Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98668
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李月嘉zh_TW
dc.contributor.advisorYue-Jia Leeen
dc.contributor.author林瑜庭zh_TW
dc.contributor.authorYu-Ting Linen
dc.date.accessioned2025-08-18T01:17:08Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation衛生福利部食品藥物管理署。食品添加物使用範圍及限量暨規格標準,2025。https://consumer.fda.gov.tw/index.aspx
Aarnisalo, K., Autio, T., Sjoberg, A. M., Lunden, J., Korkeala, H., & Suihko, M. L. Typing of Listeria monocytogenes isolates originating from the food processing industry with automated ribotyping and pulsed-field gel electrophoresis. Journal of Food Protection 2003, 66 (2), 249-255. DOI: 10.4315/0362-028x-66.2.249
Aaron, S. D., Ferris, W., Ramotar, K., Vandemheen, K., Chan, F., & Saginur, R. Single and combination antibiotic susceptibilities of planktonic, adherent, and biofilm-grown Pseudomonas aeruginosa isolates cultured from sputa of adults with cystic fibrosis. J Clin Microbiol 2002, 40 (11), 4172-4179. DOI: 10.1128/JCM.40.11.4172-4179.2002
Allerberger, F., & Wagner, M. Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect 2010, 16 (1), 16-23. DOI: 10.1111/j.1469-0691.2009.03109.x
Anderl, J. N., Zahller, J., Roe, F., & Stewart, P. S. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 2003, 47 (4), 1251-1256. DOI: 10.1128/AAC.47.4.1251-1256.2003
Arevalos-Sánchez, M., Regalado, C., Martin, S. E., Domínguez-Domínguez, J., & García-Almendárez, B. E. Effect of neutral electrolyzed water and nisin on Listeria monocytogenes biofilms, and on listeriolysin O activity. Food Control 2012, 24 (1-2), 116-122. DOI: 10.1016/j.foodcont.2011.09.012
Azeredo, J., Azevedo, N. F., Briandet, R., Cerca, N., Coenye, T., Costa, A. R., Desvaux, M., Di Bonaventura, G., Hebraud, M., Jaglic, Z., Kacaniova, M., Knochel, S., Lourenco, A., Mergulhao, F., Meyer, R. L., Nychas, G., Simoes, M., Tresse, O., & Sternberg, C. Critical review on biofilm methods. Crit Rev Microbiol 2017, 43 (3), 313-351. DOI: 10.1080/1040841X.2016.1208146
Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. Bacterial persistence as a phenotypic switch. Science 2004, 305 (5690), 1622-1625. DOI: 10.1126/science.1099390
Barraud, N., Schleheck, D., Klebensberger, J., Webb, J. S., Hassett, D. J., Rice, S. A., & Kjelleberg, S. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 2009, 191 (23), 7333-7342. DOI: 10.1128/JB.00975-09
Bauer, J., Siala, W., Tulkens, P. M., & Van Bambeke, F. A combined pharmacodynamic quantitative and qualitative model reveals the potent activity of daptomycin and delafloxacin against Staphylococcus aureus biofilms. Antimicrob Agents Chemother 2013, 57 (6), 2726-2737. DOI: 10.1128/AAC.00181-13
Bellon-Fontaine, M.-N., Rault, J., & Van Oss, C. Microbial adhesion to solvents a novel method to determine the electron-donor electron-acceptor or Lewis acid-base properties of microbial cells. Colloids Surf. B Biointerfaces 1996, 7 (1-2), 47-53. DOI: 10.1016/0927-7765(96)01272-6
Bereksi, N., Gavini, F., Benezech, T., & Faille, C. Growth, morphology and surface properties of Listeria monocytogenes Scott A and LO28 under saline and acid environments. J Appl Microbiol 2002, 92 (3), 556-565. DOI: 10.1046/j.1365-2672.2002.01564.x
Bernier, S. P., Lebeaux, D., DeFrancesco, A. S., Valomon, A., Soubigou, G., Coppee, J. Y., Ghigo, J. M., & Beloin, C. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet 2013, 9 (1), e1003144. DOI: 10.1371/journal.pgen.1003144
Bertrand, R. L. Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. J. Bacteriol. 2019, 201 (7). DOI: 10.1128/jb.00697-18
Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015, 13 (1), 42-51. DOI: 10.1038/nrmicro3380
Boles, B. R., & Horswill, A. R. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 2008, 4 (4), e1000052. DOI: 10.1371/journal.ppat.1000052
Bolocan, A. S., Pennone, V., O'Connor, P. M., Coffey, A., Nicolau, A. I., McAuliffe, O., & Jordan, K. Inhibition of Listeria monocytogenes biofilms by bacteriocin-producing bacteria isolated from mushroom substrate. J Appl Microbiol 2017, 122 (1), 279-293. DOI: 10.1111/jam.13337
Bonsaglia, E. C. R., Silva, N. C. C., Fernades Júnior, A., Araújo Júnior, J. P., Tsunemi, M. H., & Rall, V. L. M. Production of biofilm by Listeria monocytogenes in different materials and temperatures. Food Control 2014, 35 (1), 386-391. DOI: 10.1016/j.foodcont.2013.07.023
Brauner, A., Fridman, O., Gefen, O., & Balaban, N. Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 2016, 14 (5), 320-330. DOI: 10.1038/nrmicro.2016.34
Breukink, E., & de Kruijff, B. Lipid II as a target for antibiotics. Nat Rev Drug Discov 2006, 5 (4), 321-323. DOI: 10.1038/nrd2004
Breukink, E., van Kraaij, C., Demel, R. A., Siezen, R. J., Kuipers, O. P., & de Kruijff, B. The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane. Biochemistry 1997, 36 (23), 6968–6976. DOI: 10.1021/bi970008u
Briandet, R., Meylheuc, T., Maher, C., & Bellon-Fontaine, M. N. l. Listeria monocytogenes Scott A cell surface charge, hydrophobicity, and electron donor and acceptor characteristics under different environmental growth conditions. Appl Environ Microbiol 1999, 65 (12), 5328-5333. DOI: 10.1128/AEM.65.12.5328-5333.1999
Brisson, G., Payken, H. F., Sharpe, J. P., & Jimenez-Flores, R. Characterization of Lactobacillus reuteri interaction with milk fat globule membrane components in dairy products. J Agric Food Chem 2010, 58 (9), 5612-5619. DOI: 10.1021/jf904381s
Buchanan, R. L., Gorris, L. G. M., Hayman, M. M., Jackson, T. C., & Whiting, R. C. A review of Listeria monocytogenes : An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 2017, 75, 1-13. DOI: 10.1016/j.foodcont.2016.12.016
Chae, M. S., Schraft, H., Truelstrup Hansen, L., & Mackereth, R. Effects of physicochemical surface characteristics of Listeria monocytogenes strains on attachment to glass. Food Microbiol 2006, 23 (3), 250-259. DOI: 10.1016/j.fm.2005.04.004
Chen, L.-H., Köseoğlu, V. K., Güvener, Z. T., Myers-Morales, T., Reed, J. M., D'Orazio, S. E., Miller, K. W., & Gomelsky, M. Cyclic di-GMP-dependent signaling pathways in the pathogenic firmicute Listeria monocytogenes. PLoS Pathog 2014, 10 (8), e1004301. DOI: 10.1371/journal.ppat.1004301
Chen, X., Thomsen, T. R., Winkler, H., & Xu, Y. Influence of biofilm growth age, media, antibiotic concentration and exposure time on Staphylococcus aureus and Pseudomonas aeruginosa biofilm removal in vitro. BMC Microbiol 2020, 20 (1), 264. DOI: 10.1186/s12866-020-01947-9
Chen, Y., Chai, Y., Guo, J. H., & Losick, R. Evidence for cyclic Di-GMP-mediated signaling in Bacillus subtilis. J Bacteriol 2012, 194 (18), 5080-5090. DOI: 10.1128/JB.01092-12
Colin, R., Ni, B., Laganenka, L., & Sourjik, V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 2021, 45 (6). DOI: 10.1093/femsre/fuab038
Combrouse, T., Sadovskaya, I., Faille, C., Kol, O., Guerardel, Y., & Midelet-Bourdin, G. Quantification of the extracellular matrix of the Listeria monocytogenes biofilms of different phylogenic lineages with optimization of culture conditions. J Appl Microbiol 2013, 114 (4), 1120-1131. DOI: 10.1111/jam.12127
Cotter, P. D., Hill, C., & Ross, R. P. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 2005, 3 (10), 777-788. DOI: 10.1038/nrmicro1240
Cox, G., & Wright, G. D. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol 2013, 303 (6-7), 287-292. DOI: 10.1016/j.ijmm.2013.02.009
Davies, D. G. Biofilm Dispersion. In Biofilm Highlights, Springer Series on Biofilms, 2011; pp 1-28. DOI: 10.1007/978-3-642-19940-0_1
Davies, S. K., Fearn, S., Allsopp, L. P., Harrison, F., Ware, E., Diggle, S. P., Filloux, A., McPhail, D. S., & Bundy, J. G. Visualizing antimicrobials in bacterial biofilms: Three-dimensional biochemical imaging using TOF-SIMS. mSphere 2017, 2 (4). DOI: 10.1128/mSphere.00211-17
Di Bonaventura, G., Piccolomini, R., Paludi, D., D'Orio, V., Vergara, A., Conter, M., & Ianieri, A. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. J Appl Microbiol 2008, 104 (6), 1552-1561. DOI: 10.1111/j.1365-2672.2007.03688.x
EUCAST. EUCAST reading guide for broth microdilution. European committee on antimicrobial susceptibility testing, 2024. https://www.eucast.org/ast_of_bacteria/mic_determination (accessed 2025 June 12).
European Food Safety, A., European Centre for Disease, P., & Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J 2017, 15 (12), e05077. DOI: 10.2903/j.efsa.2017.5077
European Food Safety, A., European Centre for Disease, P., & Control. The European Union One Health 2022 Zoonoses Report. EFSA J 2023, 21 (12), e8442. DOI: 10.2903/j.efsa.2023.8442
European Food Safety, A., European Centre for Disease, P., & Control. The European Union One Health 2023 Zoonoses report. EFSA J 2024, 22 (12), e9106. DOI: 10.2903/j.efsa.2024.9106
Fagerlund, A., Møretrø, T., Heir, E., Briandet, R., & Langsrud, S. Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces. Appl Environ Microbiol 2017, 83 (17), e01046-01017. DOI: 10.1128/AEM.01046-17
Fan, Y., Qiao, J., Lu, Z., Fen, Z., Tao, Y., Lv, F., Zhao, H., Zhang, C., & Bie, X. Influence of different factors on biofilm formation of Listeria monocytogenes and the regulation of cheY gene. Food Res Int 2020, 137, 109405. DOI: 10.1016/j.foodres.2020.109405
Favaro, L., Barretto Penna, A. L., & Todorov, S. D. Bacteriocinogenic LAB from cheeses – application in biopreservation? Trends Food Sci Technol 2015, 41 (1), 37-48. DOI: 10.1016/j.tifs.2014.09.001
Feng, Y., Yao, H., Chen, S., Sun, X., Yin, Y., & Jiao, X. Rapid detection of hypervirulent serovar 4h Listeria monocytogenes by multiplex PCR. Front Microbiol 2020, 11, 1309. DOI: 10.3389/fmicb.2020.01309
Ferreira, V., Wiedmann, M., Teixeira, P., & Stasiewicz, M. J. Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J Food Prot 2014, 77 (1), 150-170. DOI: 10.4315/0362-028X.JFP-13-150
Field, D., Fernandez de Ullivarri, M., Ross, R. P., & Hill, C. After a century of nisin research - where are we now? FEMS Microbiol Rev 2023, 47 (3). DOI: 10.1093/femsre/fuad023
Flemming, H. C., & Wingender, J. The biofilm matrix. Nat Rev Microbiol 2010, 8 (9), 623-633. DOI: 10.1038/nrmicro2415
Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2016, 14 (9), 563-575. DOI: 10.1038/nrmicro.2016.94
Fridman, O., Goldberg, A., Ronin, I., Shoresh, N., & Balaban, N. Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 2014, 513 (7518), 418-421. DOI: 10.1038/nature13469
Gefen, O., & Balaban, N. Q. The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol Rev 2009, 33 (4), 704-717. DOI: 10.1111/j.1574-6976.2008.00156.x
Giaouris, E., Chapot-Chartier, M. P., & Briandet, R. Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties. Int J Food Microbiol 2009, 131 (1), 2-9. DOI: 10.1016/j.ijfoodmicro.2008.09.006
Giaouris, E., Heir, E., Hebraud, M., Chorianopoulos, N., Langsrud, S., Moretro, T., Habimana, O., Desvaux, M., Renier, S., & Nychas, G. J. Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci 2014, 97 (3), 298-309. DOI: 10.1016/j.meatsci.2013.05.023
Guilhen, C., Charbonnel, N., Parisot, N., Gueguen, N., Iltis, A., Forestier, C., & Balestrino, D. Transcriptional profiling of Klebsiella pneumoniae defines signatures for planktonic, sessile and biofilm-dispersed cells. BMC genomics 2016, 17, 237. DOI: 10.1186/s12864-016-2557-x
Guttenplan, S. B., & Kearns, D. B. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 2013, 37 (6), 849-871. DOI: 10.1111/1574-6976.12018
Haaber, J., Cohn, M. T., Frees, D., Andersen, T. J., & Ingmer, H. Planktonic aggregates of Staphylococcus aureus protect against common antibiotics. PLoS One 2012, 7 (7), e41075. DOI: 10.1371/journal.pone.0041075
Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004, 2 (2), 95-108. DOI: 10.1038/nrmicro821
Hall, B. G., Acar, H., Nandipati, A., & Barlow, M. Growth rates made easy. Mol Biol Evol 2014, 31 (1), 232-238. DOI: 10.1093/molbev/mst187
Hamill, P. G., Stevenson, A., McMullan, P. E., Williams, J. P., Lewis, A. D. R., S, S., Stevenson, K. E., Farnsworth, K. D., Khroustalyova, G., Takemoto, J. Y., Quinn, J. P., Rapoport, A., & Hallsworth, J. E. Microbial lag phase can be indicative of, or independent from, cellular stress. Sci Rep 2020, 10 (1), 5948. DOI: 10.1038/s41598-020-62552-4
Handwerger, S., & Tomasz, A. Antibiotic tolerance among clinical isolates of bacteria. Rev Infect Dis 1985, 368-386. DOI: 10.1146/annurev.pa.25.040185.002025
Harmsen, M., Lappann, M., Knochel, S., & Molin, S. Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 2010, 76 (7), 2271-2279. DOI: 10.1128/AEM.02361-09
Hasper, H. E., de Kruijff, B., & Breukink, E. Assembly and stability of nisin−lipid II pores. Biochemistry 2004, 43 (36), 11567-11575. DOI: 10.1021/bi049476b
Hausner, M., & Wuertz, S. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 1999, 65 (8), 3710-3713. DOI: 10.1128/AEM.65.8.3710-3713.1999
Hefford, M. A., D'Aoust, S., Cyr, T. D., Austin, J. W., Sanders, G., Kheradpir, E., & Kalmokoff, M. L. Proteomic and microscopic analysis of biofilms formed by Listeria monocytogenes 568. Can J Microbiol 2005, 51 (3), 197-208. DOI: 10.1139/w04-129
Henriques, A. R., Telo da Gama, L., & Fraqueza, M. J. Assessing Listeria monocytogenes presence in Portuguese ready-to-eat meat processing industries based on hygienic and safety audit. Food Res Int 2014, 63, 81-88. DOI: 10.1016/j.foodres.2014.03.035
Humphries, R. M., Ambler, J., Mitchell, S. L., Castanheira, M., Dingle, T., Hindler, J. A., Koeth, L., Sei, K., Development, C. M., & Standardization Working Group of the Subcommittee on Antimicrobial Susceptibility, T. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J Clin Microbiol 2018, 56 (4). DOI: 10.1128/JCM.01934-17
Ito, A., Taniuchi, A., May, T., Kawata, K., & Okabe, S. Increased antibiotic resistance of Escherichia coli in mature biofilms. Appl Environ Microbiol 2009, 75 (12), 4093-4100. DOI: 10.1128/AEM.02949-08
Jagani, S., Chelikani, R., & Kim, D. S. Effects of phenol and natural phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Biofouling 2009, 25 (4), 321-324. DOI: 10.1080/08927010802660854
Jordan, K., & McAuliffe, O. Listeria monocytogenes in Foods. Adv Food Nutr Res 2018, 86, 181-213. DOI: 10.1016/bs.afnr.2018.02.006
Kearns, D. B. A field guide to bacterial swarming motility. Nat Rev Microbiol 2010, 8 (9), 634-644. DOI: 10.1038/nrmicro2405
Keepers, T. R., Gomez, M., Celeri, C., Nichols, W. W., & Krause, K. M. Bactericidal activity, absence of serum effect, and time-kill kinetics of ceftazidime-avibactam against beta-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014, 58 (9), 5297-5305. DOI: 10.1128/AAC.02894-14
Kester, J. C., & Fortune, S. M. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit Rev Biochem Mol Biol 2014, 49 (2), 91-101. DOI: 10.3109/10409238.2013.869543
Kramarenko, T., Roasto, M., Meremäe, K., Kuningas, M., Põltsama, P., & Elias, T. Listeria monocytogenes prevalence and serotype diversity in various foods. Food Control 2013, 30 (1), 24-29. DOI: 10.1016/j.foodcont.2012.06.047
Lee, Y., & Wang, C. Morphological change and decreasing transfer rate of biofilm-featured Listeria monocytogenes EGDe. J Food Prot 2017, 80 (3), 368-375. DOI: 10.4315/0362-028X.JFP-16-226
Legner, M., McMillen, D. R., & Cvitkovitch, D. G. Role of dilution rate and nutrient availability in the formation of microbial biofilms. Front Microbiol 2019, 10, 916. DOI: 10.3389/fmicb.2019.00916
Lemon, K. P., Higgins, D. E., & Kolter, R. Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 2007, 189 (12), 4418-4424. DOI: 10.1128/JB.01967-06
Lenhard, J. R., & Bulman, Z. P. Inoculum effect of beta-lactam antibiotics. J Antimicrob Chemother 2019, 74 (10), 2825-2843. DOI: 10.1093/jac/dkz226
Lim, B., Beyhan, S., Meir, J., & Yildiz, F. H. Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation. Mol Microbiol 2006, 60 (2), 331-348. DOI: 10.1111/j.1365-2958.2006.05106.x
Lima, M. R., Ferreira, G. F., Nunes Neto, W. R., Monteiro, J. M., Santos, A. R. C., Tavares, P. B., Denadai, A. M. L., Bomfim, M. R. Q., Dos Santos, V. L., Marques, S. G., & de Souza Monteiro, A. Evaluation of the interaction between polymyxin B and Pseudomonas aeruginosa biofilm and planktonic cells: reactive oxygen species induction and zeta potential. BMC Microbiol 2019, 19 (1), 115. DOI: 10.1186/s12866-019-1485-8
Liu, J., Ling, J. Q., Zhang, K., & Wu, C. D. Physiological properties of Streptococcus mutans UA159 biofilm-detached cells. FEMS Microbiol Lett 2013, 340 (1), 11-18. DOI: 10.1111/1574-6968.12066
Lourenco, A., Rego, F., Brito, L., & Frank, J. F. Evaluation of methods to assess the biofilm-forming ability of Listeria monocytogenes. J Food Prot 2012, 75 (8), 1411-1417. DOI: 10.4315/0362-028X.JFP-11-464
Mahdavi, M., Jalali, M., & Kermanshahi, R. K. The effect of nisin on biofilm forming foodborne bacteria using microtiter plate method. Res Pharm Sci 2007, 2 (2), 113-118.
Martin, B., Perich, A., Gomez, D., Yanguela, J., Rodriguez, A., Garriga, M., & Aymerich, T. Diversity and distribution of Listeria monocytogenes in meat processing plants. Food Microbiol 2014, 44, 119-127. DOI: 10.1016/j.fm.2014.05.014
Mattos-Guaraldi, A. L., Formiga, L. C. D., & Andrade, A. F. B. Cell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphtheriae strains evaluated by different methods. Curr Microbiol 1999, 38, 37-42. DOI: 10.1007/PL00006769
McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D., & Kjelleberg, S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 2011, 10 (1), 39-50. DOI: 10.1038/nrmicro2695
Medeiros-Silva, J., Jekhmane, S., Paioni, A. L., Gawarecka, K., Baldus, M., Swiezewska, E., Breukink, E., & Weingarth, M. High-resolution NMR studies of antibiotics in cellular membranes. Nat Commun 2018, 9 (1). DOI: 10.1038/s41467-018-06314-x
Meloni, D., Piras, F., Mureddu, A., Mazza, R., Nucera, D. M., & Mazzette, R. Sources of Listeria monocytogenes contamination in traditional fermented sausage processing plants in Italy. Ital J Food Sci 2012, 24 (4), 214-223.
Miladi, H., Ammar, E., Ben Slama, R., Sakly, N., & Bakhrouf, A. Influence of freezing stress on morphological alteration and biofilm formation by Listeria monocytogenes: relationship with cell surface hydrophobicity and membrane fluidity. Arch Microbiol 2013, 195 (10-11), 705-715. DOI: 10.1007/s00203-013-0921-7
Møretrø, T., & Langsrud, S. Listeria monocytogenes: biofilm formation and persistence in food-processing environments. Biofilms 2004, 1 (2), 107-121. DOI: 10.1017/s1479050504001322
Mosquera-Fernandez, M., Rodriguez-Lopez, P., Cabo, M. L., & Balsa-Canto, E. Numerical spatio-temporal characterization of Listeria monocytogenes biofilms. Int J Food Microbiol 2014, 182-183, 26-36. DOI: 10.1016/j.ijfoodmicro.2014.05.005
Müller-Auffermann, K., Grijalva, F., Jacob, F., & Hutzler, M. Nisin and its usage in breweries: a review and discussion. J Inst Brew 2015, 121 (3), 309-319. DOI: 10.1002/jib.233
Neu, T. R., & Lawrence, J. R. Investigation of microbial biofilm structure by laser scanning microscopy. Adv Biochem Eng Biotechnol 2014, 146, 1-51. DOI: 10.1007/10_2014_272
Nguyen, D., Joshi-Datar, A., Lepine, F., Bauerle, E., Olakanmi, O., Beer, K., McKay, G., Siehnel, R., Schafhauser, J., & Wang, Y. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 2011, 334 (6058), 982-986. DOI: 10.1126/science.1211037
Nguyen, U. T., & Burrows, L. L. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms. Int J Food Microbiol 2014, 187, 26-32. DOI: 10.1016/j.ijfoodmicro.2014.06.025
Nguyen, U. T., Harvey, H., Hogan, A. J., Afonso, A. C., Wright, G. D., & Burrows, L. L. Role of PBPD1 in stimulation of Listeria monocytogenes biofilm formation by subminimal inhibitory beta-lactam concentrations. Antimicrob Agents Chemother 2014, 58 (11), 6508-6517. DOI: 10.1128/AAC.03671-14
Nostro, A., Roccaro, A. S., Bisignano, G., Marino, A., Cannatelli, M. A., Pizzimenti, F. C., Cioni, P. L., Procopio, F., & Blanco, A. R. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 2007, 56 (Pt 4), 519-523. DOI: 10.1099/jmm.0.46804-0
O'Toole, G. A. Microtiter dish biofilm formation assay. J Vis Exp 2011, (47). DOI: 10.3791/2437
Okuda, K., Zendo, T., Sugimoto, S., Iwase, T., Tajima, A., Yamada, S., Sonomoto, K., & Mizunoe, Y. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother 2013, 57 (11), 5572-5579. DOI: 10.1128/AAC.00888-13
Ottosson, J. R., Jarnheimer, P. A., Stenstrom, T. A., & Olsen, B. A longitudinal study of antimicrobial resistant faecal bacteria in sediments collected from a hospital wastewater system. Infect Ecol Epidemiol 2012, 2. DOI: 10.3402/iee.v2i0.7438
Palmer, J., Flint, S., & Brooks, J. Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol 2007, 34 (9), 577-588. DOI: 10.1007/s10295-007-0234-4
Papaioannou, E., Giaouris, E. D., Berillis, P., & Boziaris, I. S. Dynamics of biofilm formation by Listeria monocytogenes on stainless steel under mono-species and mixed-culture simulated fish processing conditions and chemical disinfection challenges. Int J Food Microbiol 2018, 267, 9-19. DOI: 10.1016/j.ijfoodmicro.2017.12.020
Pilchová, T., Hernould, M., Prévost, H., Demnerová, K., Pazlarová, J., & Tresse, O. Influence of food processing environments on structure initiation of static biofilm of Listeria monocytogenes. Food Control 2014, 35 (1), 366-372. DOI: 10.1016/j.foodcont.2013.07.021
Pinilla, C. M. B., Stincone, P., & Brandelli, A. Proteomic analysis reveals differential responses of Listeria monocytogenes to free and nanoencapsulated nisin. Int J Food Microbiol 2021, 346, 109170. DOI: 10.1016/j.ijfoodmicro.2021.109170
Poimenidou, S. V., Chrysadakou, M., Tzakoniati, A., Bikouli, V. C., Nychas, G. J., & Skandamis, P. N. Variability of Listeria monocytogenes strains in biofilm formation on stainless steel and polystyrene materials and resistance to peracetic acid and quaternary ammonium compounds. Int J Food Microbiol 2016, 237, 164-171. DOI: 10.1016/j.ijfoodmicro.2016.08.029
Radoshevich, L., & Cossart, P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 2018, 16 (1), 32-46. DOI: 10.1038/nrmicro.2017.126
Rather, M. A., Gupta, K., & Mandal, M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol 2021, 52 (4), 1701-1718. DOI: 10.1007/s42770-021-00624-x
Reygaert, W. C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 2018, 4 (3), 482-501. DOI: 10.3934/microbiol.2018.3.482
Rodrigues, C. S., Sá, C. V. G. C. d., & Melo, C. B. d. An overview of Listeria monocytogenes contamination in ready to eat meat, dairy and fishery foods. Ciência Rural 2017, 47 (2). DOI: 10.1590/0103-8478cr20160721
Rodríguez-Melcón, C., Alonso-Calleja, C., & Capita, R. Architecture and viability of the biofilms formed by nine Listeria strains on various hydrophobic and hydrophilic materials. Appl Sci 2019, 9 (23). DOI: 10.3390/app9235256
Rollet, C., Gal, L., & Guzzo, J. Biofilm-detached cells, a transition from a sessile to a planktonic phenotype: a comparative study of adhesion and physiological characteristics in Pseudomonas aeruginosa. FEMS Microbiol Lett 2009, 290 (2), 135-142. DOI: 10.1111/j.1574-6968.2008.01415.x
Rumbaugh, K. P., & Sauer, K. Biofilm dispersion. Nat Rev Microbiol 2020, 18 (10), 571-586. DOI: 10.1038/s41579-020-0385-0
Saa Ibusquiza, P., Herrera, J. J., & Cabo, M. L. Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes. Food Microbiol 2011, 28 (3), 418-425. DOI: 10.1016/j.fm.2010.09.014
Sadekuzzaman, M., Mizan, M. F. R., Kim, H.-S., Yang, S., & Ha, S.-D. Activity of thyme and tea tree essential oils against selected foodborne pathogens in biofilms on abiotic surfaces. Lwt 2018, 89, 134-139. DOI: 10.1016/j.lwt.2017.10.042
Sant'Ana, A. S., Franco, B. D., & Schaffner, D. W. Modeling the growth rate and lag time of different strains of Salmonella enterica and Listeria monocytogenes in ready-to-eat lettuce. Food Microbiol 2012, 30 (1), 267-273. DOI: 10.1016/j.fm.2011.11.003
Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W., & Davies, D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 2002, 184 (4), 1140-1154. DOI: 10.1128/jb.184.4.1140-1154.2002
Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M.-A., Roy, S. L., Jones, J. L., & Griffin, P. M. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 2011, 17 (1), 7-15. DOI: 10.3201/eid1701.P11101
Scherer, K. M., Spille, J. H., Sahl, H. G., Grein, F., & Kubitscheck, U. The lantibiotic nisin induces lipid II aggregation, causing membrane instability and vesicle budding. Biophys J 2015, 108 (5), 1114-1124. DOI: 10.1016/j.bpj.2015.01.020
Schnell, N., Entian, K.-D., Schneider, U., Götz, F., Zähner, H., Kellner, R., & Jung, G. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 1988, 333 (6170), 276-278. DOI: 10.1038/333276a0
Şentürk, E., Buzrul, S., & Şanlıbaba, P. Prevalence of Listeria monocytogenes in ready-to-eat foods, and growth boundary modeling of the selected strains in broth as a function of temperature, salt and nisin. Int J Food Prop 2022, 25 (1), 2237-2253. DOI: 10.1080/10942912.2022.2130942
Sim, S. T. V., Suwarno, S. R., Chong, T. H., Krantz, W. B., & Fane, A. G. Monitoring membrane biofouling via ultrasonic time-domain reflectometry enhanced by silica dosing. J Membr Sci 2013, 428, 24-37. DOI: 10.1016/j.memsci.2012.10.032
Singh, R., Ray, P., Das, A., & Sharma, M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother 2010, 65 (9), 1955-1958. DOI: 10.1093/jac/dkq257
Skovager, A., Larsen, M. H., Castro-Mejia, J. L., Hecker, M., Albrecht, D., Gerth, U., Arneborg, N., & Ingmer, H. Initial adhesion of Listeria monocytogenes to fine polished stainless steel under flow conditions is determined by prior growth conditions. Int J Food Microbiol 2013, 165 (1), 35-42. DOI: 10.1016/j.ijfoodmicro.2013.04.014
Smith, K. P., & Kirby, J. E. The inoculum effect in the era of multidrug resistance: minor differences in inoculum have dramatic effect on MIC determination. Antimicrob Agents Chemother 2018, 62 (8). DOI: 10.1128/AAC.00433-18
Sommer, P., Martin-Rouas, C., & Mettler, E. Influence of the adherent population level on biofilm population, structure and resistance to chlorination. Food Microbiol 1999, 16 (5), 503-515. DOI: 10.1006/fmic.1999.0267
Stewart, P. S., & Franklin, M. J. Physiological heterogeneity in biofilms. Nat Rev Microbiol 2008, 6 (3), 199-210. DOI: 10.1038/nrmicro1838
Stincone, P., Miyamoto, K. N., Timbe, P. P. R., Lieske, I., & Brandelli, A. Nisin influence on the expression of Listeria monocytogenes surface proteins. J Proteomics 2020, 226, 103906. DOI: 10.1016/j.jprot.2020.103906
Su, Y., Liu, A., & Zhu, M.-J. Mapping the landscape of listeriosis outbreaks (1998–2023): Trends, challenges, and regulatory responses in the United States. Trends Food Sci Technol 2024, 154. DOI: 10.1016/j.tifs.2024.104750
Takahashi, H., Suda, T., Tanaka, Y., & Kimura, B. Cellular hydrophobicity of Listeria monocytogenes involves initial attachment and biofilm formation on the surface of polyvinyl chloride. Lett Appl Microbiol 2010, 50 (6), 618-625. DOI: 10.1111/j.1472-765X.2010.02842.x
Tan, Z., Luo, J., Liu, F., Zhang, Q., & Jia, S. Effects of pH, temperature, storage time, and protective agents on nisin antibacterial stability. In Advances in Applied Biotechnology: Proceedings of the 2nd International Conference on Applied Biotechnology (ICAB 2014)-Volume II, 2015; Springer: pp 305-312. DOI: 10.1007/978-3-662-46318-5_33
Tavaddod, S., Dawson, A., & Allen, R. J. Bacterial aggregation triggered by low-level antibiotic-mediated lysis. NPJ Biofilms Microbiomes 2024, 10 (1), 90. DOI: 10.1038/s41522-024-00553-1
Thevenot, D., Dernburg, A., & Vernozy-Rozand, C. An updated review of Listeria monocytogenes in the pork meat industry and its products. J Appl Microbiol 2006, 101 (1), 7-17. DOI: 10.1111/j.1365-2672.2006.02962.x
Todd, E. C. D., & Notermans, S. Surveillance of listeriosis and its causative pathogen, Listeria monocytogenes. Food Control 2011, 22 (9), 1484-1490. DOI: 10.1016/j.foodcont.2010.07.021
Tuson, H. H., & Weibel, D. B. Bacteria-surface interactions. Soft Matter 2013, 9 (18), 4368-4380. DOI: 10.1039/C3SM27705D
Udekwu, K. I., Parrish, N., Ankomah, P., Baquero, F., & Levin, B. R. Functional relationship between bacterial cell density and the efficacy of antibiotics. J Antimicrob Chemother 2009, 63 (4), 745-757. DOI: 10.1093/jac/dkn554
USA CDC. Listeria infection (Listeriosis). USA Centers for Disease Control and Prevention, 2024. https://www.cdc.gov/listeria/about/index.html (accessed 2025 February 8).
USDA ERS. Cost estimates of foodborne illnesses. U.S. Department of Agriculture Economic Research Service, 2018. https://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-illnesses (accessed 2025 February 08).
Vert, M., Doi, Y., Hellwich, K.-H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem 2012, 84 (2), 377-410. DOI: 10.1351/pac-rec-10-12-04
Vulin, C., Leimer, N., Huemer, M., Ackermann, M., & Zinkernagel, A. S. Prolonged bacterial lag time results in small colony variants that represent a sub-population of persisters. Nat Commun 2018, 9 (1), 4074. DOI: 10.1038/s41467-018-06527-0
Wang, Y., Wu, Y., Niu, H., Liu, Y., Ma, Y., Wang, X., Li, Z., & Dong, Q. Different cellular fatty acid pattern and gene expression of planktonic and biofilm state Listeria monocytogenes under nutritional stress. Food Res Int 2023, 167, 112698. DOI: 10.1016/j.foodres.2023.112698
Wang, Z., Ma, Y., Li, Z., Wang, Y., Liu, Y., & Dong, Q. Characterization of Listeria monocytogenes biofilm formation kinetics and biofilm transfer to cantaloupe surfaces. Food Res Int 2022, 161, 111839. DOI: 10.1016/j.foodres.2022.111839
Warriner, K., & Namvar, A. What is the hysteria with Listeria? Trends Food Sci Technol 2009, 20 (6-7), 245-254. DOI: 10.1016/j.tifs.2009.03.008
Weeks, M. E., Nebe von Caron, G., James, D. C., Smales, C. M., & Robinson, G. K. Monitoring changes in nisin susceptibility of Listeria monocytogenes Scott A as an indicator of growth phase using FACS. J Microbiol Methods 2006, 66 (1), 43-55. DOI: 10.1016/j.mimet.2005.10.008
Wentland, E. J., Stewart, P. S., Huang, C. T., & McFeters, G. A. Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilm. Biotechnol Prog 1996, 12 (3), 316-321. DOI: 10.1021/bp9600243
Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teitzel, G. M., Lory, S., & Greenberg, E. Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001, 413 (6858), 860-864. DOI: 10.1038/35101627
WHO. Listeriosis. World Health Organization, 2018. https://www.who.int/news-room/fact-sheets/detail/listeriosis (accessed 2025 June 9).
Wiegand, I., Hilpert, K., & Hancock, R. E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008, 3 (2), 163-175. DOI: 10.1038/nprot.2007.521
Wiktorczyk-Kapischke, N., Walecka-Zacharska, E., Korkus, J., Grudlewska-Buda, K., Budzynska, A., Wnuk, K., Gospodarek-Komkowska, E., & Skowron, K. The influence of stress factors on selected phenotypic and genotypic features of Listeria monocytogenes - a pilot study. BMC Microbiol 2023, 23 (1), 259. DOI: 10.1186/s12866-023-03006-5
Wong, H. S., Townsend, K. M., Fenwick, S. G., Trengove, R. D., & O'Handley, R. M. Comparative susceptibility of planktonic and 3-day-old Salmonella typhimurium biofilms to disinfectants. J Appl Microbiol 2010, 108 (6), 2222-2228. DOI: 10.1111/j.1365-2672.2009.04630.x
Wu, J., Zang, M., Wang, S., Zhao, B., Bai, J., Xu, C., Shi, Y., & Qiao, X. Nisin: From a structural and meat preservation perspective. Food Microbiol 2023, 111, 104207. DOI: 10.1016/j.fm.2022.104207
Wu, M., Ma, Y., Dou, X., Zohaib Aslam, M., Liu, Y., Xia, X., Yang, S., Wang, X., Qin, X., Hirata, T., Dong, Q., & Li, Z. A review of potential antibacterial activities of nisin against Listeria monocytogenes: the combined use of nisin shows more advantages than single use. Food Res Int 2023, 164, 112363. DOI: 10.1016/j.foodres.2022.112363
Wu, S., Yu, P.-L., & Flint, S. Persister cell formation of Listeria monocytogenes in response to natural antimicrobial agent nisin. Food Control 2017, 77, 243-250. DOI: 10.1016/j.foodcont.2017.02.011
Yan, H., Wu, M., Gao, B., Bu, X., Dong, Q., Hirata, T., & Li, Z. Inhibition and eradication of Listeria monocytogenes biofilm using the combined treatment with nisin and sesamol. Lwt 2024, 198. DOI: 10.1016/j.lwt.2024.116015
Zheng, Z., & Stewart, P. S. Growth limitation of Staphylococcus epidermidis in biofilms contributes to rifampin tolerance. Biofilms 2004, 1 (1), 31-35. DOI: 10.1017/s1479050503001042
Zhou, J., Velliou, E., & Hong, S. H. Investigating the effects of nisin and free fatty acid combined treatment on Listeria monocytogenes inactivation. Lwt 2020, 133. DOI: 10.1016/j.lwt.2020.110115
Zhou, Q., Feng, X., Zhang, Q., Feng, F., Yin, X., Shang, J., Qu, H., & Luo, Q. Carbon catabolite control is important for Listeria monocytogenes biofilm formation in response to nutrient availability. Curr Microbiol 2012, 65 (1), 35-43. DOI: 10.1007/s00284-012-0125-4
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98668-
dc.description.abstract  單核細胞增多性李斯特菌 (Listeria monocytogenes) 是一種常見於即食食品中的食源性病原菌。由於李斯特菌病 (listeriosis) 在所有食源性疾病中具有相對較高的致死率,因此特別受到關注。乳酸鏈球菌素 (nisin) 是一種被認證為「公認安全」 (Generally recognized as safe, GRAS) 的細菌素,廣泛用作食品防腐劑。然而,研究表示 L. monocytogenes 在生物膜中可能因暴露於亞致死濃度的乳酸鏈球菌素與生物膜形成過程中的生理變化,而表現出敏感性下降的現象。為提升乳酸鏈球菌素於存在生物膜的食品加工環境中的抑菌效能,亟需進一步釐清生物膜所引發之耐受性與抗藥性機制。本研究探討三種 L. monocytogenes 細胞型態之間的生理差異與其對乳酸鏈球菌素的敏感性,分別為:隔夜培養之浮游細胞、培養三天之浮游細胞,以及自培養三天之生物膜中分離出的貼附細胞。結果顯示,貼附細胞的生長遲滯期較長(5.71 ± 0.60 小時),明顯高於隔夜培養之浮游細胞(3.58 ± 0.83 小時)與培養三天之浮游細胞(3.60 ± 0.31 小時);惟三者在運動能力與表面疏水性方面並無顯著差異。貼附細胞需長時間(約 29 分鐘)暴露於高濃度乳酸鏈球菌素下,才能達到與其他細胞型態(約 4 至 6 分鐘)相當之菌數下降,顯示其對乳酸鏈球菌素具較低的敏感性。本研究亦比較了經乳酸鏈球菌素處理後浮游態、貼附態及生物膜形式 L. monocytogenes 的細菌存活比,結果發現生物膜形式具有最高的存活比。這些發現顯示,細胞型態的轉變與生物膜基質的存在皆導致 L. monocytogenes 對乳酸鏈球菌素敏感性下降。本研究凸顯了進一步探討乳酸鏈球菌素作用下生物膜結構動態及貼附細胞敏感性下降機制的重要性,期能改善生物膜的控制策略。zh_TW
dc.description.abstract  Listeria monocytogenes is a foodborne pathogen commonly found in ready-to-eat foods. It is a highly concerning pathogen due to a relatively high mortality rate of listeriosis among foodborne illnesses. Nisin, a bacteriocin recognized as Generally Recognized as Safe (GRAS), is widely used as a food preservative. However, studies have shown that L. monocytogenes may exhibit reduced susceptibility to nisin in biofilms due to sub-lethal exposure and physiological changes during biofilm formation. Further studies are essential to uncover the mechanisms of biofilm-induced tolerance and resistance, in order to enhance the efficacy of nisin in food-processing environments where biofilms are prevalent. We aimed to investigate the physiological differences and nisin susceptibility among three L. monocytogenes populations: overnight-cultured planktonic cells, long-term planktonic cells incubated for 3 days, and sessile cells harvested from 3-day-old biofilms. Results demonstrated that sessile cells exhibited a significantly longer lag phase (5.71 ± 0.60 h) compared to overnight-cultured planktonic cells (3.58 ± 0.83 h) and 3-day-old planktonic cells (3.60 ± 0.31 h), while no significant differences were observed among the three groups in motility or surface hydrophobicity. Sessile cells require prolonged exposure (approximately 29 minutes) to high concentrations of nisin to achieve equivalent levels of bacterial reduction comparable to those of other cell types (approximately 4–6 minutes), indicating reduced susceptibility to nisin. We also compared the bacterial survival ratios of planktonic, sessile, and biofilm forms of L. monocytogenes after nisin treatment, and found that the biofilm form exhibited the highest survival ratio. These findings suggest that both the transition in cell types and the presence of the biofilm matrix lead to the reduced susceptibility of L. monocytogenes to nisin. It highlights the necessity for further investigation into biofilm structural dynamics and the mechanisms of reduced susceptibility in sessile cells under nisin exposure to improve biofilm control strategies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:17:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:17:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 ix
表次 x
附錄次 xi
第一章、前言 1
第二章、文獻回顧 2
第一節、單核細胞增多性李斯特菌 (Listeria monocytogenes) 2
一、概述 2
二、分布地點及原因食品 2
三、致病能力 3
第二節、生物膜 4
一、概述 4
二、生成機制 4
三、細胞型態 5
四、生物膜組成 6
第三節、乳酸鏈球菌素 (nisin) 7
一、概述 7
二、抑菌機制 8
三、法規用量與限制 8
第四節、細菌面對抗菌劑的反應類型 8
一、抗藥性 (resistance) 9
二、耐受性 (tolerance) 9
三、持久性 (persistence) 10
第五節、不同形式 L. monocytogenes 對乳酸鏈球菌素之反應與研究現況 12
第三章、研究目的與架構 14
第一節、研究目的 14
第二節、實驗架構 15
第四章、材料與方法 17
第一節、實驗材料 17
一、菌株 17
二、藥品及試劑 17
三、培養基及實驗溶液之配製 18
四、儀器與設備 19
五、套裝軟體 20
第二節、實驗方法 20
一、菌株培養 20
二、生物膜培養、培養三天之浮游菌液及貼附菌液收集 21
三、生物膜定量—結晶紫染色 21
四、細胞生理特性 22
五、細菌對乳酸鏈球菌素之敏感性測試 23
六、高菌量浮游細胞、貼附細胞及生物膜對乳酸鏈球菌素的反應 25
第五章、結果與討論 27
第一節、L. monocytogenes 於 25℃ 下的生物膜生成動態變化 27
第二節、比較浮游細胞與貼附細胞的生理特性 29
一、生長曲線 29
二、運動性 32
三、細胞表面特性 35
第三節、比較浮游細胞與貼附細胞對乳酸鏈球菌素的敏感性(標準菌量) 38
一、最低抑制濃度 (MIC) 38
二、最低殺菌持續時間 (MDK) 42
第四節、比較浮游細胞、貼附細胞及生物膜對乳酸鏈球菌素的反應(高菌量) 46
一、浮游及貼附細胞於高菌量條件下之最低抑制濃度 46
二、不同乳酸鏈球菌素濃度下之生物膜生物量及菌數變化 50
三、不同菌體形式之 L. monocytogenes 對乳酸鏈球菌素處理之存活變化 53
第六章、結論與展望 58
第七章、參考文獻 59
第八章、附錄 80
-
dc.language.isozh_TW-
dc.subject乳酸鏈球菌素zh_TW
dc.subject單核細胞增多性李斯特菌zh_TW
dc.subject生物膜zh_TW
dc.subject浮游細胞zh_TW
dc.subject貼附細胞zh_TW
dc.subjectListeria monocytogenesen
dc.subjectnisinen
dc.subjectbiofilmsen
dc.subjectplanktonic cellsen
dc.subjectsessile cellsen
dc.title單核細胞增多性李斯特菌生物膜細胞暴露於乳酸鏈球菌素的生理反應zh_TW
dc.titlePhysiological responses of Listeria monocytogenes biofilm cells exposed to nisinen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor羅翊禎zh_TW
dc.contributor.coadvisorYi-Chen Loen
dc.contributor.oralexamcommittee王如邦;林泓廷;林旭陽zh_TW
dc.contributor.oralexamcommitteeReu-Ben Wang;Hong-Ting Lin;Hsu-Yang Linen
dc.subject.keyword單核細胞增多性李斯特菌,乳酸鏈球菌素,貼附細胞,浮游細胞,生物膜,zh_TW
dc.subject.keywordListeria monocytogenes,nisin,sessile cells,planktonic cells,biofilms,en
dc.relation.page83-
dc.identifier.doi10.6342/NTU202503377-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-lift2025-08-18-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved