Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98849
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝淑貞zh_TW
dc.contributor.advisorShu-Chen Hsiehen
dc.contributor.author劉歆文zh_TW
dc.contributor.authorLorena Enrique Santacruzen
dc.date.accessioned2025-08-19T16:26:23Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citationReferences
(1) Fuchs, T. A.; Abed, U.; Goosmann, C.; Hurwitz, R.; Schulze, I.; Wahn, V.; Weinrauch, Y.; Brinkmann, V.; Zychlinsky, A. Novel Cell Death Program Leads to Neutrophil Extracellular Traps. J Cell Biol 2007, 176 (2), 231–241. https://doi.org/10.1083/jcb.200606027.
(2) Liang, Y.; Wu, G.; Tan, J.; Xiao, X.; Yang, L.; Saw, P. E. Targeting NETosis: Nature’s Alarm System in Cancer Progression. Cancer Drug Resistance 2024, 7. https://doi.org/10.20517/cdr.2024.24.
(3) Kaltenmeier, C.; Simmons, R. L.; Tohme, S.; Yazdani, H. O. Neutrophil Extracellular Traps (NETs) in Cancer Metastasis. Cancers (Basel) 2021, 13 (23), 6131. https://doi.org/10.3390/cancers13236131.
(4) Hu, W.; Lee, S. M. L.; Bazhin, A. V; Guba, M.; Werner, J.; Nieß, H. Neutrophil Extracellular Traps Facilitate Cancer Metastasis: Cellular Mechanisms and Therapeutic Strategies. J Cancer Res Clin Oncol 2023, 149 (5), 2191–2210. https://doi.org/10.1007/s00432-022-04310-9.
(5) Radisky, E. S. Extracellular Proteolysis in Cancer: Proteases, Substrates, and Mechanisms in Tumor Progression and Metastasis. J Biol Chem 2024, 300 (6), 107347. https://doi.org/10.1016/j.jbc.2024.107347.
(6) Fuchs, T. A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M.; Myers, D. D.; Wrobleski, S. K.; Wakefield, T. W.; Hartwig, J. H.; Wagner, D. D. Extracellular DNA Traps Promote Thrombosis. Proceedings of the National Academy of Sciences 2010, 107 (36), 15880–15885. https://doi.org/10.1073/pnas.1005743107.
(7) Juha, M.; Molnár, A.; Jakus, Z.; Ledó, N. NETosis: An Emerging Therapeutic Target in Renal Diseases. Front Immunol 2023, 14. https://doi.org/10.3389/fimmu.2023.1253667.
(8) Law, S. M.; Hardisty, G.; Gillan, J. L.; Robinson, N. J.; Davidson, D. J.; Whyte, M. K. B.; Dransfield, I.; Gray, R. D. Neutrophil Extracellular Traps Are Associated with Airways Inflammation and Increased Severity of Lung Disease in Cystic Fibrosis. ERJ Open Res 2024, 10 (6), 00312–02024. https://doi.org/10.1183/23120541.00312-2024.
(9) Gao, F.; Peng, H.; Gou, R.; Zhou, Y.; Ren, S.; Li, F. Exploring Neutrophil Extracellular Traps: Mechanisms of Immune Regulation and Future Therapeutic Potential. Exp Hematol Oncol 2025, 14 (1), 80. https://doi.org/10.1186/s40164-025-00670-3.
(10) Thierry, A. R.; Roch, B. Neutrophil Extracellular Traps and By-Products Play a Key Role in COVID-19: Pathogenesis, Risk Factors, and Therapy. J Clin Med 2020, 9 (9), 2942. https://doi.org/10.3390/jcm9092942.
(11) Krinsky, N.; Sizikov, S.; Nissim, S.; Dror, A.; Sas, A.; Prinz, H.; Pri-Or, E.; Perek, S.; Raz-Pasteur, A.; Lejbkowicz, I.; Cohen-Matsliah, S. I.; Almog, R.; Chen, N.; Kurd, R.; Jarjou’i, A.; Rokach, A.; Ben-Chetrit, E.; Schroeder, A.; Caulin, A. F.; Yost, C. C.; Schiffman, J. D.; Goldfeder, M.; Martinod, K. NETosis Induction Reflects COVID-19 Severity and Long COVID: Insights from a 2-Center Patient Cohort Study in Israel. Journal of Thrombosis and Haemostasis 2023, 21 (9), 2569–2584. https://doi.org/10.1016/j.jtha.2023.02.033.
(12) Zhu, Y.; Xia, X.; He, Q.; Xiao, Q.-A.; Wang, D.; Huang, M.; Zhang, X. Diabetes-Associated Neutrophil NETosis: Pathogenesis and Interventional Target of Diabetic Complications. Front Endocrinol (Lausanne) 2023, 14, 1202463. https://doi.org/10.3389/fendo.2023.1202463.
(13) Manoj, H.; Gomes, S. M.; Thimmappa, P. Y.; Nagareddy, Prabhakara. R.; Jamora, C.; Joshi, M. B. Cytokine Signalling in Formation of Neutrophil Extracellular Traps: Implications for Health and Diseases. Cytokine Growth Factor Rev 2025, 81, 27–39. https://doi.org/10.1016/j.cytogfr.2024.12.001.
(14) Radermecker, C.; Detrembleur, N.; Guiot, J.; Cavalier, E.; Henket, M.; d’Emal, C.; Vanwinge, C.; Cataldo, D.; Oury, C.; Delvenne, P.; Marichal, T. Neutrophil Extracellular Traps Infiltrate the Lung Airway, Interstitial, and Vascular Compartments in Severe COVID-19. Journal of Experimental Medicine 2020, 217 (12). https://doi.org/10.1084/jem.20201012.
(15) Knight, J. S.; Luo, W.; O’Dell, A. A.; Yalavarthi, S.; Zhao, W.; Subramanian, V.; Guo, C.; Grenn, R. C.; Thompson, P. R.; Eitzman, D. T.; Kaplan, M. J. Peptidylarginine Deiminase Inhibition Reduces Vascular Damage and Modulates Innate Immune Responses in Murine Models of Atherosclerosis. Circ Res 2014, 114 (6), 947–956. https://doi.org/10.1161/CIRCRESAHA.114.303312.
(16) Chamardani, T. M.; Amiritavassoli, S. Inhibition of NETosis for Treatment Purposes: Friend or Foe? Mol Cell Biochem 2022, 477 (3), 673–688. https://doi.org/10.1007/s11010-021-04315-x.
(17) Takishita, Y.; Yasuda, H.; Shimizu, M.; Matsuo, A.; Morita, A.; Tsutsumi, T.; Tsuchiya, M.; Sato, E. F. Formation of Neutrophil Extracellular Traps in Mitochondrial DNA-Deficient Cells. J Clin Biochem Nutr 2020, 66 (1), 15–23. https://doi.org/10.3164/jcbn.19-77.
(18) Zambrano, F.; Uribe, P.; Schulz, M.; Hermosilla, C.; Taubert, A.; Sánchez, R. Antioxidants as Modulators of NETosis: Mechanisms, Evidence, and Therapeutic Potential. Int J Mol Sci 2025, 26 (11), 5272. https://doi.org/10.3390/ijms26115272.
(19) Jarrahi, A.; Khodadadi, H.; Moore, N. S.; Lu, Y.; Awad, M. E.; Salles, E. L.; Vaibhav, K.; Baban, B.; Dhandapani, K. M. Recombinant Human DNase-I Improves Acute Respiratory Distress Syndrome via Neutrophil Extracellular Trap Degradation. Journal of Thrombosis and Haemostasis 2023, 21 (9), 2473–2484. https://doi.org/10.1016/j.jtha.2023.04.044.
(20) Podolska, M. J.; Mahajan, A.; Hahn, J.; Knopf, J.; Maueröder, C.; Petru, L.; Ullmann, M.; Schett, G.; Leppkes, M.; Herrmann, M.; Muñoz, L. E.; Schauer, C. Treatment with DNases Rescues Hidden Neutrophil Elastase from Aggregated NETs. J Leukoc Biol 2019, 106 (6), 1359–1366. https://doi.org/10.1002/JLB.3AB0918-370R.
(21) Nicolaes, G. A. F.; Soehnlein, O. Targeting Extranuclear Histones to Alleviate Acute and Chronic Inflammation. Trends Pharmacol Sci 2024, 45 (7), 651–662. https://doi.org/10.1016/j.tips.2024.05.008.
(22) Okeke, E. B.; Louttit, C.; Fry, C.; Najafabadi, A. H.; Han, K.; Nemzek, J.; Moon, J. J. Inhibition of Neutrophil Elastase Prevents Neutrophil Extracellular Trap Formation and Rescues Mice from Endotoxic Shock. Biomaterials 2020, 238, 119836. https://doi.org/10.1016/j.biomaterials.2020.119836.
(23) Sae-khow, K.; Charoensappakit, A.; Udompornpitak, K.; Saisorn, W.; Issara-Amphorn, J.; Palaga, T.; Leelahavanichkul, A. Syk Inhibitor Attenuates Lupus in FcγRIIb−/− Mice through the Inhibition of DNA Extracellular Traps from Macrophages and Neutrophils via P38MAPK-Dependent Pathway. Cell Death Discov 2025, 11 (1), 63. https://doi.org/10.1038/s41420-025-02342-x.
(24) Li, Y.; Chen, S.; Yang, Y.; Zhang, Z.; Zhou, W.; Huang, Y.; Huang, Z.; He, J.; Chen, T.; Wang, J.; Liu, Z.; Chen, Y. Colchicine Inhibits NETs and Alleviates Cardiac Remodeling after Acute Myocardial Infarction. Cardiovasc Drugs Ther 2024, 38 (1), 31–41. https://doi.org/10.1007/s10557-022-07326-y.
(25) Liles, W.; Dale, D.; Klebanoff, S. Glucocorticoids Inhibit Apoptosis of Human Neutrophils. Blood 1995, 86 (8), 3181–3188. https://doi.org/10.1182/blood.V86.8.3181.3181.
(26) van der Linden, M.; Kumari, S.; Montizaan, D.; van Dalen, S.; Kip, A.; Foster, M.; Reinieren-Beeren, I.; Neubert, E.; Erpenbeck, L.; Waaijenberg, K.; Bruurmijn, T.; te Poele, R.; van Zandvoort, P.; Vink, P.; Meldrum, E.; van Es, H.; Chirivi, R. G. S. Anti-Citrullinated Histone Monoclonal Antibody CIT-013, a Dual Action Therapeutic for Neutrophil Extracellular Trap-Associated Autoimmune Diseases. MAbs 2023, 15 (1). https://doi.org/10.1080/19420862.2023.2281763.
(27) Huang, Y.; Wang, H.; Wang, C.; Chen, M.; Zhao, M. Promotion of Hypercoagulability in Antineutrophil Cytoplasmic Antibody–Associated Vasculitis by C5a‐Induced Tissue Factor–Expressing Microparticles and Neutrophil Extracellular Traps. Arthritis & Rheumatology 2015, 67 (10), 2780–2790. https://doi.org/10.1002/art.39239.
(28) Shute, J. K. Heparin, Low Molecular Weight Heparin, and Non-Anticoagulant Derivatives for the Treatment of Inflammatory Lung Disease. Pharmaceuticals (Basel) 2023, 16 (4). https://doi.org/10.3390/ph16040584.
(29) Aronson, J. K. Defining ‘Nutraceuticals’: Neither Nutritious nor Pharmaceutical. Br J Clin Pharmacol 2017, 83 (1), 8–19. https://doi.org/10.1111/bcp.12935.
(30) Surma, S.; Sahebkar, A.; Banach, M. Nutrition, Nutraceuticals and Bioactive Compounds in the Prevention and Fight against Inflammation. Nutrients 2023, 15 (11), 2629. https://doi.org/10.3390/nu15112629.
(31) Paudel, K. R.; Patel, V.; Vishwas, S.; Gupta, S.; Sharma, S.; Chan, Y.; Jha, N. K.; Shrestha, J.; Imran, M.; Panth, N.; Shukla, S. D.; Jha, S. K.; Devkota, H. P.; Warkiani, M. E.; Singh, S. K.; Ali, M. K.; Gupta, G.; Chellappan, D. K.; Hansbro, P. M.; Dua, K. Nutraceuticals and COVID‐19: A Mechanistic Approach toward Attenuating the Disease Complications. J Food Biochem 2022, 46 (12). https://doi.org/10.1111/jfbc.14445.
(32) de Souza Andrade, M. M.; Leal, V. N. C.; Fernandes, I. G.; Gozzi-Silva, S. C.; Beserra, D. R.; Oliveira, E. A.; Teixeira, F. M. E.; Yendo, T. M.; Sousa, M. da G. T.; Teodoro, W. R.; Oliveira, L. de M.; Alberca, R. W.; Aoki, V.; Duarte, A. J. S.; Sato, M. N. Resveratrol Downmodulates Neutrophil Extracellular Trap (NET) Generation by Neutrophils in Patients with Severe COVID-19. Antioxidants 2022, 11 (9), 1690. https://doi.org/10.3390/antiox11091690.
(33) Liu, S.; Wang, Y.; Ying, L.; Li, H.; Zhang, K.; Liang, N.; Luo, G.; Xiao, L. Quercetin Mitigates Lysophosphatidylcholine (LPC)-Induced Neutrophil Extracellular Traps (NETs) Formation through Inhibiting the P2X7R/P38MAPK/NOX2 Pathway. Int J Mol Sci 2024, 25 (17), 9411. https://doi.org/10.3390/ijms25179411.
(34) Ali, R. A.; Gandhi, A. A.; Dai, L.; Weiner, J.; Estes, S. K.; Yalavarthi, S.; Gockman, K.; Sun, D.; Knight, J. S. Antineutrophil Properties of Natural Gingerols in Models of Lupus. JCI Insight 2021, 6 (3). https://doi.org/10.1172/jci.insight.138385.
(35) Cerchia, C.; Correa Basurto, J.; Lupo, A.; Lavecchia, A. Editorial: Recent Trends in Anti-Cancer Drug Discovery by in Silico Methods. Frontiers in Drug Discovery 2024, 4. https://doi.org/10.3389/fddsv.2024.1420267.
(36) Connectivity Map Overview.
(37) Yang, P.-M.; Chou, C.-J.; Tseng, S.-H.; Hung, C.-F. Bioinformatics and in Vitro Experimental Analyses Identify the Selective Therapeutic Potential of Interferon Gamma and Apigenin against Cervical Squamous Cell Carcinoma and Adenocarcinoma. Oncotarget 2017, 8 (28), 46145–46162. https://doi.org/10.18632/oncotarget.17574.
(38) Shukla, N.; Somwar, R.; Smith, R. S.; Ambati, S.; Munoz, S.; Merchant, M.; D’Arcy, P.; Wang, X.; Kobos, R.; Antczak, C.; Bhinder, B.; Shum, D.; Radu, C.; Yang, G.; Taylor, B. S.; Ng, C. K. Y.; Weigelt, B.; Khodos, I.; de Stanchina, E.; Reis-Filho, J. S.; Ouerfelli, O.; Linder, S.; Djaballah, H.; Ladanyi, M. Proteasome Addiction Defined in Ewing Sarcoma Is Effectively Targeted by a Novel Class of 19S Proteasome Inhibitors. Cancer Res 2016, 76 (15), 4525–4534. https://doi.org/10.1158/0008-5472.CAN-16-1040.
(39) Brum, A. M.; van de Peppel, J.; van der Leije, C. S.; Schreuders-Koedam, M.; Eijken, M.; van der Eerden, B. C. J.; van Leeuwen, J. P. T. M. Connectivity Map-Based Discovery of Parbendazole Reveals Targetable Human Osteogenic Pathway. Proceedings of the National Academy of Sciences 2015, 112 (41), 12711–12716. https://doi.org/10.1073/pnas.1501597112.
(40) Schlitzer, A.; Sivakamasundari, V.; Chen, J.; Sumatoh, H. R. Bin; Schreuder, J.; Lum, J.; Malleret, B.; Zhang, S.; Larbi, A.; Zolezzi, F.; Renia, L.; Poidinger, M.; Naik, S.; Newell, E. W.; Robson, P.; Ginhoux, F. Identification of CDC1- and CDC2-Committed DC Progenitors Reveals Early Lineage Priming at the Common DC Progenitor Stage in the Bone Marrow. Nat Immunol 2015, 16 (7), 718–728. https://doi.org/10.1038/ni.3200.
(41) Michnick, S. W. The Connectivity Map. Nat Chem Biol 2006, 2 (12), 663–664. https://doi.org/10.1038/nchembio1206-663.
(42) Li, C.; Hendrikse, N. W.; Mai, M.; Farooqui, M. A.; Argall‐Knapp, Z.; Kim, J. S.; Wheat, E. A.; Juang, T. Microliter Whole Blood Neutrophil Assay Preserving Physiological Lifespan and Functional Heterogeneity. Small Methods 2024, 8 (9). https://doi.org/10.1002/smtd.202400373.
(43) Millius, A.; Weiner, O. D. Manipulation of Neutrophil-Like HL-60 Cells for the Study of Directed Cell Migration; 2010; pp 147–158. https://doi.org/10.1007/978-1-60761-404-3_9.
(44) Dakir, E.-H.; Mollinedo, F. Genome-Wide MiRNA Profiling and Pivotal Roles of MiRs 125a-5p and 17-92 Cluster in Human Neutrophil Maturation and Differentiation of Acute Myeloid Leukemia Cells. Oncotarget 2019, 10 (51), 5313–5331. https://doi.org/10.18632/oncotarget.27123.
(45) Xu, Q.; Ying, H.; Xie, C.; Lin, R.; Huang, Y.; Zhu, R.; Liao, Y.; Zeng, Y.; Yu, F. Characterization of Neutrophil Extracellular Traps Related Gene Pair for Predicting Prognosis in Hepatocellular Carcinoma. J Gene Med 2023, 25 (11). https://doi.org/10.1002/jgm.3551.
(46) Qu, Z.; Han, Y.; Zhu, Q.; Ding, W.; Wang, Y.; Zhang, Y.; Wei, W.; Lei, Y.; Li, M.; Jiao, Y.; Gu, K.; Zhang, Y. A Novel Neutrophil Extracellular Traps Signature for Overall Survival Prediction and Tumor Microenvironment Identification in Gastric Cancer. J Inflamm Res 2023, Volume 16, 3419–3436. https://doi.org/10.2147/JIR.S417182.
(47) Luan, T.; Yang, X.; Kuang, G.; Wang, T.; He, J.; Liu, Z.; Gong, X.; Wan, J.; Li, K. Identification and Analysis of Neutrophil Extracellular Trap-Related Genes in Osteoarthritis by Bioinformatics and Experimental Verification. J Inflamm Res 2023, Volume 16, 3837–3852. https://doi.org/10.2147/JIR.S414452.
(48) Wu, J.; Zhang, F.; Zheng, X.; Zhang, J.; Cao, P.; Sun, Z.; Wang, W. Identification of Renal Ischemia Reperfusion Injury Subtypes and Predictive Strategies for Delayed Graft Function and Graft Survival Based on Neutrophil Extracellular Trap-Related Genes. Front Immunol 2022, 13. https://doi.org/10.3389/fimmu.2022.1047367.
(49) Liu, W.; Fang, J.; Hong, T.; Huang, J.; Zhao, B.; Fang, Y.; Wu, J.; Lin, J. [The Characteristics of Neutrophil Extracellular Traps Produced by All-Trans Retinoic Acid-Induced DHL-60 under PMA Stimulation]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2022, 39 (5), 909–918. https://doi.org/10.7507/1001-5515.202205002.
(50) Collins, S. J.; Ruscetti, F. W.; Gallagher, R. E.; Gallo, R. C. Terminal Differentiation of Human Promyelocytic Leukemia Cells Induced by Dimethyl Sulfoxide and Other Polar Compounds. Proceedings of the National Academy of Sciences 1978, 75 (5), 2458–2462. https://doi.org/10.1073/pnas.75.5.2458.
(51) Gee, D. J.; Wright, L. K.; Zimmermann, J.; Cole, K.; Soule, K.; Ubowski, M. Dimethylsulfoxide Exposure Modulates HL-60 Cell Rolling Interactions. Biosci Rep 2012, 32 (4), 375–382. https://doi.org/10.1042/BSR20110109.
(52) TSAI, M.; WAUGH, R.; KENG, P. Changes in HL-60 Cell Deformability during Differentiation Induced by DMSO. Biorheology 1996, 33 (1), 1–15. https://doi.org/10.1016/0006-355X(96)00002-9.
(53) Hauert, A. B.; Martinelli, S.; Marone, C.; Niggli, V. Differentiated HL-60 Cells Are a Valid Model System for the Analysis of Human Neutrophil Migration and Chemotaxis. Int J Biochem Cell Biol 2002, 34 (7), 838–854. https://doi.org/10.1016/S1357-2725(02)00010-9.
(54) Rincón, E.; Rocha-Gregg, B. L.; Collins, S. R. A Map of Gene Expression in Neutrophil-like Cell Lines. BMC Genomics 2018, 19 (1), 573. https://doi.org/10.1186/s12864-018-4957-6.
(55) Guo, Y.; Gao, F.; Wang, Q.; Wang, K.; Pan, S.; Pan, Z.; Xu, S.; Li, L.; Zhao, D. Differentiation of HL 60 Cells in Serum free Hematopoietic Cell Media Enhances the Production of Neutrophil Extracellular Traps. Exp Ther Med 2021, 21 (4), 353. https://doi.org/10.3892/etm.2021.9784.
(56) Brackman, D.; Lund-Johansen, F.; Aarskog, D. Expression of Cell Surface Antigens during the Differentiation of HL-60 Cells Induced by 1,25-Ihydroxyvitamin D3, Retinoic Acid and DMSO. Leuk Res 1995, 19 (1), 57–64. https://doi.org/10.1016/0145-2126(94)00061-E.
(57) Blair, O. C.; Carbone, R.; Sartorelli, A. C. Differentiation of HL‐60 Promyelocytic Leukemia Cells: Simultaneous Determination of Phagocytic Activity and Cell Cycle Distribution by Flow Cytometry. Cytometry 1986, 7 (2), 171–177. https://doi.org/10.1002/cyto.990070208.
(58) Zhelev, D. V.; Alteraifi, A. M.; Chodniewicz, D. Controlled Pseudopod Extension of Human Neutrophils Stimulated with Different Chemoattractants. Biophys J 2004, 87 (1), 688–695. https://doi.org/10.1529/biophysj.103.036699.
(59) McKenna, E.; Mhaonaigh, A. U.; Wubben, R.; Dwivedi, A.; Hurley, T.; Kelly, L. A.; Stevenson, N. J.; Little, M. A.; Molloy, E. J. Neutrophils: Need for Standardized Nomenclature. Front Immunol 2021, 12. https://doi.org/10.3389/fimmu.2021.602963.
(60) Das, S.; Somisetty, V. S.; Ulven, S. M.; Matthews, J. Resveratrol and 3,3′-Diindolylmethane Differentially Regulate Aryl Hydrocarbon Receptor and Estrogen Receptor Alpha Activity through Multiple Transcriptomic Targets in MCF-7 Human Breast Cancer Cells. Int J Mol Sci 2023, 24 (19), 14578. https://doi.org/10.3390/ijms241914578.
(61) Zhao, G.; Etherton, T. D.; Martin, K. R.; Vanden Heuvel, J. P.; Gillies, P. J.; West, S. G.; Kris-Etherton, P. M. Anti-Inflammatory Effects of Polyunsaturated Fatty Acids in THP-1 Cells. Biochem Biophys Res Commun 2005, 336 (3), 909–917. https://doi.org/10.1016/j.bbrc.2005.08.204.
(62) Yang, L.; Yuan, J.; Liu, L.; Shi, C.; Wang, L.; Tian, F.; Liu, F.; Wang, H.; Shao, C.; Zhang, Q.; Chen, Z.; Qin, W.; Wen, W. α-Linolenic Acid Inhibits Human Renal Cell Carcinoma Cell Proliferation through PPAR-γ Activation and COX-2 Inhibition. Oncol Lett 2013, 6 (1), 197–202. https://doi.org/10.3892/ol.2013.1336.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98849-
dc.description.abstract嗜中性球胞外網絡(Neutrophil extracellular traps, NETs)是由活化的嗜中性球釋放的網狀結構,主要由DNA與顆粒蛋白質組成,作為一種防禦機制。然而,過度的NETosis與多種疾病的發病機轉有關,包括血栓形成、自體免疫疾病、慢性發炎及癌症。在這些情況下,NETs可能促進血管阻塞、組織損傷及持續性發炎反應。因此,尋找能調節NETosis的化合物,已成為治療發展中日益受到關注的方向。
本研究利用Connectivity Map(CMap)資料庫進行反轉NETosis相關基因表現特徵的天然化合物篩選。根據此電腦模擬分析,選出十字花科蔬菜中所含的3,3'-雙吲哚基甲烷(3,3'-diindolylmethane, DIM)與ω-3脂肪酸之一的α-次亞麻油酸(alpha-linolenic acid, ALA)進行體外測試。
本研究使用分化後的HL-60細胞(dHL-60)作為實驗模型,並以PMA(phorbol 12-myristate 13-acetate)誘導NETosis。螢光影像定量分析顯示,PMA可有效誘導NET形成;而經DIM與ALA預處理後,與NETosis相關的參數(如細胞核面積與螢光比例)呈現下降趨勢,尤其在較低濃度時更為明顯。然而,在較高濃度下,PI陽性細胞比例增加,顯示可能存在細胞毒性作用。在所有測試條件中,以10 μM DIM的抑制效果最為穩定,且未觀察到明顯的細胞膜損傷現象。
本研究結果支持DIM與ALA作為潛在NETosis調節劑的可能性,並強調營養保健品在針對NET相關疾病中的應用潛力。此外,本研究突顯了整合電腦預測與影像實驗技術以尋找新型NETosis抑制劑的價值,未來可望應用於血栓、慢性發炎、自體免疫疾病及癌症等領域。
zh_TW
dc.description.abstractNeutrophil extracellular traps (NETs) are web-like structures composed of DNA and granular proteins released by activated neutrophils as a defense mechanism. However, excessive NETosis has been implicated in the pathogenesis of various diseases, including thrombosis, autoimmune disorders, chronic inflammation, and cancer. In these conditions, NETs can promote vascular occlusion, tissue damage, and sustained inflammation. Identifying compounds that modulate NETosis is of growing interest for therapeutic development.
In this study, we employed the Connectivity Map (CMap) to screen for natural compounds capable of reversing NETosis-associated gene expression signatures. Based on this insilico analysis, 3,3'-diindolylmethane (DIM), a compound derived from cruciferous vegetables, and alpha-linolenic acid (ALA), an omega-3 fatty acid, were selected for in vitro testing.
Using a differentiated HL-60 (dHL-60) cell model, NETosis was induced with phorbol 12-myristate 13-acetate (PMA). Quantitative fluorescence imaging indicated NET formation in response to PMA. Pre-treatment with DIM and ALA led to reductions in NETosis-related parameters, including nuclear area and fluorescence ratios, particularly at lower concentrations. However, higher doses were associated with increased PI-positive cells, indicating potential cytotoxic effects. Among all conditions tested, 10 μM DIM showed the most consistent inhibitory profile without signs of membrane damage.
These findings support the potential of DIM and ALA as promising candidates for NETosis modulation and highlight the relevance of nutraceuticals in targeting NET-associated diseases. The study also emphasizes the value of integrating computational predictions with image-based experimental approaches to identify novel NETosis inhibitors, with possible applications in thrombosis, chronic inflammation, autoimmune diseases, and cancer.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:26:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:26:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsIndex
Acknowledgement………………………………………………………………………i
摘要……………………………………………………………………………………...ii
Abstract………………………………………………………………………………...iv
Index…………………………………………………………………………………...vi
List of Figures……………………………………………………………………….…ix
List of Tables…………………………………………………………………………...xi
Abbreviations………………………………………………………………………….xii
Chapter I. Literature Review…………………………………………………………..1
1.1. Neutrophil Extracellular Traps: Implications for Health and Disease ……...1
1.2. Therapeutic Strategies Targeting NETs ……………………………………....5
1.3. Nutraceuticals Targeting NETosis………………………………………..........8
1.4. The use of Connectivity Map (CMap) to identify novel compounds ……....10
1.5. In Vitro Approaches to Study Neutrophil Function …………………...........12
Chapter II. Objectives and Experimental Design…………………………………...14
2.1. Objectives………………………………………………………………............14
2.2. Experimental Design…………………………………………………………..14
Chapter III. Materials and Methods………………………………………………....17
3.1. Materials……………………………………………………………………….17
3.1.1. Equipment and instruments…………………………………………...17
3.1.2. Chemicals and reagents………………………………………………...17
3.1.3. Antibodies and compounds…………………………………………….18
3.2. Methods………………………………………………………………………...18
3.2.1. In silico compound screening using Connectivity Map (CMap)…….18
3.2.2. Culture of HL-60 cells………………………………………………….20
3.2.3. Differentiation of HL60 cells…………………………………………...21
3.2.4. Assessment of differentiation…………………………………………..21
3.2.5. Morphological observations of HL-60 and dHL-60 cells…………….23
3.2.6. Quantification of differentiated cells based on morphological
changes………………………………………………………………………………....23
3.2.7. Proliferation assay in HL-60 and dHL-60 cells……………………….24
3.2.8. Western blotting………………………………………………………...24
3.2.9. NETosis induction in differentiated HL-60 cells……………………...27
3.2.10. Inhibition of PMA-induced NETosis in dHL-60 cells by DIM and ALA…………………………………………………………………………………….28
3.2.11. NETosis quantification………………………………………………..28
3.2.12. Statistical Analysis…………………………………………………….29
Chapter IV. Results and Discussion………………………………………………….31
4.1. In Silico compound screening………………………………………………..31
4.1.1. Identification of candidate compounds through CMap analysis…….31
4.2. In vitro validation of candidate compounds………………………………...32
4.2.1. HL-60 cell proliferation is reduced upon differentiation………….…32
4.2.2. HL-60 cell morphology changes upon DMSO-induced differentiation……………………………………………………………………….…34
4.2.3. Differentiation of HL-60 Cells progresses over days of DMSO treatment…………………………………………………………………………….…34
4.2.4. Differentiation in HL-60 cells is accompanied by upregulation of CD16 expression……………………………………………………………………….35
4.2.5. Differentiated HL-60 cells exhibit signs of NETosis following PMA stimulation……………………………………………………………………………..36
4.2.6. DIM and ALA pretreatment lead to reduced nuclear area and extracellular DNA signals………………………………………………………….….41
Chapter V. Conclusion…………………………………………………………….…..52
References……………………………………………………………………………...53
Appendix……………………………………………………………………………….60
-
dc.language.isoen-
dc.subject嗜中性球胞外網絡zh_TW
dc.subject營養保健品zh_TW
dc.subject3'-雙吲哚基甲烷zh_TW
dc.subjectα-次亞麻油酸zh_TW
dc.subjectHL-60 細胞zh_TW
dc.subjectConnectivity Map (CMap)zh_TW
dc.subjectalpha linolenic acid (ALA)en
dc.subjectNeutrophil Extracellular Traps (NETs)en
dc.subjectConnectivity Map (CMap)en
dc.subjectnutraceuticalsen
dc.subject3.3 diindolylmethane (DIM)en
dc.subjectHL-60 cellsen
dc.title利用CMap及分化型HL-60細胞篩選與分析 抑制嗜中性球胞外網絡形成之天然化合物zh_TW
dc.titleConnectivity Map-based screening of natural compounds for NETosis inhibition in differentiated HL-60 cellsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖憶純;郭靜娟zh_TW
dc.contributor.oralexamcommitteeYi-Chun Liao;Ching-Chuan Kuoen
dc.subject.keyword嗜中性球胞外網絡,Connectivity Map (CMap),營養保健品,3,3'-雙吲哚基甲烷,α-次亞麻油酸,HL-60 細胞,zh_TW
dc.subject.keywordNeutrophil Extracellular Traps (NETs),Connectivity Map (CMap),nutraceuticals,3.3 diindolylmethane (DIM),alpha linolenic acid (ALA),HL-60 cells,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202503893-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-lift2025-08-11-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved