請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9869完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊維 | |
| dc.contributor.author | Yu-Ying Lee | en |
| dc.contributor.author | 李昱瑩 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:46:20Z | - |
| dc.date.available | 2020-08-05 | |
| dc.date.available | 2021-05-20T20:46:20Z | - |
| dc.date.copyright | 2011-08-12 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-08 | |
| dc.identifier.citation | [1] Energy Information administration, official energy statics from U.S. government
[2] Bube, R. H. Photoelectronic Properties of Semiconductors; Cambridge University Press: Cambridge, 1992. [3] M. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed., Oxford University Press, New York 1999. [4] S. Barth, H. Bässler, Phys. Rev. Lett. 1997, 79, 4445. [5] P. G. Dacosta, E. M. Conwell, Phys. Rev. B 1993, 48, 1993. [6] A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. Lagemaat, Appl. Phys. Lett. 2008, 92, 013504. [7] L. Li, G. Lu, and X. Yang, J. Mater. Chem. 2008, 18, 1984. [8] K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, and J. R. Durrant, Sol. Energy Mater. Sol. Cells 2006, 90, 3520. [9] M. Jorgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 2008, 92, 686. [10] M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, J. Luther, Thin Solid Films 2005, 491, 298. [11] S. K. Hau, H. L. Yip, N. S. Baek, J. Zou, K. O’Malley, A. K. Y. Jen, Appl. Phys. Lett. 2008, 92, 253301. [12] B. Lei, Y. Yao, A. Kumar, Y. Yang, V. Ozolins, J. Appl. Phys. 2008, 104, 024504. [13] P. Watkins, A. Walker, G. Verschoor, Nano Lett. 2005, 5, 1814. [14] C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, C. J. Brabec, Appl. Phys. Lett. 2006, 89, 233517. [15] J. S. Huang, G. Li, Y. Yang, Adv. Mater. 2008, 20, 415. [16] H. H. Liao, L. M. Chen, Z. Xu, G. Li, Y. Yang, Appl. Phys. Lett. 2008, 92, 173303. [17] L. S. C. Pingree, B. A. MacLeod, D. S. Ginger, J. Phys. Chem. C 2008, 112,7922. [18] H. Yan, P. Lee, N. R. Armstrong, A. Graham, G. A. Evmenenko, P. Dutta, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 3172. [19] M. D. Irwin, B. Buchholz, A. W. Hains, R. P. H. Chang, T. J. Marks, Proc. Natl. Acad. Sci. USA 2008, 105, 2783. [20] V. Shrotriya, G. Li, Y. Yao, C. W. Chu, Y. Yang, Appl. Phys. Lett. 2006, 88, 073508. [21] Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, Appl. Phys. Lett. 2007, 91, 063510. [22] K. Schulze, B. Maennig, K. Leo, Y. Tomita, C. May, J. Hüpkes, E. Brier, E. Reinold, and P. Bäuerle, Appl. Phys. Lett. 2007, 91, 073521. [1] Waldauf, C.; Morana, M.; Denk, P.; Schilinsky, P.; Coakley, K.; Choulis, S. A.; Brabec, C. J. Appl. Phys. Lett. 2006, 89, 233517. [2] Liao, H. H.; Chen, L. M.; Xu, Z.; Li, G.; Yang, Y. Appl. Phys. Lett. 2008, 92, 173303. [3] Hayakawa, A.; Yoshikawa, O.; Fujieda, T.; Uehara, K.; Yoshikawa, Y. Appl. Phys. Lett. 2007, 90, 163517. [4] Park, J. H.; Kang, G. S.; Kwon, S. I.; Lim, D. G.; Choi, Y. J.; Park, J. G. J. Nanosci. Nanotechnol. 2008, 8, 4658. [5] White, M. S.; Olson, D. C.; Shaheen, S. E.; Kopidakis, N.; Ginley, D. S. Appl. Phys. Lett. 2006, 89, 143517. [6] Hau, S. K.; Yip, H. L.; Baek, N. S.; Zou, J.; O’Malley, K.; Jen, A. K. Y. Appl. Phys. Lett. 2008, 92, 253301. [7] F. K. Shan, Y. S. Yu, J. Eur. Ceram. Soc. 2004, 24, 1869. [8] N. K. Shan, R. Greef, K. Rogers, A. J. C. Grellier, C. N. Pannell, Thin Solid Films 1999, 352, 179. [9] W. T. Lim, C. H. Lee, Thin Solid Films 1999, 353, 12. [10] K. H. Bang, D. K. Hwang, S. W. Lim, J. M. Myoung, J. Cryst. Growth 2003, 250, 437. [11] N. Oleynik, M. Adam, A. Krtschil, J. Bläsing, A. Dadgar, F. Bertram, D. Forster, A. Diez, A. Greiling, M. Seip, J. Christen, A. Krost, J. Cryst. Growth 2003, 248, 14. [12] T. Fukudome, A. Kaminaka, H. Isshiki, R. Saito, S. Yugo, T. Kimura, Nucl. Instrum. Methods Phys. Res., Sect. B 2003, 206, 287. [13] L. Armelao, M. Fabrizio, S. Gialanella, F. Zordan, Thin Solid Films 2001, 394, 90. [14] Y. Natsume, H. Sakata, Mater. Chem. Phys. 2002, 78, 170. [15] C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, C. J. Brabec, Appl. Phys. Lett. 2006, 89, 233517. [16] T. Ameri, G. Dennler, C. Waldauf, P. Denk, K. Forberich, M. C. Scharber, C. J. Brabec, and K. Hingerl, J. Appl. Phys. 2008, 103, 084506. [17] R. Steim, S. A. Choulis, P. Schilinsky, C. J. Brabec, Appl. Phys. Lett.2008, 92, 093303. [18] C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, Appl. Phys. Lett. 2009, 94, 043311. [19] C. Y. Li, T. C. Wen, T. H. Lee, T. F. Guo, J. C. A. Huang, Y. C. Lin, Y. J. Hsu, J. Mater. Chem. 2009, 19, 1643. [20] S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O’Malley, and A. K. Y. Jen, Appl. Phys. Lett. 2008, 92, 253301. [21] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett. 2006, 89, 143517. [22] G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Appl. Phys. Lett. 2006, 88, 253503. [23] D. H. Ko, J. R. Tumbleston, M. R. Ok, H. Chun, R. Lopez, E. Samulski, J. Appl. Phys. 2010, 108, 083101. [24] A. Wagenpfahl, D. Rauh, M. Binder, C. Deibel, V. Dyakonov, Phys. Rev. B: Condens. Matter 2010, 82, 115306. [1] S. S. Li, K. H. Tu, C. C. Lin, C. W. Chen, M. Chhowalla, ACS Nano 2010, 4, 3169. [2] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, I. A. Aksay, J. Phys. Chem. B 2006, 110, 8535. [3] H. Y. He, J. Klinowski, M. Forster, A. Lerf, Chem. Phys. Lett. 1998, 287, 53. [4] C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Adv. Funct. Mater. 2009, 19, 2577. [5] G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, J.Phys. Chem. C 2009, 113, 15768. [6] G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 2008, 3,270. [7] S. Wang, P. J. Chia, L. L. Chua, L. H. Zhao, R. Q. Png, S. Sivaramakrishnan, M. Zhou, R. G. S. Goh, R. H. Friend, A. T. S. Wee, P. K. H. Ho, Adv. Mater. 2008, 20, 3440. [8] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Carbon 2004, 42, 2929. [9] Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Obergfell, D.; Roth, S.; Girit, C.; Zettl, A. Solid State Commun. 2007, 143, 101. [10] Tauc, J. Mater. Res. Bull. 1968, 3, 37. [11] M. Jørgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 2008, 92, 686. [12] L. S. C. Pingree, B. A. MacLeod, and D. S. Ginger, J. Phys. Chem. C 2008, 112,7922. [13] S. K. Hau, H. L. Yip, J. Y. Zou, and A. K. Y. Jen, Org. Electron. 2009, 10, 1401. [14] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 2008, 146, 351. [15] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim, Phys. Rev. Lett. 2008, 100, 016602. [16] C. Lee, X. D. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385. [17] A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 2008, 8, 902. [18] Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, K. P. Loh, Adv. Mater. 2011, 23, 1514 [19] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Nature Mater. 2007, 6, 652. [20] R. Sordan, F. Traversi, V. Russo, Appl. Phys. Lett. 2009, 94, 073305. [21] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666. [22] P. Sutter, Nature Mater. 2009, 8, 171. [23] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 2010, 5, 574. [24] [d] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, Kwang. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 2009, 457, 706. [25] J. Sabio, C. Seoanez, S. Fratini, F. Guinea, A. H. Castro, F. Sols, Phys. Rev. B 2008, 77, 195409. [26] E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, K. Kern, Nat. Nano 2008, 3, 486. [27] L. DiCarlo, J. R. Williams, Y. M. Zhang, D. T. McClure, C. M. Marcus, Phys. Rev. Lett. 2008, 100, 156801. [28] Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, Z. X. Shen, J. Raman Spectrosc. 2010, 41, 479. [1] J. Huang, G. Li, Y. Yang, Adv. Mater. 2008, 20, 415. [2] Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Nature 2005, 438, 201. [3] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 1308. [4] Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, K. P. Loh, Adv. Mater. 2011, 23, 1514. [5] H. Park, J. A. Rowehl, K. K. Kim, V. Bulovic, J. Kong, Nanotechnol. 2010, 21, 505204. [6] Y. Zhou, H. Cheun, S. Choi, W. J. Potscavage, Jr., C. Fuentes-Hernandez, B. Kippelen, Appl. Phys. Lett. 2010, 97, 153304. [7] H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, Z. Zheng, Adv. Funct. Mater. 2010, 20, 2893. [8] A. C. Ferrari, Solid State Commun. 2007, 143, 47. [9] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Phys. Rev. Lett. 2006, 97, 187401. [10] J. Y. Hwang, C. C. Kuo, L. C. Chen, K. H. Chen, Nanotechnol. 2010, 21, 465705. [11] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 2010, 5, 574. [12] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864. [13] Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, Z. X. Shen, Nano Lett. 2007, 7, 2758. [14] I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, R. S. Ruoff, J. Phys. Chem. C 2008, 112, 8499. [15] R. A. Synowicki, Thin Solid Films 1998, 313, 394. [16] M. Hill, Handbook of Optics 2nd edition, Vol. 2, 1994. [17] S. Y. Chuang, H. L. Chen, W. H. Lee, Y. C. Huang, W. F. Su, W. M. Jen, C. W. Chen, J. Mater. Chem. 2009, 19, 5554. [18] R. Hezel, Prog. Photovoltaics Res. Appl. 2003, 11, 549. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9869 | - |
| dc.description.abstract | 本研究主要是探討一種倒置結構之有機太陽能電池,此倒置結構之元件,擁有氧化鋅薄膜作為一個電子傳輸層,鍍上P3HT:PCBM作為光反應層,並利用PEDOT:PSS 當作電洞傳輸層,最後蒸鍍上銀電極。相對於傳統式的有機太陽能電池,倒置結構使用功函數較高的電極,移除了原本較低功函數容易產生氧化的鋁電極,可以有效地提升有機太陽能電池的壽命。本文中探討了紫外光對於氧化鋅電子傳輸層產生的效應,以及對倒置太陽能電池元件效率的影響,並量測電子電洞的結合效率。此外,我們還介紹了使用石墨烯氧化物以及石墨烯在倒置有機太陽能電池中作為一個電洞傳輸層,取代了傳統的PEDOT:PSS,並且展現了不錯的效率。最後,我們利用熱脫膠轉印的方式,作出了一個以石墨烯為上電極,石墨烯氧化物為電洞傳輸層而氧化銦錫作為下電極的半透明式倒置有機太陽能電池。為了達到更高的效率,我們改善了原本的製程,減少石墨烯層與層之間的殘留物,使得效率提升到約莫2.5%。此外,利用兩邊電極皆為透光的特性,可以利用一面反射鏡,對元件進行兩面照光,使得光電流有進一步的提升。 | zh_TW |
| dc.description.abstract | In this study, we demonstrated an inverted polymer solar cell which has ZnO thin film as an electron transport layer, P3HT:PCBM as an active layer, PEDOT:PSS as a hole transport layer, and silver as the top electrode. Compared to the conventional devices, because of the high work-function metal electrode, inverted PSCs are more air-stable. In the following chapter, the UV effect on ZnO electron transport layer and the impact to device performance were investigated. Then, the using of graphene and graphene oxide to substitute for PEDOT:PSS as a hole transport layer was introduced. J-V characteristics were investigated to compare the device performance of the devices with different hole transport layers. Finally, we constructed a novel structure with graphene as a top electrode, graphene oxide as a hole transport layer and ITO as a bottom electrode. Because of the two transparent electrodes, this device is semitransparent, and a modified-transferring process was introduced for further improvement of the device performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:46:20Z (GMT). No. of bitstreams: 1 ntu-100-R98527031-1.pdf: 5433059 bytes, checksum: 2cd44e62149ff2bb5eb46aa63a68f993 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員審定書 I
Acknowledgements II 摘要 III Abstract IV Contents V List of Figures VIII List of Tables XII List of Publications XIII Chapter 1 Introduction 1 1.1 Introduction 2 1.2 Polymer solar cells 4 1.2.1 Conventional type 6 1.2.2 Inverted type 7 1.3 Components of inverted organic solar cells 9 1.3.1 Photoactive layer 9 1.3.2 Electron transport layer 10 1.3.3 Hole transport layer 11 1.3.4 Electrode 12 1.4 Reference 13 Chapter 2 Experimental Setup 15 2.1 Solar cell characteristics 16 2.1.1 Solar spectrum (I-V curve) 16 2.1.2 External quantum efficiency (EQE) 18 2.2 UV-Visible absorption spectroscopy 19 2.3 AFM measurement 20 2.4 Transient Photovoltage(TPV) 23 2.5 Raman spectroscopy 25 Chapter 3 UV sensitive electron transport layer in inverted polymer solar cell 27 3.1 Inverted polymer solar cell 28 3.1.1 Preparation of ZnO thin film for electron transport layer 29 3.1.2 Fabrication of inverted type polymer solar cell 30 3.2 Suppression of recombination by UV illumination 32 3.2.1 Device performance due to UV effect 32 3.2.2 Discussion and Transport properties 35 3.3 Reference 39 Chapter 4 Using Graphene and Graphene oxide as a hole transport layer for inverted type PSCs 41 4.1 Graphene oxide (GO) 42 4.1.1 Synthesis of graphene oxide 43 4.1.2 Characterization of graphene oxide 45 4.1.3 Fabrication of inverted devices with GO as a hole transport layer 49 4.1.4 Device performance and discussion 52 4.2 Graphene 54 4.2.1 Synthesis of graphene 55 4.2.2 P-doped graphene due to adsorption of H2O and O2 in air 56 4.2.3 Experimental step 58 4.2.4 Device performance and discussion 59 4.3 Reference 64 Chapter 5 Bifacial semitransparent inverted OPV with graphene/GO top electrode 66 5.1 Introduction 67 5.1.1 Graphene electrode 67 5.1.2 Semitransparent solar cell 68 5.2 Characterization of graphene 69 5.3 Lamination process for graphene top electrode 72 5.3.1 Thermal release transferring method 72 5.3.2 Device characterization 73 5.3.3 Device performance 76 5.4 Modification of the lamination process 82 5.4.1 Thermal release tape with multilayer graphene 82 5.4.2 Layer dependent of graphene 87 5.4.3 Bifacial polymer solar cell 89 5.4.4 Electrical property 92 5.5 Refernece 94 Chapter 6 Conclusions 96 6.1 Conclusions 96 | |
| dc.language.iso | en | |
| dc.title | 新穎倒置結構之有機太陽能電池 | zh_TW |
| dc.title | Novel Devices Based on Inverted Type Polymer Photovoltaics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳學禮,吳季珍 | |
| dc.subject.keyword | 石墨烯電極,半透視太陽能電池,有機太陽能電池,倒置結構,氧化鋅, | zh_TW |
| dc.subject.keyword | graphene electrode,top lamination,semitransparent solar cell,polymer solar cell,inverted type,ZnO, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2011-08-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf | 5.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
