values were converted into spatial maps using ArcGIS Pro as shown in Figure

11. This was calculated using the following equation:

X-X

SPI = —~

g

_ /Z?=1(xi_’_‘)2
o= —_—
n—1

(1

2

where X is precipitation, X is the average precipitation, o is the standard deviation of the

precipitation and n is the number of data points

Table 12: Classification of drought conditions based on SPI ranges

SN SPI values Classification

1 2 and above Extremely wet

2 1.5to 1.99 Very wet

3 1.0 to 1.49 Moderately wet

4 -0.9 t0 0.99 Nearly normal

5 -1.0 to -1.49 Moderately dry

6 -1.50 to -1.99 Severely dry

7 -2 and less Extremely dry
35
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Figure 11: Standard precipitation index (SPI) map

3.3.3 Socioeconomic Factors

3.3.3.1 Proximity to Roads (PR)

This study employed road network data from OpenStreetMap to develop a

proximity map through spatial analysis. The vector-based road data was buffered by 250

m to allow for potential future road development and prevent conflicts with the RWH

infrastructure. was subsequently converted into a continuous raster surface using the

Euclidean distance function to generate a proximity road (PR) raster, as shown in Figure

12. The generated raster was then reclassified into suitability classes, with areas in close

proximity to roads considered more suitable for RWH implementation

distance regions were considered less suitable.
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Figure 12: Proximity to roads map

3.3.3.2 Proximity to Agriculture (PA)

Proximity to agriculture (PA) refers to the distance between a given location and
cultivated areas. This layer is derived from Esri Land Use/Land Cover (LULC) data by
clipping agricultural areas as a separate layer and applying the Euclidean Distance tool,
as shown in Figure 13. The output obtained was refined by using the study area's boundary
shapefile to define the area of interest. The generated raster layer was subsequently
reclassified into suitability classes based on its relative accessibility to the agricultural
land. Locations closer to cultivated areas were considered more suitable for RWH

implementation than those farther from croplands.
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Figure 13:Proximity to agriculture map

3.3.3.3 Distance to Settlement (DS)

Distance to settlements (DS) layer is obtained from Open Buildings data in CSV
point format (https://sites.research.google/gr/open-buildings/ ). In ArcGIS Pro 3.3, the
Euclidean Distance tool was utilized to create a raster layer that indicated the distance
from each pixel to the closest settlement. The raster was subsequently trimmed using the
boundary shape file of the study area to delineate the area of interest, as illustrated in
Figure 14. The resulting distance layer was classified into five suitability classes, with
areas closer to settlements considered more favorable for rainwater harvesting (RWH)
site selection. Conversely, areas located farther from the settlements were considered less

suitable.

38
doi:10.6342/NTU202503692


https://sites.research.google/gr/open-buildings/

Distance to Settlement

18,788.1 -

DS 24.887.9
0.1 - 2,684 24,888 -
31,963.9
2.684.1 - ;
5612 o 31,964 -
5.612.1 - 40,015.9
o 3012,
9272 o 40.016 -
9,272.1 - 49.043.9
13,664 49,044 -
13,664.1 - 62,219.9

18,788

0 20 40 80 120 160

[ ™, IKm

Figure 14:Distance to settlement map

3.3.3.4 Distance to Stream Order (DSO)

Distance to rivers (DR) is a crucial criterion in the selection of potential RWH
locations, as it helps in identifying areas that are either favorable for capturing surface
runoff or potentially vulnerable to erosion and flooding. Locations close to river channels
often exhibit higher runoff accumulation, thereby increasing their hydrological viability
for RWH. As illustrated in Figure 15, the DSO layer was created from a DEM by
employing the Euclidean Distance tool to map a raster surface that indicates the closeness
to the river network. Higher network areas are preferable for harvesting because of their

high runoff potential, whereas lower network areas are less favorable.
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Figure 15:Distance to streams orders

3.4 Standardizing Decision Criteria

Standardization involves adjusting all parameters to a uniform scale to ensure that
they are compatible with integration within GIS systems. In this study, a standardization
technique was applied using a linear fuzzy membership function to represent both the
increasing and decreasing relationships, as shown in Table 11. The normalized values
were categorized into five suitability levels: unsuitable, low, moderate, high, and optimal,
with corresponding scores ranging from 1 to 5 (Mouhoumed et al., 2023). Additionally,
they were classified into 10 scales ranging from 1 to 10 (Wu et al., 2018). This study
adopted a 1 to 5 scale as shown in Figure 16, where higher values were indicative of more
favorable conditions, while lower values denoted less suitable arecas. For instance, the

most appropriate areas were given a score of 5, while highly appropriate areas received

40
doi:10.6342/NTU202503692



4, moderately appropriate areas of 3, less appropriate areas of 2, and inappropriate areas

of 1.

Sandurding 12 dosion e, clssfyng Projetd Coodnte Sytem @E = ; s
ot fve clsses considermg theirsutabilty || WGS 1984 UTM Zone 35S~ 3 suitable
ofentalfor RWVH a0 || 4] ighty Suitsbie
Pt Sl B 5| Most Suitable

Figure 16: Standardizing decision criteria map
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Chapter 4: Methodology
4.1 Fuzzy Analytical Hierarchy Process (Fuzzy-AHP)

Fuzzy AHP was originally developed by ZADEH (1965), which incorporates fuzzy
set theory to efficiently tackle the complexity and uncertainty found in environmental
conditions and expert evaluations (Mouhoumed et al., 2023). Fuzzy AHP involves four
fundamental steps: fuzzification of crisp or linguistic values, standardization and
geometric mean calculations, normalization of weights, and defuzzification of fuzzy

numbers. Each step is explained in the subsequent sections.

4.1.1 Constructing Fuzzy Pairwise Matrix

The initial step in applying Fuzzy-AHP involves constructing a fuzzy pairwise
matrix, which facilitates the creation of a decision matrix that includes all pertinent
parameters. As shown in Table 4~10, a group of seven experts participated in the pairwise

comparison process, utilizing Saaty’s scale of relative importance, as depicted Table 3.

C11 C12 Cln

_ C21 CZZ e CZn

A=|: & 3)
Cnl an Cnn

Where A is a fuzzy pairwise comparison matrix, C; ; 1s the fuzzy comparison value
between criterion i and criterion j and n is the total number of criteria (where n = 12

for this study)
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4.1.2 Consistency Ratio

To evaluate the reliability of expert assessments within the Fuzzy-AHP, an extra
step was added to determine the Consistency Ratio (CR), as proposed by Saaty (1980)
and detailed in Equation (4). This step was utilized to verify the uniformity of the weights
assigned in pairwise comparisons, ensuring that the criteria weights were determined

through a systematic process rather than arbitrarily.

Amax—n
(R = RI(n-1) )

Where CR is for the consistency ratio, A1ax is the maximum eigenvalue of the

pairwise comparison matrix, 1 is the number of decision parameters, and RI is the

random index (Table 13 ) (Velmurugan et al., 2011).

Table 13: RI of AHP

RI 058 09 1.12 124 132 141 145 149 151 1.58
Size of
Matrix 3 4 5 6 7 8 9 10 11 12

If the calculated CR exceeds 0.1, it is necessary to reevaluate the assigned weights
to ensure an acceptable level of consistency. Moreover, the AHP method was used to
determine the CR. When the CR is within the acceptable range, the fuzzy AHP approach

is applied.

4.1.3 Fuzzification of Crip Value of AHP

The procedure involves converting the crisp values in the AHP pairwise matrix into
fuzzy numbers by determining the lower bound (l;;), middle value (mj;), and upper bound

(uij), which represent the comparison of criterion i to criterion j. The crisp values and their
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reciprocals (Table 14), which are derived from linguistic terms, were established based

on expert assessments of the criteria's relative importance.

Table 14: Saaty’s Scale Used in AHP and Fuzzy-AHP Judgments

Linguistic AHP Fuzzy-AHP

Term Scale of Reciprocal Fuzzy-AHP TFN  Reciprocal TFN
Importance AHP (ll.j, mg;, ul.j) (1/uij ’ 1/mij ’ 1/ll-j>

Equal 1 (1) (1,1, 1) (1,1, 1)

importance

Equal to 2 (1/2) (1,2,3) (1/3,1/2, 1)

moderate

importance

Moderately 3 (1/3) (2,3,4) (1/4,1/3, 1/2)

important

Moderate to 4 (1/4) (3,4,5) (1/5, 1/4, 1/3)

strong

importance

Important 5 (1/5) (4,5,06) (1/6, 1/5, 1/4)

Strong to very 6 (1/6) (5,6,7) (1/7, 1/6, 1/5)

strong

importance

Very strong 7 (1/7) (6,7,8) (1/8, 1/7, 1/6)

importance

Very strongto 8 (1/8) (7, 8,9) (1/9, 1/8, 1/7)

the extreme

importance

Extreme 9 (1/9) %9,9,9) (1/9, 1/9, 1/9)

important

Where TFN is a triangular fuzzy number

4.1.4 Geometric Mean Calculation

Geometric means is frequently utilized to aggregate the pairwise comparisons

provided by multiple experts, resulting in the values [;

j» myj, and lu;;, facilitating

normalization, maintaining proportionality, and reducing the impact of extreme values
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that are particularly crucial in decision-making processes. The [;; represents the lower
bound, which reflects the most optimistic evaluation, the m;; is the middle value, which
serves as the representative estimate of the fuzzy number and the u;; is the upper bound

value, which denotes the most pessimistic evaluation. This method ensures balanced and
reliable synthesis of expert judgments within a pairwise comparison matrix.
1

z 1 1
Lij = ( j=1 ll.j)k» my; = (Ij=ymij)*, wy = ([Tj=q uij)* ®)

Where k is the total number of experts (k=7 in this study) participating in the pairwise

comparison evaluation process.

4.1.5 Degree of Possibility and Weight Calculations

In the extent analysis method introduced by Chang (1996), the aggregate extent
value Si for each criterion was calculated by combining and standardizing the fuzzy extent
values. This approach addresses the uncertainties in expert judgments by transforming
crisp values into fuzzy numbers. In this approach, an object X is defined to represent a set
(X1, X3, «n .. Xy) With a corresponding goal set U containing (uy, Uy, v wer. . Up)

where extent analysis is applied to each goal individually.

. . =1
Si = X1 My; = (X1 X7ty My,) (6)

Where j = 1,2,....m, m is number of criteria { = 1,2, .....n, n is number of

alternatives

S; 1s a synthetic extent value for criterion i, M éi is Fuzzy extent value for goal j with

respect to criterion i, based on the jt" alternative,
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The calculation of the M value for fuzzy extent analysis involves summing each
triangular fuzzy number (TFN) across the rows of the matrix, as described by the

following equation:
;'n=1M] (21 14 1mp j= 1u]) (7
Similarly, the aggregated fuzzy extent value across all the alternatives is.
[ 12m M]] [ 121 1l 12 1m],Zl 12 1u]] (3

The inverse of the aggregated fuzzy extent value was calculated to normalize the fuzzy

numbers using Equation 8.

i1 1 1 1
J _
ZZa Myl = ( Liuwy’ Zimy 'Z?:ﬂij) ©)

i=1 Uij

To evaluate the extent to which one triangular fuzzy number is at least as large as
another, the possibility degree between them was determined. Let M; = (l;, mq, u;)
and M, = (I, m,, u,) is two triangular fuzzy membership functions. The degree of

probability that M, > M, is defined as:

1, ifm, >2my
0, iflh=u,
(li—uz)
(mz—uz)—-(mq1-1)

(10)

, otherwise
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Figure 17:Possibility of M2 > M1 for Triangular Fuzzy Numbers (Chang, 1996)

Determining the minimum value for the comparison of M; and M, it is calculated the

value of V(M, = M;) using equation 10
d'(A;) = minV(S; = S (11)

Where kis 1,,2, ...n; but k # i, the weight vector is subsequently calculated using the

following expression:
! ! ! ! T
W' = (d'(A),d'(A3), ..., d' (A7) (12)

Where A;(i = 1,2, ....n) are n components, and d’(4;) represents the priority degree
quantifying the evaluation of each alternative.
4.1.6 Normalizing Weights of Criteria

To obtain crisp values from the fuzzy weights, a defuzzification process was performed

by normalizing the weights using Equation (12).

— da’(a;)
W= (E?=1(d’(Az))) (13)
Where W represents the normalized non-fuzzy weight, withi = 1,2, ....,n.
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4.2 Sensitivity Analysis

The concluding phase of Fuzzy-AHP involves conducting a sensitivity analysis,
which is crucial for examining how changes in the level of fuzziness influence criteria
weights and rankings, thereby evaluating the model's stability. The baseline scenario for
fuzziness degrees is set to 1, representing the original fuzzy weight results, whereas the
additional fuzziness degrees range from 0.85 to 1.75 with increments of 0.15. Changes in
ranking order indicate that the criteria are sensitive to variations in the fuzziness degree,
whereas criteria that remain unchanged demonstrate the stability of the proposed model

(Ekmekcioglu et al., 2021; Ishizaka and Labib, 2011).

4.3 Mapping of RWH Suitability

To create the RWH feasibility map, the weights calculated from the Fuzzy-AHP
process were incorporated with GIS by utilizing the raster calculator tool. The normalized
raster layer for each criterion is multiplied by its respective weight, and these weighted
layers are then combined to create a composite raster that represents the RWH Suitability

Index (RWHSI). The equation used is as follows:
RWHSI = ¥j_1 W;C; (14)
Where RWHSI is RWH suitable map Index, W; is a weight assigned to the j th criterion,

obtained through Fuzzy-AHP analysis, C; is normalized raster value of the j th criterion,

n is a total number of criteria.
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4.4 TOPSIS

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
developed by Hwang and Yoon (1981) is both logically sound and operationally effective,
choosing options considered on their distance to the ideal positive solution and their
remoteness from the ideal negative solution. As outlined by Behzadian et al. (2012), the
TOPSIS method follows a structured six-step procedure: (1) creating the pairwise matrix,
(2) standardizing the pairwise matrix, (3) allocating weights to the criteria, (4) calculating
ideal positive and negative solutions, (5) computing the Euclidean distance, and (6)
assessing the relative distance to the ideal solution. These steps are described in the

following sections.

4.4.1 Developing the Decision Matrix

The determination matrix encompasses all attainable alternatives and integrates
values across multiple criteria. As illustrated in figure 18, the decision matrix was
developed through multiple steps, which included forming 1000m x 1000m grids by using
the Fishnet tool in ArcGIS Pro to clip the study area. Following this, the Zonal Statistics
as Table tool was utilized to calculate the average value for each pixel across the 12 input
criteria raster datasets, as shown in Figure 18. The outcome of this process was a decision
matrix consisting of 68,454 rows and 12 columns. This matrix is structured in an m x n
format, where m signifies the number of choices and n represents the number of

parameters, as indicated in Equation (14).

G G G
D= a1 Qg2 a}n (15)
a21 M
A2 Amn
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Where D is a decision matrix, C; is criteria, a; is alternatives, i = 1,2,3,..n;and j =
1,2,3,..m.
4.4.2 Normalizing the Decision Matrix

Normalization was performed to bring all criteria to a comparable scale, thereby ensuring

a fair evaluation. The normalized pairwise matrix is calculated using Equation 15 as

follows:
Dij == _aij (16)
/Z?ilXij
Where D;; is a normalized decision matrix, i = 1,2, ...m;andj = 1,2, ....n.

4.4.3 Assigning Weights to Criteria

Expert judgment was applied to assign weights to each criterion, and the Fuzzy-
AHP method was used to compute the normalized weights of the decision matrix by

multiplying each normalized value with its corresponding criterion weight.

Where V;; is a weighted normalized decision matrix, W; is a criterion weight obtained

through Fuzzy AHP analysis

4.4.4 1dentifying the Ideal Solution

The Positive Ideal Solution (PIS) represents the most advantageous choice,
characterized by attaining the maximum possible values for all criteria. For criteria that
are beneficial, the highest values are selected, while for those that are not beneficial, the

lowest values are taken into account. In contrast, the Negative Ideal Solution (NIS)
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represents the least desirable choice, identified by selecting the minimum values for

beneficial criteria and the maximum values for detrimental criteria.
i.  Positive ideal solution (A*)

At = {v1t .. .. ...v¢nt} (18)

max(Vij) ,if j is benefit criterion

Where v;" = , oo o
min(V;;),if j is cost criterion

il.  negative ideal solution (A7)

A" ={wl™ ........vn"} (19)

Where v =

{min(Vij) ,if j is benefit criterion
j

max(Vij) ,if jis cost criterion

4.4.5 Determination of the Euclidean Distance

To identify the proximity of each alternative to the Positive Ideal Solution (PIS) and
the Negative Ideal Solution (NIS), Euclidean distance is utilized. The proximity to the
PIS indicates how close an option is to being the best choice, whereas the distance from

the NIS shows how far it is from the least desirable option.

e Separation from the most preferred (ideal) alternative (D;*):

D;* = \/Z?ﬂ(VU -V’ (20)

e Separation from the least preferred (worst) alternative (D;"):

D" = \/Z}l:l(vij - V;])Z (21)
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4.4.6 Calculating Relative Closeness (CR)

The relative closeness coefficient (RC) evaluates how near each option is to the Positive

Ideal Solution while also taking into account its distance from the Negative Ideal Solution.

D;~
Di++Di_

RC; = (22)

The RC value is expected to fall within the range of 0 to 1, where a value
approaching 1 suggests closer alignment with the ideal solution. and a value closer to zero
indicates proximity to the negative ideal solution. Choices are arranged from highest to
lowest based on their values, with higher values indicating more desirable options.
Moreover, the obtained result was imported into GIS and joined with the sampling grid

created in Section 3.2.1 and subsequently converted into a raster map as described in

Figure /8.
Step2 Step3
Stepd
Boundary Create Fishnet Sampling Grd Cel StepS
undary reate Fishnel ampling Grid Cells Stepé
shaipegile Tool 1000 m x 1000 m
Stepl e
ep Zonal Statistics as Table class TOPSIS Analysis
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. g "'W. Distance to w
o A ..’.’f Di et
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Figure 18: Spatial Mapping Workflow of TOPSIS Results
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4.5 Comparing Fuzzy-AHP and TOPSIS for Suitability Raster Maps

4.5.1 Change Detection Analysis

The Compute Change Raster tool was utilized to conduct a change detection
analysis using the Categorical Difference approach. The Filter Method was set to change
pixels only, ensuring that the analysis focused exclusively on category transitions by
excluding unchanged pixels from the classification results. Table /5 summarizes the input
parameters used in the change-detection process, including their labels, definitions, and

data types.

Table 15: Input parameters for compute change raster

Label Definition Data Type
From Raster Old Raster (Fuzzy-AHP raster) Raster Dataset
To Raster New/latter Raster (TOPSIS raster)  Raster Dataset
Computer Change Method Categorical difference String

Filter Method Changed Pixels Only String

4.5.2 Confusion Matrix Analysis

In the confusion matrix analysis, certain suitable RWH classes occupied very small
areas, leading to a class imbalance when selecting random sampling points. To address
this issue, the suitability map was reclassified into a binary format. Specifically, moderate,
high, and optimal suitability of zones were merged into a single class labeled as suitable
(assigned a value of 1), while the low suitability and unsuitable categories were grouped
into an unsuitable class (assigned a value of 0). This reclassification enabled stratified
random sampling with balanced representation across classes. In this procedure, the user’s

accuracy was calculated using Equation (23), producer’s accuracy was used for Equation
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(24), and Overall Accuracy was determined using Equation (25) to assess the

effectiveness of the classification.

Uy = - (23)

Pr¢

Where Uy is user’s Accuracy, Pecc is correctly classified pixels for a class, and Pr.. is

total pixels classified into that class.

p, = Zeee (24)

Pryrc

Where Pr, is producer’s accuracy, P is correctly classified as pixels for a class and

Pr. is total reference pixels for that class.

0, = nee 25)

Prny

Where 0,4 is overall accuracy, P,.. 1s a number of correctly classified pixels and Pr,,,- s

a total number of reference pixels.

4.5.3 Correlation Analysis of Fuzzy-AHP and TOPSIS

4.5.3.1 Sample Size Determination

To ensure a statistically valid comparison between the raster maps of Fuzzy-AHP
and TOPSIS, Cochran's sample size formula was employed to determine the necessary
sample size (Olofsson et al., 2014). The observed overall accuracy, derived from the
confusion matrix comparing the agreement between the TOPSIS and Fuzzy-AHP raster
maps, was used as the input parameter. A confidence level of 95% and a margin of error

of 5% were utilized. The formula is as follows:

Z20(1-0)
’n = ——

a2 (26)
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In this scenario, n is the required sample size, O represents the observed overall
accuracy, Z is the standard normal deviation for a 95% confidence level, and d indicates

the margin of error, which was set at 0.05.

4.5.3.2 Descriptive Statistical Analysis and Normality Test

After determining the sample size, the corresponding suitability scores at each
sampled location were extracted from the Fuzzy-AHP and TOPSIS raster layers. These
paired values served as inputs for the correlation analysis. Descriptive statistical measures
include the average, middle value, variability, asymmetry, and peakedness (Joanes & Gill,
1998; Murray et al., 2009), were computed to evaluate the distributional characteristics

and normality of the samples extracted from the Fuzzy-AHP and TOPSIS raster datasets.

Measurement of Central Tendency and dispersion

2?:1(351'_32)2

n-1

F=YL,x; and S= 27)

Where x; represents an extracted data from datasets, n is a sample size, X is sample
mean, and S is a standard deviation of the sample data.

Measure of Symmetry:

_ n2?=1(xi_f)3

ST (n-1)(n-2)s3 (28)
Where C; is coefficient of skewness.
Measure of Kurtosis:
2yn 4
n 21=1(x1 X) (29)

=~ (—D(n-2)(n—3)s*
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Where K is coefficient of Kurtosis.

The Anderson—Darling (AD) test, as represented in equation (29), was used
to assess the normality of the extracted sample data. This statistical technique evaluates
how well the empirical data distribution aligns with a theoretical normal distribution with

heightened sensitivity to variations in the distribution tails(Stephens, 1974).
1 .
AD = —N — = %L, (2i = D[In (FX)) + (1 = FXy+1-0)] (30)

Where AD is Anderson Darling test, N is number of samples, F (X;) the cumulative
distribution function (CDF) evaluated at the i"" ordered sample X; , and X(N+1-i) 1S an

i value in descending order.

4.5.3.3 Spearman’s Rho Analysis

Spearman's rho coefficient, as introduced by Spearman (1904), is a non-
parametric statistical tool used to evaluate the strength and direction of a monotonic
relationship between two variables. This study utilized a technique to evaluate the
relationship between the suitability scores obtained from Fuzzy-AHP and TOPSIS. The

coefficient was determined using the following formula:

N 6%y di?
p=1 n(n?-1) @1
where p is Spearman’s rho coefficient and d is the ranking difference.
__ pxWn-=2
t = s (32)

Where t is a t-statistic, n — 2 is degree of freedom.
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At a 95% confidence level, the calculated t-statistics and corresponding p-values

indicate that a p-value below 0.05 indicates a statistically significant connection between

the two sets of scores.
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Figure 19: Flowchart of the Methodological Framework
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Chapter 5: Results and Discussions

5.1 Fuzzy-AHP Result

5.1.1 Determination of Relative Weights for Decision Criteria

This research evaluated the appropriateness of RWH locations using the Fuzzy-
AHP method, considering 12 decision criteria. This study primarily aimed to evaluate
how each criterion contributes to the RWH potential across the study area. To accomplish
this, expert opinions were collected through pairwise comparison surveys involving seven
experts, each independently assessing the relative significance of the criteria. These
responses served as the basis for constructing individual matrices for pairwise
comparisons, which served as the basis for calculating weights using Fuzzy-AHP, as
displayed in Figure 20. This approach facilitates the incorporation of expert insights into
the structured and systematic nature of a formal decision-making framework, effectively

capturing the uncertainty and variability inherent in expert evaluations.

A crucial aspect of the Fuzzy-AHP approach is to verify the consistency of expert
evaluations. To ensure the logical consistency of these assessments, the consistency ratio
(CR) was determined for each expert comparison matrix. The CR values were
subsequently evaluated against a standard limit of 0.1 (10%), which signifies an
acceptable level of consistency. Figure 21 illustrates the CR values for all seven experts.
As shown, all CR values remained below the threshold, indicating that pairwise
comparisons were both consistent and methodologically sound. This validation process
is essential for verifying the reliability of the calculated weights and reducing the impact

of inconsistencies that might arise from subjective assessments.
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Figure 20: Criteria weights obtained from experts' survey
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Figure 21: Consistency ratio of seven experts' survey

59

doi:10.6342/NTU202503692

- 025

0.20

0.15

0.05



After conducting a consistency check, the fuzzy weights for each criterion were
determined and expressed as triangular fuzzy numbers that included the lower, middle,
and upper bounds. These weights are detailed in Table /6, offering a range-based
representation that captures the uncertainty inherent in expert evaluations. To facilitate
direct comparison and practical use, the fuzzy weights were defuzzified using a suitable
method, transforming each triangular fuzzy number into a single representative value.
Subsequently, the defuzzified weights were normalized so that their total equaled one,
ensuring that they were interpretable and appropriate for further spatial analysis within
the GIS framework. These procedures ensured that the resulting weights could be

effectively utilized for spatial suitability mapping of the RWH sites.

Table 16: Fuzzy-AHP Output Weights

De- Normalizing
Criteria Fuzzy Weight fuzzifying Final Weight
RF 0.16011 0.26010  0.40325 0.27449 0.25311
CN 0.08729  0.14396  0.23397 0.15508 0.1430
SL 0.06772  0.11284 0.18714 0.12257 0.11302
EL 0.03635  0.05986  0.10425 0.06682 0.06162
DD 0.04956  0.08205 0.13416 0.08859 0.08169
ST 0.04588  0.07727  0.13006 0.08440 0.07783
LULC 0.03473 0.05703  0.09977 0.06385 0.05887
PR 0.01919  0.03044 0.05270 0.03411 0.03145
DSO 0.02692  0.04624  0.08048 0.05121 0.04722
DS 0.01685  0.02667  0.04509 0.02954 0.02724
PA 0.01843 0.02879  0.04774 0.03165 0.02919
SPI 0.04457  0.07476  0.12720 0.08217 0.07577

Table 17 displays the criteria weights and the rankings of decision factors
determined using the Fuzzy-AHP method, categorized into three main areas: Physical,
Environmental, and Socioeconomic parameters. The environmental category played the
most significant role in the decision-making process, representing 47.19% of the total

weight. This is followed by the physical category, which accounts for 39.30%, and the
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socioeconomic category, which contributes 13.51%. For each category, both local weights
(reflecting the relative importance within each group) and global weights (representing
the overall influence across all criteria) are provided, along with corresponding rankings

to support comparative analysis.

Table 17: Computed weights and priority rankings of decision factors

Weight % Ranking
Group Weight  Criteria  ID Local Global Local Global
Physical 3930 SL SL 28.75 11.3 3 3
ST ST 19.8 7.78 10 5
EL EL 15.67 6.16 5 7
DD DD 20.79 8.17 7 4
LULC LULC 15.0 5.89 12 8
Environmental 4719 RE RF 53.63 25.31 1 1
CN CN 36.39 14.3 4 2
SPI SPI 19.29 7.58 11 6
Socioeconomic  13.51 DSO DR 34.94 4.72 2 9
PA PA 20.13 2.92 9 11
PR PR 23.32 3.15 6 10
DS DS 21.61 2.72 8 12

A comprehensive assessment of the criteria revealed that rainfall (RF) holds the
greatest significance, achieving a maximum local influence of 53.63% and a top global
weight of 25.31%, thereby securing the first position overall. Curve number (CN) ranks
second globally, with a global significance of 14.30% and a local significance of 36.39%.
In terms of physical factors, slope (SL) ranks third globally, with a local weight of 28.75%
and a global weight of 11.30%. Drainage density (DD) followed, with a local weight of
20.79% and a global ranking of fourth. The other important physical parameters were soil
texture (ST) with a local weight of 19.80% and a global rank of fifth, elevation (EL) with
a local weight of 15.67%, LULC with a local significance of 15.00%, and a global rank

of eighth.
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On the other hand, the Socioeconomic category had a relatively low impact on the
overall suitability evaluation. Within this group, distance-to-stream orders (DSO) stand
out as the most significant factor locally, with a weight of 34.94%. However, on a global
scale, it was ranked ninth, contributing only 4.72% of the total weight. Other
socioeconomic factors, such as proximity to agriculture (PA), proximity to roads (PR),
and distance to settlements (DS), had global weights of 2.92%, 3.15%, and 2.72%,

respectively, placing them towards the bottom of the global rankings.

These results have important consequences for the planning and execution of RWH
techniques. These findings suggested that environmental and hydrological elements, such
as rainfall, curve number, and slope, highlight the necessity of focusing on these factors
during the initial phases of site selection. The significant global weights suggest that the
suitability of RWH is primarily influenced by the natural features of the landscape, which
impact both runoff production and the capacity to retain water. This observation is in line
with the body of research underscoring the pivotal influence of rainfall intensity and its
spatial and temporal distribution in selecting optimal sites for rainwater harvesting (Tsubo
et al., 2005).Therefore, planners should first focus on these parameters to determine

technically viable sites before considering the social or infrastructural factors.

In semi-arid areas, such as Zambia's Southern Province, where water shortages are
exacerbated by unpredictable rainfall, paying attention to hydrological and topographic
suitability is particularly crucial. Even though socioeconomic aspects, such as proximity
to roads, settlements, and agricultural zones, have a relatively minor global impact, they
are vital for the practical application and long-term sustainability of systems. Although
their lower positions in the model might indicate the study area's limited spatial variability,

these criteria are crucial for effective operational planning. For instance, locations that
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are far from road systems might sustain increased costs for building and transportation,

whereas remote communities could face challenges in terms of access, upkeep, and use.

These findings align with research from other semi-arid regions where
environmental and physical factors have been recognized as the main influences on RWH
suitability (Matomela et al., 2020; Mouhoumed et al., 2024b). The significant influence
of rainfall and runoff-related factors underscores their essential role in determining
effective site prioritization. This highlights the usefulness of hydrologically based spatial
analyses, particularly in data-scarce conditions where field validation is resource-
intensive. These insights lay the groundwork for refining spatial decision support models
to achieve an optimal balance between environmental accuracy and practical feasibility

in implementation.

5.1.2 Fuzzy-AHP-Based RWH Suitability Mapping

The spatial arrangement of the RWH suitability zones in Zambia's Southern
Province was determined by combining the criterion weights from the Fuzzy-AHP
method with their respective parameters in ArcGIS Pro. The classification framework was
organized into five levels: very low, low, moderate, high, and optimal. As depicted in
Figure 22, the resulting spatial pattern revealed varied distribution throughout the
province. The high and most suitable zones are relatively continuous in northern
Mazabuka and Monze, Namwala, central and northern parts of Sinazongwe, Livingstone,
and southwestern Kazungula districts. In contrast, other areas exhibited a more

fragmented layout, with scattered occurrences of moderate and optimal suitability patches.
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Figure 22: Spatial classification map obtained through Fuzzy-AHP

As depicted in Figure 23 (a) and (b), the suitable zone covers the largest area,
approximately 18,676.4 km?, accounting for 28% of the entire study region. This indicates
that a considerable portion of the province offers moderately favorable conditions for
selecting RWH sites. The Low Suitable zone, spanning 17,037.18 km? (26%), consists of

areas that only satisfy a portion of the evaluation criteria.

Area Distribution by Suitability Class
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17500 o ra—
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Figure 23: Suitability class distribution: (a) Area, (b) Proportion
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The high suitable and most suitable zones cover 14,835.77 km? (22%) and 7,971.42
km? (12%), respectively. These areas exhibit highly favorable conditions, including
balanced decision criteria. Interestingly, the most advantageous areas were mainly
situated in the northern, southeastern, and southwestern parts of the province. These zones
are considered ideal for large-scale RWH interventions owing to their advantageous
physical, environmental, and socioeconomic factors. On the other hand, the regions
classified as Not Suitable, which also account for 12% of the area (7,901.66 km?), are
predominantly located in the western and central parts of the region of interest. These
zones are identified by multiple limiting factors, including poor accessibility, remoteness
from settlements and agricultural fields, and unfavorable soil conditions with low water

retention capacity, which reduce the feasibility of implementing RWH systems.

Approximately 62% of the provinces comprising the suitable, highly suitable, and
most suitable zones were considered favorable for RWH development. These results offer
an essential direction for policymakers and planners in determining priority areas. To
enhance the process of selecting sites and enable a comparative ranking of choices based
on their closeness to an ideal solution, the criteria weights derived from Fuzzy-AHP
analysis were subsequently utilized in the TOPSIS method. By combining the unique
advantages of both decision-making tools, this method enables a more comprehensive

and detailed assessment of the potential RWH sites.

5.2 Sensitivity Analysis

To assess the stability and robustness of the proposed framework, a sensitivity
analysis was performed by altering the fuzziness degree (FD). In this study, the focus was
on how different degrees of uncertainty affected the significance assigned to decision
criteria, thus evaluating the consistency of the findings. The fuzziness degrees varied from
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0.85 to 1.75, in increments of 0.15. Table 18 illustrates that as the FD values increased,
the importance of the various criteria changed. Specifically, the significance of rainfall
(RF), curve number (CN), and slope (SL) consistently increased with increasing FD
values, enabling these criteria to maintain their rankings. By contrast, most other criteria

experienced a decrease in weight, leading to changes in their rankings.

To better understand the stability of the rankings, when FD is set to 1, it acts as the
standard scenario for comparison. At an FD of 0.85, seven criteria retained their original
positions, whereas five others, EL, DD, ST, LULC, and SPI, underwent changes in their
rankings. At FD values of 1.3 and 1.45, only elevation and SPI experienced shifts in
ranking. As FD rose to 1.6 and 1.75, additional criteria, such as elevation (EL), distance
to settlements (DS), proximity to agriculture (PA), and SPI, exhibited changes in their
rankings. Interestingly, at FD = 1.15, the rankings of all criteria remained stable. Across
all FD levels, the rankings for rainfall (RF), curve number (CN), slope (SL), proximity to
roads (PR), and distance to rivers (DR) remained consistent, underscoring the reliability
of these factors. Moreover, when FD surpassed 1.0, the eight criteria consistently

maintained their rankings, demonstrating their stability under increased fuzziness.

Table 18: Sensitivity of criteria weights across varying fuzziness degrees

FD W0.85 WBaseline W1.15 W1.30 W1.45 W1.60 W1.75
RF 0.22689  0.25311 0.27616 0.29650 0.314622 0.33089 0.34562

CN 0.13330  0.14300 0.15086 0.15727 0.16255 0.16696 0.17067
SL 0.10825  0.11302 0.11649 0.11897  0.12075 0.12201 0.12287
EL 0.06135  0.06162 0.06143 0.06093  0.06026 0.05947 0.05863
DD 0.08260  0.08169 0.08037 0.07879 0.07711 0.07540 0.07370
ST 0.08026  0.07783 0.07528 0.07272  0.07023 0.06785 0.06560
LULC 0.06240 0.05887 0.05539 0.05232 0.04953 0.04701 0.04471
PR 0.03480  0.03145 0.02851 0.02608  0.02398 0.02217 0.02060
DSO  0.05308 0.04722 0.04222 0.03814 0.03471 0.03178 0.02926
DS 0.03166  0.02724 0.02377 0.02098 0.01870 0.01680 0.01521
PA 0.03464  0.02919 0.02485 0.02156 0.01892 0.01677 0.01499
SPI 0.09081  0.07577 0.06467 0.05574  0.04863 0.04288 0.03815
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As depicted in Figure 24 (a), there is a steady upward trend in rainfall (RF),
signifying a notable increase in its weight as FD escalates. This trend implies that RF
becomes more influential in decision making when uncertainty is higher. CN and SL also
showed upward trends, albeit at a slower pace than that of RF. Conversely, several criteria,
including EL, ST, SPI, PA, and DS, exhibited decreasing weight trends, indicating a
decline in their relative importance as FD increased. These findings suggest that greater
uncertainty amplifies the influence of the most critical criteria, while reducing the impact
of less significant ones. Furthermore, Figure 24 (b) supports this pattern by showing the
variation of weights across all the criteria at different FD levels. The graph demonstrates
that certain criteria, such as RF and CN, maintain consistent rankings, whereas others
show small variation, as indicated by overlapping weight lines. The close overlap among
the weight curves indicates the stability and robustness of the method, as only minor

variations in criterion weights are observed across different fuzziness degrees (FDs).
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Figure 24: (a) Criteria Weight Trends, (b) Weight Variation Across FD Levels

To evaluate the influence of fuzziness on spatial decision-making, Figure 25
presents the spatial impact of different fuzziness degrees (FD) on RWH suitability

classifications obtained through the Fuzzy-AHP method. Each map is associated with a
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specific FD value, ranging from 0.85 to 1.75 in 0.15 increments, and shows the spatial
variation in RWH suitability zones across the study area. In a manner similar to the
baseline scenario, each map was classified into five zones: not, low, moderate, high, and
optimal suitability. As the FD value increased, the maps revealed a gradual transition from
sharply defined boundaries to more generalized and spatially diffuse patterns. This
suggests that lower FD values impose stricter classification thresholds, resulting in clearer
delineations, whereas higher FD values allow for greater uncertainty, leading to broader

and more adaptable suitability zones.

Bl Most Suitable

T Highly Suitable
Suitable

0 Low Suitable

Bl Not Suitable

Figure 25: RWH Suitability Maps Generated Under Varying FD Levels
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Figure 26: Variation in Suitability Class Areas Across Different FD

Figure 26 illustrates how the total area assigned to each RWH suitability category

changes with varying FDs in the fuzzy-AHP framework. Despite experiencing slight

variations as the FD increases, the Suitable category consistently occupies the largest

segment of

and Highly

assessment,

the study area. A noticeable trend is that the areas labeled as Most Suitable
Suitable gradually shrink with higher FD values, suggesting a more cautious

as the model becomes less decisive in pinpointing ideal locations. Conversely,

the regions marked as low suitability and not suitable grow with increasing FD, indicating

a heightened sensitivity to uncertainty and a broader classification of less favorable areas.

These patterns imply that higher FD values result in smoother and more generalized

suitability distributions, aligning with the theoretical notion that increased fuzziness

introduces

more ambiguity and diminishes the model’s discrimination precision.

Therefore, to supplement the Fuzzy-AHP analysis and facilitate a comparative assessment,

TOPSIS was employed independently, as outlined in Section 5.4, using the same input

parameters and criterion weights obtained from the Fuzzy-AHP method.
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5.3 TOPSIS Results and Alternative Rankings

5.3.1 Alternative Analysis

To utilize the TOPSIS technique for selecting locations for RWH, a sampling grid
with cells measuring 1000 m x 1000 m was generated throughout the study region. Zonal
statistics were employed to calculate the mean values of the 12 criteria used for decision-
making for each grid cell. These input variables, sourced from thematic raster datasets,
provided a uniform and spatially explicit foundation for the TOPSIS analysis. This
approach produced a dataset comprising 68,454 alternatives, with each grid cell assigned
a Relative Closeness (RC) value ranging from 0.046 to 0.998, as determined through
TOPSIS analysis. The considerable number of alternatives generated is illustrated in

Table 19.

Table 19: Obtained RC through TOPSIS analysis

Alternative S+ S- RC Class

Alterl

0.000856

0.051193

0.983549431

Most Suitable

Alter2 0.045909 0.008531 0.156704124 Not Suitable
Alter3 0.005983 0.030451 0.835774173 Most Suitable
Alter4 0.026752 0.009342 0.258819117 Low Suitable
Alter5 0.041066 0.008371 0.16933419 Not Suitable
Alter6 0.043921 0.008761 0.166303124 Not Suitable
Alter7 0.00316 0.040599 0.927784698 Most Suitable
Alter8 0.026486 0.011127 0.295820562 Low Suitable
Alter9 0.008748 0.025054 0.741200205 High Suitable
Alter10 0.020312 0.013815 0.404819799 Suitable
Alter68454 0.049687 0.009207 0.156334046 Not Suitable

To enhance clarity and facilitate decision-making, RC scores were divided into five

categories of suitability. Alternatives with RC values of 0.80 or higher were labeled as
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Most Suitable, indicating the greatest potential for RWH implementation. Values from
0.60 to 0.80 were deemed highly suitable, while those between 0.40 and 0.60 were
considered suitable. RC values from 0.20 to 0.40 were classified as low suitable, and
those below 0.20 were marked as unsuitable, representing the least favorable options for
RWH development as illustrated Figure 27 (a). Figure 27 (b) presents the percentage
distribution of alternatives across the five suitability categories, based on a total of 68,454
grid cells. It is crucial to understand that the figure represents the percentage of options

allocated to each category rather than the physical area occupied by each class.
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Figure 27: (a) Relative closeness values; (b) Percentage of categories in Alternatives

The results indicated that about 35.9% of the options were considered to have low
suitability, while 27.0% were classified as unsuitable. In comparison, 16.3% were
categorized as moderate, 11.9% as high, and only 8.8% as optimal, highlighting the
limited availability of highly favorable sites for RWH within the study area. Collectively,
this classification pattern illustrates the discriminatory power and internal consistency of
the TOPSIS model in effectively ranking alternatives, depending on their closeness to the

optimal solution. The relative closeness (RC) values assigned to each class provide a
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robust framework for prioritizing potential RWH sites and contribute to spatially

informed decision making supported by quantitative multi-criteria evaluation.

5.3.2 Application of the TOPSIS Method for Mapping RWH Suitability

The resulting dataset, comprising 68,454 alternatives with their corresponding
Relative Closeness (RC) values, was exported as a CSV file and integrated with a spatial
sampling grid (1000 m x 1000 m) within a GIS environment to associate each RC value
with its geographic location. To facilitate the spatial visualization of RWH suitability, the
joined dataset was rasterized as a 30-meter resolution. As illustrated in Figure 28: (a)
Potential mapping for RWH sites, (b) Area of different classes and (c) percentage
distribution of area through TOPSIS (a), the final output map classified RC values into
five suitability categories, enabling a spatially explicit interpretation of optimal locations

for RWH site selection based on the TOPSIS evaluation.

Figure 28 (b) shows the total land area covered by each suitability class. The
unsuitable category accounted for the largest portion of the study area, covering
approximately 17852.02 km?, and represented locations that were least favorable for
effective RWH implementation. This is followed by the low suitability (24434.64 km?)
and suitable (11121.13 km?) classes, which denote areas of moderate feasibility. The
highly suitable and most suitable categories occupy smaller areas of the region, covering
8135.12 km? and 5973.63 km?, respectively. This descending trend from less to more
suitable classifications underscore the selective spatial distribution of the optimal sites for

RWH site selection.
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Figure 28: (a) Potential mapping for RWH sites, (b) Area of different classes and (c)
percentage distribution of area through TOPSIS

As shown in Figure 28 (c), the relative proportion of each suitability class is
calculated as a percentage of the entire area. The unsuitable category accounted for 26.40%
of the total area, followed by low suitability (36.2%), suitable (16.50%), Highly Suitable
(12.1%), and Most Suitable (8.9%). These proportions reaffirm the predominance of less
favorable zones within the region and emphasize the limited spatial extent of highly
suitable areas for the selection of potential RWH locations. Furthermore, these
visualizations substantiate the spatial interpretation presented in the TOPSIS-based
suitability map by quantifying the distribution of the suitability classes. The findings
confirm the TOPSIS model's ability to effectively differentiate between regions, with
varying potential for RWH. Although the suitability map generated by the TOPSIS

method does not exactly mirror the spatial distribution created by the Fuzzy-AHP model,
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it demonstrates a significant level of agreement in identifying the most advantageous
areas. Importantly, regions labeled as Most Suitable, Highly Suitable, and Suitable in the
TOPSIS results tend to coincide with the equivalent zones on the Fuzzy-AHP map. To
further evaluate and measure the extent of concordance between these two approaches,

subsequent sections offer a comparative analysis of their results.
5.4 Comparative Analysis of Fuzzy-AHP and TOPSIS Outputs

5.4.1 Change Detection

Figure 29 presents a comparative spatial analysis of site suitability classification
outputs derived from the Fuzzy-AHP and TOPSIS models along with the resulting change
detection raster. Both maps employ a consistent five-class system ranging from unsuitable
to the most suitable. This raster was generated using the Categorical Difference method
with the changed pixel-only filter, focusing exclusively on areas of disagreement. A
comprehensive visual representation of the change detection workflow is provided in

Appendix, Figure Al.

The change detection map was color-coded to indicate the direction of transitions
between suitability classes, as defined in the accompanying legend. Green represents
areas where both models agree (No Change), while various shades of red and other colors
depict transitions between classes (e.g., suitable to unsuitable, highly suitable to most
suitable). These transitions visually demonstrate how classification differences are

distributed, and how intense they are throughout the study area.
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Raster-Based Change Detection
for Comparing Fuzzy-AHP and
TOPSIS Outputs
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Figure 29: Change Detection Map Comparing Suitability Classifications from Fuzzy-
AHP and TOPSIS

To enhance the understanding of the model agreement, Table 20 presents the
evolution from the Fuzzy-AHP results (input raster) to TOPSIS results (comparison
raster). Approximately 63% of the study area exhibited spatial agreement between the
two models, either through precise alignment or minor shifts between adjacent suitability
categories. As shown in Table 20, these minor changes include transitions from unsuitable
to low suitable (1.6%), low suitability to not suitable (12.72%), Suitable to Highly
Suitable (4.53%), and Highly Suitable to Suitable (3.93%). Given the conceptual
closeness of neighboring categories, these transitions are regarded as spatially consistent.

Furthermore, 29.14% of the area experienced no change, with both models categorizing
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it into the same suitability class, further emphasizing the level of concordance between

the Fuzzy-AHP and TOPSIS results.

Table 20: Spatial Agreement Analysis of Suitability Scores

Class From Class To Count Area Per-

(Fuzzy-AHP) (TOPSIS) Transition Pixels (sq.km)  Area %
Low Not Suitable ->Low

Not Suitable  Suitable Suitable 1178086  1067.41 1.6
Not Low Suitable ->Not

Low Suitable Suitable Suitable 9387842  8505.88 12.72
Highly Suitable->Highly

Suitable Suitable Suitable 3345320 3031.04 4.53
Most Suitable->Most

Suitable Suitable Suitable 2145460  1943.90 2.91

Highly Highly Suitable

Suitable Suitable ->Suitable 2901419  2628.84 3.93

Highly Most Highly Suitable

Suitable Suitable ->Most Suitable 3337862  3024.28 4.52

Most Most Suitable

Suitable Suitable ->Suitable 1352891  1225.79 1.83

Most Highly Most Suitable

Suitable Suitable ->Highly Suitable 1340797  1214.83 1.82

Same Same No Change 21502755 19482.63 29.14

Percent-
Area 63%

In contrast, 37% of the area exhibited notable classification differences between
Fuzzy AHP and TOPSIS, as indicated in Table 21. These differences involved
reclassification across non-adjacent categories, highlighting a more pronounced
methodological divergence. Significant instances include transitions from suitable to
unsuitable (7.49%), highly suitable to unsuitable (5.5%), and most suitable to unsuitable
(2.72%). These inconsistencies might significantly influence the prioritization of RWH
sites, potentially leading to inefficient resource allocation and difficulties during
execution. The spatial distribution of these differences was prominently visible in the red-

dominated areas of the change detection map.
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Table 21: Spatial Discrepancies in Suitability Classifications

Class From Class To Count Area Per-

(Fuzzy-AHP) (TOPSIS) Class name Pixels (sq.km) Area %

Not Not

Suitable Suitable Suitable->Suitable 305488 276.79 0.41
Not

Not Highly Suitable->Highly

Suitable Suitable Suitable 109528 99.24 0.15

Not Most Not Suitable->Most

Suitable Suitable Suitable 27210 24.65 0.04

Low Low

Suitable Suitable Suitable->Suitable 2430305 2201.98 3.29
Low

Low Highly Suitable->Highly

Suitable Suitable Suitable 1327754 1203.02 1.8
Low

Low Most Suitable->Most

Suitable Suitable Suitable 498471 451.64 0.68

Not Suitable->Not
Suitable Suitable Suitable 5524456 5005.45 7.49
Low Suitable->Low

Suitable Suitable Suitable 5630136 5101.20 7.63
Highly

Highly Not Suitable->Not

Suitable Suitable Suitable 4059163 3677.82 5.5
Highly

Highly Low Suitable->Low

Suitable Suitable Suitable 3344570 3030.36 4.53

Most Not Most Suitable->Not

Suitable Suitable Suitable 2003300 1815.10 2.72
Most

Most Low Suitable->Low

Suitable Suitable Suitable 2028077 1837.54 2.75

Percent-
Area 37 %

The change detection analysis highlighted both the similarities and differences

between the Fuzzy-AHP and TOPSIS models, indicating the need for a more thorough

evaluation to accurately assess their spatial consistency. Although the models generally

concur in identifying the most and least suitable areas for rainwater harvesting, they show

significant discrepancies in categorizing zones that are marginally or moderately suitable.

These variations underscore the importance of systematic comparative evaluations, such
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as confusion matrices and correlation analyses, to assess the consistency of the
classification results. Considering that methodological differences can greatly influence
site prioritization, especially in critical applications, such as selecting sites for harvesting,
a confusion matrix analysis was subsequently utilized to assess the binary classification

agreement between the models in Section 5.4.2.

5.4.2 Confusion Matrix Analysis

To assess the spatial agreement between the outputs of the Fuzzy-AHP and TOPSIS
models, confusion matrix analysis was performed. Figure 1 demonstrates the use of a
confusion matrix to assess the overall precision and reliability of the two models in
identifying potential RWH sites. In this evaluation, the Fuzzy-AHP binary raster acted as
the reference layer, whereas the TOPSIS binary raster was used as the input, and pixels
were categorized into two groups: unsuitable (0) and suitable (1) as illustrated figure. The
evaluation process involved three steps: (1) creating random points for accuracy
assessment, (2) revising the classifications according to the reference raster, and (3)
utilizing the confusion matrix tool to measure the agreement between the two models as
illustrated in Figure 30. The resulting matrix provides a summary of the classification

performance and the degree of alignment between the methods.
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Figure 30: Binary classification of TOPSIS and Fuzzy-AHP suitability maps

As observed in Figure 31, the overall classification accuracy was determined to be
67%, indicating that approximately two-thirds of the pixels were consistently classified
using both approaches. The user accuracy for suitable areas was relatively high at 80%,
indicating a strong consensus in identifying favorable zones for RWH implementation.
Conversely, the user accuracy for unsuitable areas was significantly lower at 53%,
suggesting that TOPSIS tends to assign higher suitability to areas deemed unsuitable by
Fuzzy-AHP. Additionally, the producer’s accuracy for unsuitable areas was 72%, showing
that most areas identified as unsuitable in the Fuzzy-AHP model were similarly classified
by TOPSIS. However, the producer’s accuracy for suitable areas decreased to 63%,

indicating moderate consistency in this category.
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Figure 31: Accuracy results of confusion matrix

The variations in classification outcomes between the Fuzzy-AHP and TOPSIS

models highlight their methodological differences, particularly in how they interpret

regions of marginal or transitional suitability. In some cases, TOPSIS rated the locations

as more suitable, whereas Fuzzy-AHP deemed them wunsuitable. Despite these

discrepancies, confusion matrix analysis indicated a moderate level of spatial agreement,

suggesting a basic alignment between the two models. However, the binary nature of the

confusion matrix does not fully reflect the variability of the continuous suitability scores

produced by each method. To overcome this limitation and evaluate the capability of the

consistent association between the model outputs, Spearman’s rho was used on the pixel-

based suitability scores extracted from both raster maps, as explained in the following

section.
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5.4.3 Correlation Analysis

To evaluate the results of the TOPSIS and Fuzzy-AHP models, an association
analysis was conducted to supplement the insights from the change raster analysis and
confusion matrix. Both approaches involved categorizing the raster maps into five levels
of suitability and using binary classification for confusion matrix analysis. To determine
a suitable sample size for data extraction, Cochran's formula was utilized, taking into
account the overall accuracy derived from the confusion matrix. This calculation indicates
that a minimum sample size of 340 points is necessary. To ensure comprehensive spatial
representation throughout the study area, 500 random sampling points were generated for

each raster map using fuzzy AHP and TOPSIS.

Table 22: Descriptive Statistics for ANOVA

Fuzzy-AHP data TOPSIS data

Sample size X S?2 X S?2
(n=500) 0.5083 0.0164 0.390  0.0562
(n=500) 0.507 0.0168 0.391 0.0551
(n=500) 0.5083 0.0157 0.392  0.0545
P-Value 0.9832 P-Value 0.9964

To improve the reliability of the comparison, the sampling process was repeated
three times for each map, with 500 points being randomly selected in each iteration. The
values obtained were then subjected to statistical analysis using one-way ANOVA (single-
factor analysis). As shown in Table 22, the findings reveal that the three samples taken
from each model output do not show significant differences, confirming that they come
from the same population and that random sampling was consistent. For the correlation
analysis explained in the subsequent sections, the initial data of the extracted sample

points were utilized for both the Fuzzy-AHP and TOPSIS raster layers.
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5.4.3.1 Descriptive Statistical Analysis and Normality Testing

Table 23 provides an overview of the descriptive statistics of the suitability scores
derived from the fuzzy analytical hierarchy process (AHP) and TOPSIS methods. The
results obtained using Fuzzy-AHP indicate a distribution that is nearly symmetrical, as
the mean (0.508) is very close to the median (0.504), with a low skewness of 0.178 and a
slightly negative kurtosis of —0.271, suggesting a distribution that is flatter than a normal
curve. Conversely, the TOPSIS scores revealed a lower central tendency, with a mean of
0.390 and median of 0.302, and showed greater variability, as evidenced by a higher
standard deviation of 0.237. This distribution is more right-skewed, with a skewness of
0.899, and has a more pronounced negative kurtosis of —0.437, indicating a flatter and
more asymmetrical shape. The distributional properties justify the use of non-parametric

statistical techniques such as Spearman's rho to compare the results of the two models.

Table 23: Descriptive Statistics

Fuzzy AHP TOPSIS
Sample mean 0.508 Mean 0.390
Standard Deviation 0.128 Median 0.302
Sample median 0.504 Standard Deviation 0.237
Skewness 0.178 Kurtosis -0.437
Kurtosis -0.271 Skewness 0.899
Maximum 0.844 Minimum 0.111
Minimum 0.206 Maximum 0.993
No. of Observations 500 No. of Observations 500

The normality of suitability scores derived from the Fuzzy-AHP and TOPSIS
models was evaluated using the Anderson—Darling (AD) test, as shown in Figure 32 and
Figure 33. For the Fuzzy-AHP data, the AD test statistics were 0.45773, which was below
the critical value of 0.781, indicating statistical acceptance at a significance threshold of
5%. As a result, there was not enough evidence to dismiss the null hypothesis of normality.

This conclusion is further corroborated by the histogram, which exhibits a symmetric

82

doi:10.6342/NTU202503692



shape, and the Q—Q plot, in which the observed values align closely with the theoretical
quantiles for both, suggesting that the Fuzzy-AHP scores approximate a normal

distribution.

Histogram Q-Q Plot

09

08

Frequency

Fuzzy-AlIP Sc

02 03 04 05 0.6 0.7 08 3 2 1 0 | 2
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Figure 32: normality testing for data extracted from Fuzzy-AHP map

On the other hand, TOPSIS scores demonstrated a clear departure from normality.
The AD test yielded a statistic of 24.149, which greatly exceeded the critical value,
leading to the null hypothesis being rejected. The associated histogram highlights a
significant right-skewed distribution, whereas the Q—Q plot shows a notable divergence
from the diagonal reference line. Owing to the non-normal distribution of the TOPSIS
scores, utilizing Spearman’s rho coefficient is more suitable for comparing the outcomes

of the two models.
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Figure 33: Normality test for data extracted from TOPSIS map

5.4.3.2 Spearman’s Correlation Analysis

Table 24 presents a summary of the output analysis, showing that the Spearman’s

coefficient (p) between the Fuzzy-AHP and TOPSIS suitability scores is 0.46, derived

from a dataset of 500 observations. This coefficient reflects a moderate positive

correlation, indicating that areas deemed highly suitable by one method are likely to be

ranked similarly by the other. Although the correlation is not particularly strong, the

findings suggest a fair level of agreement between the two methods in prioritizing

potential sites for harvesting rainwater (RWH).

Table 24: Spearman’s rho coefficient

Parameters Value Interpretation
Moderate positive correlation
Spearman’s p 0.46
<0.001 (reject H
t-statistics (Ho=0) 11.52 P (reject Ho)
Degrees of Freedom (DF) 498 —
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The rankings produced by Fuzzy-AHP and TOPSIS show a statistically significant
correlation (p < 0.001), providing strong evidence to reject the null hypothesis that there
is no relationship between these two methods. The observed correlation is statistically
significant and unlikely to have arisen from random variation, thereby reinforcing the
credibility of the comparative analysis. Specifically, the integration of change detection
using the Compute Change Raster tool, confusion matrix evaluation, and Spearman’s rank
correlation enabled a comprehensive assessment of spatial agreement and model

consistency.

The change detection revealed notable transitions in suitability classifications, with
a spatial agreement of 63% between the Fuzzy-AHP and TOPSIS models. The confusion
matrix further quantified classification accuracy, yielding an overall agreement rate of
67%, which indicates a moderate level of consistency between the predicted suitability
outputs. Additionally, the Spearman’s rho coefficient of 0.46 demonstrated a moderate
positive monotonic relationship between the suitability rankings generated by the two
models. Collectively, these findings indicate that, despite methodological differences,
both models exhibit converging spatial patterns in identifying appropriate RWH sites.
This complementarity underscores their potential as integrated tools within spatial
decision-support frameworks, offering a more robust and reliable foundation for

sustainable water resource planning.
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Chapter 6: Conclusions and Recommendations
6.1 Conclusion

In Zambia’s Southern Province, where climate variability exacerbates water
insecurity, identifying optimal rainwater harvesting (RWH) sites is critical for sustainable
water resource management. This study focused on developing a climate-responsive,
geospatial decision-making framework to pinpoint the best sites for RWH. This was
achieved by combining GIS with MCDA. The study employed twelve carefully selected
criteria encompassing physical, environmental, and socioeconomic factors. The inclusion
of the SPI notably improved the model’s capacity to identify areas vulnerable to drought,
thereby enhancing the spatial accuracy of site selection. Utilizing the Fuzzy-AHP, the
study found rainfall, curve number, and slope to be the most significant determinants of

RWH suitability, maintaining consistent influence across varying levels of uncertainty.

The findings present important implications for climate-resilient water resource
planning and management. Suitability assessments using both Fuzzy-AHP and TOPSIS
indicate that approximately 62% and 37.5 %, respectively, of the study area exhibits
moderate to high potential for placing RWH structures. The regions identified as Most
Suitable and Highly Suitable were mainly situated in the northern and southeastern areas
of the province, where advantageous environmental and socioeconomic factors align.
While minor discrepancies were observed in marginal suitability classes, the spatial
concordance between the two models was substantial, with a 63% overlap, 67%
classification accuracy, and a Spearman’s rank correlation coefficient of 0.46,
demonstrating methodological reliability and consistency. These outcomes affirm the
robustness and complementary nature of the applied approaches and underscore the
framework’s value in guiding spatially informed decision-making.
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This research primarily benefits government, water resource investors and planners,
NGOs, and local communities involved in climate adaptation and sustainable rural
development. The framework provides spatially detailed insights into the suitability of
RWH, facilitating data-driven decisions and aiding in the strategic distribution of
resources for water infrastructure. The integration of climatic indicators alongside
conventional criteria enhances the framework’s adaptability to changing environmental

conditions, ensuring its continued relevance in regions affected by climate stress.

This research lays strong groundwork for future studies focused on improving the
model's accuracy and relevance. Potential extensions include the incorporation of
advanced hydrological modeling, expanding socioeconomic factors and cost-benefit
analyses to improve operational functionality across different geographic and
administrative scales. Applying this framework in other semi-arid or arid environments
could generate comparative insights and facilitate the development of scalable,
transferable strategies for sustainable water resource management. Ultimately, this
research contributes not only to academic scholarship but also to practical, actionable

solutions for enhancing water security in vulnerable, climate-sensitive regions.

6.2 Recommendations

This research offers several key suggestions to improve the planning and
implementation of RWH projects in areas with limited water resources, focusing
particularly on Zambia's Southern Province. Priority should be given to developing RWH
infrastructure in areas classified as very high and highly suitable, which collectively
comprise around 62% of the area of interest. These high-potential locations are
predominantly within the districts of Choma, Kalomo, Pemba, Monze, Mazabuka, and
Livingstone, where conditions are optimal for the successful deployment of RWH
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interventions. Although these areas should be the primary focus, moderately suitable
regions also warrant consideration, particularly where local needs or constraints justify
their inclusion. To ensure efficient allocation of resources, investments should be
strategically directed toward the most favorable sites to enhance the overall impact and

sustainability of RWH initiatives.

Second, the inclusion of SPI within the site selection framework proved valuable
for identifying drought-prone areas, highlighting the importance of incorporating
dynamic climatic indicators into spatial planning processes. It is recommended that
national and regional agencies integrate the SPI or similar indices to enhance climate
resilience and improve the anticipation of rainfall variability. Third, the combined
application of Fuzzy-AHP and TOPSIS, validated through a spatial agreement rate of 63%
and a computed Spearman coefficient of 0.46, illustrated the advantages of employing
multiple MCDA methods. This integrated approach improves analytical robustness and
provides decision makers with greater confidence in prioritizing suitable RWH sites. To
enable the broader adoption of this GIS-MCDA framework in other regions, targeted
investments in high-resolution spatial data, remote sensing tools, and capacity building in

GIS and MCDA methodologies are essential.

Fourth, the design of rainwater harvesting (RWH) systems should be meticulously
aligned with key biophysical parameters such as rainfall distribution, curve number, and
slope to ensure hydrological feasibility. Particular attention should be given to areas
where discrepancies between the two models are most pronounced, as these zones require
targeted field validation and iterative refinement to improve site-specific accuracy and
adaptability. Moreover, RWH should be advanced not merely as a localized water
management solution, but as an integral component of broader national strategies for

climate adaptation and disaster risk reduction. Realizing this vision necessitates the
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establishment of supportive policy frameworks and sustained engagement of local
communities throughout the planning, implementation, and maintenance stages.
Collectively, these strategies can foster the sustainable management of water resources

and bolster climate resilience in SAR areas that are at risk.
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Appendix A
Figure 34 illustrates the methodology used to compute the change raster between
Fuzzy-AHP and TOPSIS suitability classification results. The procedure entails
categorizing similar classes for both raster maps from each method and utilizing the
Compute Change Raster tool in ArcGIS Pro with the categorical difference method. The
output highlights spatial reclassifications and areas of agreement or disagreement

between the two models.
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Figure 34:Workflow for Raster-Based Change Detection Between Fuzzy-AHP and
TOPSIS Outputs
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