Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98712
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王弘毅zh_TW
dc.contributor.advisorHurng-Yi Wangen
dc.contributor.author張永朋zh_TW
dc.contributor.authorYung-Peng Changen
dc.date.accessioned2025-08-18T16:11:57Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation1. Kraemer, M.U., et al., The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife, 2015. 4: p. e08347.
2. Weaver, S.C. and M. Lecuit, Chikungunya virus and the global spread of a mosquito-borne disease. The New England Journal of Medicine, 2015. 372(13): p. 1231-9.
3. Bogoch, II, et al., Anticipating the international spread of Zika virus from Brazil. The Lancet, 2016. 387(10016): p. 335-336.
4. Kraemer, M.U.G., et al., Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 2019. 4(5): p. 854-863.
5. 陳易呈等人, 埃及斑蚊及白線斑蚊之生態特性及傳播病毒能力的文獻回顧, 疫情報導. 2019. p. 172-186.
6. Gloria-Soria, A., et al., Vector Competence of Aedes albopictus Populations from the Northeastern United States for Chikungunya, Dengue, and Zika Viruses. The American Journal of Tropical Medicine and Hygiene, 2020. 104(3): p. 1123-1130.
7. Schmidt, T.L., et al., Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian Tiger Mosquito, Aedes albopictus. PLOS Neglected Tropical Diseases, 2017. 11(10): p. e0006009.
8. Yeo, H., et al., Dense residential areas promote gene flow in dengue vector mosquito Aedes albopictus. iScience, 2023. 26(9): p. 107577.
9. Schmidt, T.L., et al., Spatial population genomics of a recent mosquito invasion. Molecular Ecology, 2021. 30(5): p. 1174-1189.
10. Kotsakiozi, P., et al., Population genomics of the Asian tiger mosquito, Aedes albopictus: insights into the recent worldwide invasion. Ecology and Evolution, 2017. 7(23): p. 10143-10157.
11. Schmidt, T.L., et al., Population genomics of two invasive mosquitoes (Aedes aegypti and Aedes albopictus) from the Indo-Pacific. PLOS Neglected Tropical Diseases, 2020. 14(7): p. e0008463.
12. 劉禹含。「白線斑蚊粒線體的基因體學研究」。碩士論文,國立中興大學基因體暨生物資訊學研究所,2017。<https://hdl.handle.net/11296/286wft>
13. Huang, C.G., et al., The Impact of Administrative Districts and Urban Landscape on the Dispersal of Aedes aegypti via Genetic Differentiation. Molecular Ecology, 2025. 34(3): p. e17644.
14. Muharromah, A.F., et al., Fine-scale adaptive divergence and population genetic structure of Aedes aegypti in Metropolitan Manila, Philippines. Parasit Vectors, 2024. 17(1): p. 233.
15. Zhao, M., et al., Genetic diversity of Aedes aegypti and Aedes albopictus from cohabiting fields in Hainan Island and the Leizhou Peninsula, China. Parasites & Vectors, 2023. 16(1): p. 319.
16. Motoki, M.T., et al., Population genetics of Aedes albopictus (Diptera: Culicidae) in its native range in Lao People's Democratic Republic. Parasites & Vectors, 2019. 12(1): p. 477.
17. Vavassori, L., et al., Multiple introductions and overwintering shape the progressive invasion of Aedes albopictus beyond the Alps. Ecology and Evolution, 2022. 12(7): p. e9138.
18. Peterson, B.K., et al., Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE, 2012. 7(5): p. e37135.
19. Aguirre, N., et al., Optimizing ddRADseq in Non-Model Species: A Case Study in Eucalyptus dunnii Maiden. Agronomy, 2019. 9(9).
20. Andrews, K.R., et al., Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics, 2016. 17(2): p. 81-92.
21. Catchen, J., et al., Stacks: an analysis tool set for population genomics. Molecular Ecology, 2013. 22(11): p. 3124-40.
22. McKinney, G.J., et al., Paralogs are revealed by proportion of heterozygotes and deviations in read ratios in genotyping-by-sequencing data from natural populations. Molecular Ecology Resources, 2017. 14(4): p. 656-669.
23. Fuentes-Pardo, A.P. and D.E. Ruzzante, Whole-genome sequencing approaches for conservation biology: Advantages, limitations and practical recommendations. Molecular Ecology, 2017. 26(20): p. 5369-5406.
24. Nazareno, A.G., et al., Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Molecular Ecology Resources, 2017. 17(6): p. 1136-1147.
25. Esposito, S., et al., ddRAD sequencing-based genotyping for population structure analysis in cultivated tomato provides new insights into the genomic diversity of Mediterranean 'da serbo' type long shelf-life germplasm. Horticulture Research, 2020. 7: p. 134.
26. Magris, G., et al., ddRAD-seq reveals the genetic structure and detects signals of selection in Italian brown trout. Genetics Selection Evolution, 2022. 54(1): p. 8.
27. Ivanov, V., et al., Relevance of ddRADseq method for species and population delimitation of closely related and widely distributed wolf spiders (Araneae, Lycosidae). Scientific Reports, 2021. 11(1): p. 2177.
28. Barratt, C.D., et al., A decision-making framework to maximise the evolutionary potential of populations - Genetic and genomic insights from the common midwife toad (Alytes obstetricans) at its range limits. Heredity (Edinb), 2024. 133(4): p. 249-261.
29. Rašić, G., et al., Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics, 2014. 15(1): p. 275.
30. Bingyan, L., et al., Conserved profiles of digestion by double restriction endonucleases in insect genomes facilitate the design of ddRAD. Zoological Systematics, 2018. 43(4): p. 341-355.
31. Rochette, N.C., A.G. Rivera-Colon, and J.M. Catchen, Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Molecular Ecology, 2019. 28(21): p. 4737-4754.
32. Li, H., Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv:1303.3997, 2013.
33. Li, H., et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009. 25(16): p. 2078-9.
34. Danecek, P., et al., The variant call format and VCFtools. Bioinformatics, 2011. 27(15): p. 2156-8.
35. Pritchard, J.K., M. Stephens, and P. Donnelly, Inference of Population Structure Using Multilocus Genotype Data. Genetics, 2000. 155(2): p. 945-959.
36. Slatkin, M., Linkage disequilibrium--understanding the evolutionary past and mapping the medical future. Nature Reviews Genetics, 2008. 9(6): p. 477-85.
37. O'Connell, J., et al., A general approach for haplotype phasing across the full spectrum of relatedness. PLOS Genetics, 2014. 10(4): p. e1004234.
38. Chang, C.C., et al., Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 2015. 4: p. 7.
39. Wickham, H., et al., Welcome to the Tidyverse. Journal of Open Source Software, 2019. 4(43).
40. Wickham, H.F., Romain; Henry, Lionel; Müller, Kirill; Vaughan, Davis, dplyr: A Grammar of Data Manipulation [software]. 2025, R package version 1.1.4.
41. Jolliffe, I.T. and J. Cadima, Principal component analysis: a review and recent developments. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2016. 374(2065): p. 20150202.
42. Knaus, B.J. and N.J. Grunwald, vcfr: a package to manipulate and visualize variant call format data in R. Molecular Ecology Resources, 2017. 17(1): p. 44-53.
43. Kamvar, Z.N., J.F. Tabima, and N.J. Grunwald, Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2014. 2: p. e281.
44. McInnes, L. and J. Healy, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. ArXiv e-prints, 2018.
45. Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Cham, Switzerland: Springer International Publishing; 2016. 260 p. (Use R!). Available from: https://ggplot2.tidyverse.org
46. Alexander, D.H., J. Novembre, and K. Lange, Fast model-based estimation of ancestry in unrelated individuals. Genome research, 2009. 19(9): p. 1655-1664.
47. Hardy, O.J. and X. Vekemans, spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2002. 2(4): p. 618-620.
48. Loiselle, B.A., et al., Spatial Genetic Structure of a Tropical Understory Shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany, 1995. 82(11): p. 1420-1425.
49. Schmidt, T.L., et al., Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia. Heredity, 2018. 120(5): p. 386-395.
50. Iacchei, M., et al., Combined analyses of kinship and FST suggest potential drivers of chaotic genetic patchiness in high gene-flow populations. Molecular Ecology, 2013. 22(13): p. 3476-94.
51. Rousset, F., Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics, 1997. 145(4): p. 1219-28.
52. Shirk, A.J., E.L. Landguth, and S.A. Cushman, A comparison of individual-based genetic distance metrics for landscape genetics. Molecular Ecology Resources, 2017. 17(6): p. 1308-1317.
53. Filipovic, I., et al., Using spatial genetics to quantify mosquito dispersal for control programs. BMC biology, 2020. 18(1): p. 104.
54. Goslee, S.C. and D.L. Urban, The ecodist Package for Dissimilarity-based Analysis of Ecological Data. Journal of Statistical Software, 2007. 22(7): p. 1 - 19.
55. Tang, Q., T. Fung, and F.E. Rheindt, ResDisMapper: An r package for fine-scale mapping of resistance to dispersal. Molecular Ecology Resources, 2020. 20(3).
56. Prevosti, A., J. Ocaña, and G. Alonso, Distances between populations ofDrosophila subobscura, based on chromosome arrangement frequencies. Theoretical and applied genetics, 1975. 45(6): p. 231-41.
57. Fick, S.E. and R.J. Hijmans, WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 2017. 37(12): p. 4302-4315.
58. Dixon, P., VEGAN, A Package of R Functions for Community Ecology. Journal of Vegetation Science, 2003. 14(6): p. 927-930.
59. Warren, D.L., et al., ENMTools 1.0: an R package for comparative ecological biogeography. Ecography, 2021. 44(4): p. 504-511.
60. Peterman, W.E. and S. Jarman, ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms. Methods in Ecology and Evolution, 2018. 9(6): p. 1638-1647.
61. van Etten, J., R Package gdistance: Distances and Routes on Geographical Grids. Journal of Statistical Software, 2017. 76(13) : p. 1-12.
62. Brad, H.M., ISOLATION BY RESISTANCE. Evolution, 2006. 60(8): p. 1551-1561.
63. McRae, B.H. and P. Beier, Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences, 2007. 104(50): p. 19885-19890.
64. Quinlan, A.R. and I.M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 2010. 26(6): p. 841-2.
65. Dainat, J., AGAT: Another Gff Analysis Toolkit to handle annotations in any GTF/GFF format [software]. 2024, Zenodo.
66. Huerta-Cepas, J., et al., eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic acids research, 2019. 47(D1): p. D309-D314.
67. Carlson M, Pagès H. AnnotationForge: Tools for building SQLite-based annotation data packages [software]. R package version 1.51.0. 2025. Available from: https://bioconductor.org/packages/AnnotationForge
68. Wu, T., et al., clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation, 2021. 2(3): p. 100141.
69. Zhou, Y., et al., Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature communications, 2019. 10(1): p. 1523.
70. Camacho, C., et al., BLAST+: architecture and applications. BMC Bioinformatics, 2009. 10: p. 421.
71. Delatte, H., et al., Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. Journal of medical entomology, 2009. 46(1): p. 33-41.
72. Yang, D., et al., Semi-field life-table studies of Aedes albopictus (Diptera: Culicidae) in Guangzhou, China. PLoS One, 2020. 15(3): p. e0229829.
73. Sherpa, S., et al., Genetic diversity and distribution differ between long-established and recently introduced populations in the invasive mosquito Aedes albopictus. Infection, genetics and evolution, 2018. 58: p. 145-156.
74. Gloria-Soria, A., et al., Population genetics of an invasive mosquito vector, Aedes albopictus in the Northeastern USA. NeoBiota, 2022. 78: p. 99-127.
75. Vavassori, L., A. Saddler, and P. Muller, Active dispersal of Aedes albopictus: a mark-release-recapture study using self-marking units. Parasites & vectors, 2019. 12(1): p. 583.
76. Bellini, R., et al., Dispersal and survival of Aedes albopictus (Diptera: Culicidae) males in Italian urban areas and significance for sterile insect technique application. Journal of medical entomology, 2010. 47(6): p. 1082-91.
77. Marini, F., et al., Study of Aedes albopictus dispersal in Rome, Italy, using sticky traps in mark-release-recapture experiments. Medical and veterinary entomology, 2010. 24(4): p. 361-8.
78. Le Goff, G., et al., Field evaluation of seasonal trends in relative population sizes and dispersal pattern of Aedes albopictus males in support of the design of a sterile male release strategy. Parasites Vectors, 2019. 12(1): p. 81.
79. Maciel-de-freitas, R., et al., Movement of Dengue Vectors Between the Human Modified Environment and an Urban Forest in Rio de Janeiro. Journal of Medical Entomology, 2006. 43(6): p. 1112-1120.
80. Eritja, R., et al., Direct Evidence of Adult Aedes albopictus Dispersal by Car. Scientific reports, 2017. 7(1): p. 14399.
81. Carlassara, M., et al., Population-specific responses to developmental temperature in the arboviral vector Aedes albopictus: Implications for climate change. Global change biology, 2024. 30(3): p. e17226.
82. Kramer, I.M., et al., The ecophysiological plasticity of Aedes aegypti and Aedes albopictus concerning overwintering in cooler ecoregions is driven by local climate and acclimation capacity. The Science of the total environment, 2021. 778: p. 146128.
83. Marini, G., et al., The effect of interspecific competition on the temporal dynamics of Aedes albopictus and Culex pipiens. Parasites & vectors, 2017. 10(1): p. 102.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98712-
dc.description.abstract白線斑蚊(Aedes albopictus)為全球重要病媒蚊種之一,具高度擴散潛能與生態可塑性,其在台灣的遺傳結構與基因流動模式對疾病傳播風險與防治策略具有關鍵意義。本研究運用雙限制酶切位點關聯DNA定序技術(ddRAD-seq),結合兩階段系統性採樣設計,針對台灣本島共416筆白線斑蚊樣本進行族群遺傳分析,以全面描繪其遺傳組成、親緣關係與環境因子影響。
運用ddRAD-seq獲得數萬個高品質單核苷酸多態性(SNP)位點,針對台灣白線斑蚊進行族群遺傳結構與基因流動分析。第一階段於南部都市地區密集採樣,第二階段則以10平方公里網格於全島範圍內系統性取樣,建立涵蓋多樣棲地的代表性樣本集。分析結果顯示,白線斑蚊整體遺傳多樣性中等,族群間遺傳組成相對均質,未呈現明確地理分化;但在部分樣本中,意外發現與地形高度相關的微弱分化現象,顯示中央山脈與西部都市區間可能潛藏山區族群與平地都市族群之遺傳結構差異。親緣分析亦發現部分近親樣本對相隔數十至百公里,反映該物種具有長距離基因交流潛力,可能受交通或人為因素促進。
遺傳與地理距離相關性分析顯示,地理距離對白線斑蚊遺傳差異的解釋力有限,整體未呈現明顯的距離隔離現象。進一步的空間分析顯示,山區與都市平地族群間存在潛在的基因交流阻力邊界,顯示地形與棲地環境可能對遺傳連通性造成干擾。為進一步探討此現象與環境因子之間的關聯性,本研究分析八項地景與氣候因子對基因流動的影響,結果顯示無單一因子具主導性作用,推測多重環境因子共同調控基因交流模式。另針對山區與都市族群間顯著分化的基因進行功能富集分析,結果顯示相關基因主要涉及神經發育、行為調控與細胞訊號傳導等功能,可能與族群對不同環境條件的適應差異有關。
綜上所述,本研究建立白線斑蚊於台灣之高解析度族群遺傳圖譜,揭示其高度基因流動特性與環境交互作用下的遺傳結構樣態,拓展對其族群動態與演化潛力之理解,亦為病媒生物相關研究與風險評估提供參考依據。
zh_TW
dc.description.abstractAedes albopictus is one of the most important vector mosquito species worldwide, characterized by high dispersal potential and ecological plasticity. Understanding its genetic structure and gene flow patterns is critical for assessing disease transmission risk and informing control strategies. In this study, we applied double-digest restriction-site associated DNA sequencing (ddRAD-seq), combined with a two-phase systematic sampling strategy, to analyze 416 individuals of Ae. albopictus collected across Taiwan. Our aim was to comprehensively characterize genetic composition, kinship relationships, and the influence of environmental factors on population genetic variation.
Using ddRAD-seq, we obtained tens of thousands of high-quality single nucleotide polymorphisms (SNPs) for downstream population genomic analyses. The first phase involved intensive sampling in urban areas of southern Taiwan, while the second phase employed a 10 km² grid-based sampling scheme covering a wide range of habitats across the island. Results revealed moderate genetic diversity and largely homogeneous genetic composition across populations, with no strong geographic differentiation. However, subtle genetic structuring associated with elevation was detected, suggesting potential differentiation between mountain and lowland urban populations, possibly influenced by the Central Mountain Range. Kinship analysis identified closely related individuals separated by tens to over one hundred kilometers, implying the potential for long-distance gene flow, possibly facilitated by human transportation.
Analyses of genetic and geographic distances indicated limited isolation by distance, with gene flow exhibiting spatial heterogeneity. Further landscape analyses identified potential gene flow barriers between mountainous and urban lowland populations, likely shaped by topography and habitat differences. No single environmental factor was found to dominate gene flow dynamics, suggesting a complex interplay of multiple landscape and climatic factors. Functional enrichment analysis of highly differentiated genes between mountain and lowland groups indicated significant associations with neurodevelopment, behavioral regulation, and signal transduction, potentially reflecting local adaptation to contrasting environments.
In summary, this study provides a high-resolution genetic landscape of Ae. albopictus populations in Taiwan, revealing extensive gene flow and spatially variable genetic structuring influenced by environmental heterogeneity. These findings offer new insights into the species’ population dynamics and have important implications for vector surveillance and disease risk assessment.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:11:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:11:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iv
ABSTRACT vi
表次 x
圖次 xi
附錄 xii
第一章 前言 1
第二章 材料與方法 4
1.研究材料 4
2.簡化基因組 (double digest Restriction-site Associated DNA, ddRAD-seq)分子實驗及序列處理 5
2.1DNA萃取 5
2.2雙限制酶切位點定序法 5
2.3序列處理與遺傳多樣性分析 6
3.遺傳結構與族群分析 (Genetic structure and population analysis) 7
3.1連鎖不平衡檢測 (Linkage disequilibrium test) 7
3.2主成分分析 (principal components analysis, PCA) 8
3.3均勻流形逼近及投影 (Uniform Manifold Approximation and Projection, UMAP) 8
3.4族群結構分析 9
4.親屬關係與地理距離 9
5.遺傳距離與地理距離 10
6遺傳交流阻力空間模型分析 10
7環境因子與遺傳結構之關聯性 11
8地景阻力值最佳化分析 12
9基因功能富集分析 (Gene Enrichment Analysis) 13
第三章 結果 16
3.1 ddRAD-seq定序與資料處理 16
3.2 遺傳多樣性分析 16
3.3連鎖不平衡檢測結果 18
3.4第一階段:南部都市密集採樣之族群結構分析 (N = 116) 19
3.4.1族群結構 19
3.4.2親屬關係與地理距離 19
3.4.3遺傳距離與地理距離 20
3.5第二階段:全島網格採樣之族群結構分析 (N = 300) 21
3.5.1族群結構 21
3.5.2親屬關係與地理距離 22
3.5.3 遺傳距離與地理距離 23
3.5.4遺傳交流阻力空間模型分析 23
3.5.5環境因子與遺傳結構之關聯性 24
3.5.6地景阻力值最佳化分析 25
3.5.7基因功能富集分析結果 26
第四章 討論 28
遺傳多樣性分析與族群結構探討 28
遺傳距離與地理距離之區域性關聯比較 30
遠距離親屬樣本對與人為擴散之可能機制探討 31
適應性變異與功能富集分析 32
第五章 結論 35
第六章 參考文獻 36
表 42
圖 63
附錄 95
-
dc.language.isozh_TW-
dc.subject雙切限制酶片段DNA定序法zh_TW
dc.subject親源分析zh_TW
dc.subject白線斑蚊zh_TW
dc.subject族群遺傳學zh_TW
dc.subject遺傳結構zh_TW
dc.subject地景遺傳學zh_TW
dc.subjectAedes albopictusen
dc.subjectpopulation geneticsen
dc.subjectgenetic structureen
dc.subjectkinship analysisen
dc.subjectddRAD-seqen
dc.subjectlandscape geneticsen
dc.title使用全基因組單核苷酸多型性探討台灣白線斑蚊的地景基因體學zh_TW
dc.titleLandscape genomics of Aedes albopictus in Taiwan using genome-wide SNPsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor黃旌集zh_TW
dc.contributor.coadvisorChin-Gi Huangen
dc.contributor.oralexamcommittee陳錦生;陳維鈞zh_TW
dc.contributor.oralexamcommitteeChin-Seng Chen;Wei-June Chenen
dc.subject.keyword白線斑蚊,雙切限制酶片段DNA定序法,遺傳結構,族群遺傳學,地景遺傳學,親源分析,zh_TW
dc.subject.keywordAedes albopictus,ddRAD-seq,genetic structure,population genetics,landscape genetics,kinship analysis,en
dc.relation.page109-
dc.identifier.doi10.6342/NTU202502821-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-08-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
dc.date.embargo-lift2025-08-19-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf5.54 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved