請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98626完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于昌平 | zh_TW |
| dc.contributor.advisor | Chang-Ping Yu | en |
| dc.contributor.author | 萬昌鑫 | zh_TW |
| dc.contributor.author | Chang-Hsin Wan | en |
| dc.date.accessioned | 2025-08-18T01:07:51Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-31 | - |
| dc.identifier.citation | 行政院環境保護署. (2023). 淨零排放路徑 112-115 綱要計畫.
張名惠,謝佩珊,黃國瑋,廖啟雯. (2016). 二氧化碳溶解封存技術發展. 工業污染防治. 環境部. (2024). 水中總有機碳檢測方法—過氧焦硫酸鹽加熱氧化∕紅外線測定法. Akowanou, A. V. O., Deguenon, H. E. J., Groendijk, L., Aina, M. P., Yao, B. K., & Drogui, P. (2019). 3D-printed clay-based ceramic water filters for point-of-use water treatment applications. Progress in Additive Manufacturing, 4(3), 315-321. https://doi.org/10.1007/s40964-019-00091-9 Alarifi, S. A., Mustafa, A., Omarov, K., Baig, A. R., Tariq, Z., & Mahmoud, M. (2022). A Review of Enzyme-Induced Calcium Carbonate Precipitation Applicability in the Oil and Gas Industry. Front Bioeng Biotechnol, 10, 900881. https://doi.org/10.3389/fbioe.2022.900881 Alterio, V., Esposito, D., Monti, S. M., Supuran, C. T., & De Simone, G. (2018). Crystal structure of the human carbonic anhydrase II adduct with 1-(4-sulfamoylphenyl-ethyl)-2,4,6-triphenylpyridinium perchlorate, a membrane-impermeant, isoform selective inhibitor. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 151-157. https://doi.org/10.1080/14756366.2017.1405263 Amal Mohammed, A.-M., Al Saadi, H. K. H., Marwa Fahad, A.-R., Noof Ali, A.-N., Noof Salim, A.-W., Nasra Said, A.-M., Seku, K., & Bellum, R. R. (2025). Influence of nano CaCO3 on pore structure and compressive strength in concrete bricks. Journal of Building Engineering, 105, 112520. https://doi.org/https://doi.org/10.1016/j.jobe.2025.112520 Ashkanani, H. E., Wang, R., Shi, W., Siefert, N. S., Thompson, R. L., Smith, K., Steckel, J. A., Gamwo, I. K., Hopkinson, D., Resnik, K., & Morsi, B. I. (2020). Levelized Cost of CO2 Captured Using Five Physical Solvents in Pre-combustion Applications. International Journal of Greenhouse Gas Control, 101, 103135. https://doi.org/https://doi.org/10.1016/j.ijggc.2020.103135 Azdarpour, A., Asadullah, M., Mohammadian, E., Hamidi, H., Junin, R., & Karaei, M. A. (2015). A review on carbon dioxide mineral carbonation through pH-swing process. Chemical Engineering Journal, 279, 615-630. https://doi.org/https://doi.org/10.1016/j.cej.2015.05.064 Bagheri, A., & Jin, J. (2019). Photopolymerization in 3D Printing. ACS Applied Polymer Materials, 1(4), 593-611. https://doi.org/10.1021/acsapm.8b00165 Bai, H., Yu, D., & Du, X. (2025). Review of porous microspheres for enzyme immobilization: Strategies, applications, and prospects. International Journal of Biological Macromolecules, 295, 139627. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2025.139627 Basile, A., Gugliuzza, A., Iulianelli, A., & Morrone, P. (2011). 5 - Membrane technology for carbon dioxide (CO2) capture in power plants. In A. Basile & S. P. Nunes (Eds.), Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications (pp. 113-159). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9780857093790.2.113 Baskaran, D., Saravanan, P., Nagarajan, L., & Byun, H.-S. (2024). An overview of technologies for capturing, storing, and utilizing carbon dioxide: Technology readiness, large-scale demonstration, and cost. Chemical Engineering Journal, 491, 151998. https://doi.org/https://doi.org/10.1016/j.cej.2024.151998 Bernardo J. G. de Aragão, Y. M. (2008). Peak separation by derivative spectroscopy applied to ftir analysis of hydrolized silica. Journal of Brazilian Chemical Society. https://doi.org/https://doi.org/10.1590/S0103-50532008000800019 Bhujbal, S. V., Paredes-Juarez, G. A., Niclou, S. P., & de Vos, P. (2014). Factors influencing the mechanical stability of alginate beads applicable for immunoisolation of mammalian cells. Journal of the Mechanical Behavior of Biomedical Materials, 37, 196-208. https://doi.org/https://doi.org/10.1016/j.jmbbm.2014.05.020 Cai, L., Wu, J., Zhang, M., Wang, K., Li, B., Yu, X., Hou, Y., & Zhao, Y. (2024). Investigating the Potential of CO2 Nanobubble Systems for Enhanced Oil Recovery in Extra-Low-Permeability Reservoirs. Nanomaterials (Basel), 14(15). https://doi.org/10.3390/nano14151280 Cao, Y.-P., Zhi, G.-Y., Han, L., Chen, Q., & Zhang, D.-H. (2021). Biosynthesis of benzyl cinnamate using an efficient immobilized lipase entrapped in nano-molecular cages. Food Chemistry, 364, 130428. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.130428 Chang, S., He, Y., Li, Y., & Cui, X. (2021). Study on the immobilization of carbonic anhydrases on geopolymer microspheres for CO2 capture. Journal of Cleaner Production, 316, 128163. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.128163 Chen, Pei-Ru Xia, & Peng-Fei. (2024). Carbon recycling with synthetic CO2 fixation pathways. Current Opinion in Biotechnology, 85, 103023. https://doi.org/https://doi.org/10.1016/j.copbio.2023.103023 Chen, H., Huang, Y., Sha, C., Moradian, J. M., Yong, Y.-C., & Fang, Z. (2023). Enzymatic carbon dioxide to formate: Mechanisms, challenges and opportunities. Renewable and Sustainable Energy Reviews, 178, 113271. https://doi.org/https://doi.org/10.1016/j.rser.2023.113271 Chen, J., Wu, A., Yang, M., Ge, Y., Pristijono, P., Li, J., Xu, B., & Mi, H. (2021). Characterization of sodium alginate-based films incorporated with thymol for fresh-cut apple packaging. Food Control, 126, 108063. https://doi.org/https://doi.org/10.1016/j.foodcont.2021.108063 de Oliveira Maciel, A., Christakopoulos, P., Rova, U., & Antonopoulou, I. (2022). Carbonic anhydrase to boost CO2 sequestration: Improving carbon capture utilization and storage (CCUS). Chemosphere, 299, 134419. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.134419 Du, J., Yang, W., Xu, L., Bei, L., Lei, S., Li, W., Liu, H., Wang, B., & Sun, L. (2024). Review on post-combustion CO2 capture by amine blended solvents and aqueous ammonia. Chemical Engineering Journal, 488, 150954. https://doi.org/https://doi.org/10.1016/j.cej.2024.150954 Effendi, S. S. W., & Ng, I. S. (2019). The prospective and potential of carbonic anhydrase for carbon dioxide sequestration: A critical review. Process Biochemistry, 87, 55-65. https://doi.org/https://doi.org/10.1016/j.procbio.2019.08.018 Fei, X., Chen, S., Huang, C., Liu, D., & Zhang, Y. (2015). Immobilization of bovine carbonic anhydrase on glycidoxypropyl-functionalized nanostructured mesoporous silicas for carbonation reaction. Journal of Molecular Catalysis B: Enzymatic, 116, 134-139. https://doi.org/https://doi.org/10.1016/j.molcatb.2015.03.016 Fei, X., Chen, S., Liu, D., Huang, C., & Zhang, Y. (2016). Comparison of amino and epoxy functionalized SBA-15 used for carbonic anhydrase immobilization. Journal of Bioscience and Bioengineering, 122(3), 314-321. https://doi.org/https://doi.org/10.1016/j.jbiosc.2016.02.004 Ginestra, P. S., Rovetta, R., Fiorentino, A., & Ceretti, E. (2020). Bioprinting process optimization: evaluation of parameters influence on the extrusion of inorganic polymers. Procedia CIRP, 89, 104-109. https://doi.org/https://doi.org/10.1016/j.procir.2020.05.125 Gladis, A., Gundersen, M. T., Fosbøl, P. L., Woodley, J. M., & von Solms, N. (2017). Influence of temperature and solvent concentration on the kinetics of the enzyme carbonic anhydrase in carbon capture technology. Chemical Engineering Journal, 309, 772-786. https://doi.org/https://doi.org/10.1016/j.cej.2016.10.056 Hazarika, A., Bhuyan, C., & Yadav, M. (2023). Isolation, purification, and characterization of carbonic anhydrase from Azadirachta indica (neem) leaves and its CO2 sequestration efficiency. Biocatalysis and Agricultural Biotechnology, 53, 102855. https://doi.org/https://doi.org/10.1016/j.bcab.2023.102855 Herth, E., Zeggari, R., Rauch, J.-Y., Remy-Martin, F., & Boireau, W. (2016). Investigation of amorphous SiOx layer on gold surface for Surface Plasmon Resonance measurements. Microelectronic Engineering, 163, 43-48. https://doi.org/https://doi.org/10.1016/j.mee.2016.04.014 Hu, H., Lu, W., Li, S., Zhou, X., Zhu, C., Wang, X., Dai, H., & Geng, H. (2025). Hydrogel-based materials for microbial/enzyme immobilization: Advanced applications in wastewater treatment. Chemical Engineering Journal, 511, 161878. https://doi.org/https://doi.org/10.1016/j.cej.2025.161878 IEA. (2025). Global CO2 emissions from energy combustion and industrial processes and their annual change,1900-2023, IEA, Paris. In. IPCC. (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty Ishak, S. N. H., Saad, A. H. M., Latip, W., Rahman, R. N. Z. R. A., Salleh, A. B., Kamarudin, N. H. A., Leow, A. T. C., & Ali, M. S. M. (2025). Enhancing industrial biocatalyst performance and cost-efficiency through adsorption-based enzyme immobilization: A review. International Journal of Biological Macromolecules, 316, 144278. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2025.144278 Ji, Y., Yang, X., Ji, Z., Zhu, L., Ma, N., Chen, D., Jia, X., Tang, J., & Cao, Y. (2020). DFT-Calculated IR Spectrum Amide I, II, and III Band Contributions of N-Methylacetamide Fine Components. ACS Omega, 5(15), 8572-8578. https://doi.org/10.1021/acsomega.9b04421 Jiang, J., Oguzlu, H., & Jiang, F. (2021). 3D printing of lightweight, super-strong yet flexible all-cellulose structure. Chemical Engineering Journal, 405, 126668. https://doi.org/https://doi.org/10.1016/j.cej.2020.126668 Jiang, Y., Ma, Z., Gu, Z., Liu, F., Shen, P., & Poon, C. S. (2024). A novel approach for improving aqueous carbonation kinetics with CO2 micro- and nano-bubbles. Chemical Engineering Journal, 500, 157363. https://doi.org/https://doi.org/10.1016/j.cej.2024.157363 Jun, S.-H., Yang, J., Jeon, H., Kim, H. S., Pack, S. P., Jin, E., & Kim, J. (2020). Stabilized and Immobilized Carbonic Anhydrase on Electrospun Nanofibers for Enzymatic CO2 Conversion and Utilization in Expedited Microalgal Growth. Environmental Science & Technology, 54(2), 1223-1231. https://doi.org/10.1021/acs.est.9b05284 Khaled, S. A., Burley, J. C., Alexander, M. R., Yang, J., & Roberts, C. J. (2015). 3D printing of tablets containing multiple drugs with defined release profiles. International Journal of Pharmaceutics, 494(2), 643-650. https://doi.org/https://doi.org/10.1016/j.ijpharm.2015.07.067 Koohestanian, E., & Shahraki, F. (2021). Review on principles, recent progress, and future challenges for oxy-fuel combustion CO2 capture using compression and purification unit. Journal of Environmental Chemical Engineering, 9(4), 105777. https://doi.org/https://doi.org/10.1016/j.jece.2021.105777 Kumari, M., Lee, J., Lee, D. W., & Hwang, I. (2020). High-level production in a plant system of a thermostable carbonic anhydrase and its immobilization on microcrystalline cellulose beads for CO2 capture. Plant Cell Reports, 39(10), 1317-1329. https://doi.org/10.1007/s00299-020-02566-4 Kumari, M., Soni, A. P., Ryu, B., Chun, I., Lee, J., Kim, M.-S., & Hwang, I. (2024). Developing a hybrid carbonic anhydrase with exceptional high temperature and alkaline environments resistance for efficient CO2 capture from air. Journal of CO2 Utilization, 86, 102912. https://doi.org/https://doi.org/10.1016/j.jcou.2024.102912 Lai, J. Y., Ngu, L. H., & Hashim, S. S. (2021). A review of CO2 adsorbents performance for different carbon capture technology processes conditions. Greenhouse Gases: Science and Technology, 11(5), 1076-1117. https://doi.org/https://doi.org/10.1002/ghg.2112 Lee, S.-W., Kim, Y.-J., Lee, Y.-H., Guim, H., & Han, S. M. (2016). Behavior and characteristics of amorphous calcium carbonate and calcite using CaCO3 film synthesis. Materials & Design, 112, 367-373. https://doi.org/https://doi.org/10.1016/j.matdes.2016.09.099 Li, Y., Peng, S., Li, K., Qin, D., Weng, Z., Li, J., Zheng, L., Wu, L., & Yu, C.-P. (2022). Material extrusion-based 3D printing for the fabrication of bacteria into functional biomaterials: The case study of ammonia removal application. Additive Manufacturing, 60, 103268. https://doi.org/https://doi.org/10.1016/j.addma.2022.103268 Lim, H. K., Kim, D. R., & Hwang, I. T. (2019). Sequestration of CO2 into CaCO3 using Carbonic Anhydrase Immobilization on Functionalized Aluminum Oxide. Applied Biochemistry and Microbiology, 55(4), 375-379. https://doi.org/10.1134/S0003683819040112 Liu, G., Li, K., Yuan, H., Zhou, R., Mao, L., Zhang, R., & Zhang, G. (2024). An antifouling epoxy coated metal surface containing silica-immobilized carbonic anhydrase supraparticles for CO2 capture through microalgae. International Journal of Biological Macromolecules, 269, 132075. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2024.132075 Liu, J., Shen, X., Zheng, Z., Li, M., Zhu, X., Cao, H., & Cui, C. (2020). Immobilization of laccase by 3D bioprinting and its application in the biodegradation of phenolic compounds. International Journal of Biological Macromolecules, 164, 518-525. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.07.144 Liu, W., Hou, L., Huang, F., Pan, Z., Li, J., Tang, P., Zhu, Y., Li, D., & Yao, X. (2025). Advancements in entrapment immobilization technology for enhancing Anammox process: Material effects, preparation strategy and application. Bioresource Technology, 433, 132741. https://doi.org/https://doi.org/10.1016/j.biortech.2025.132741 Lv, B., Yang, Z., Pan, F., Zhou, Z., & Jing, G. (2015). Immobilization of carbonic anhydrase on carboxyl-functionalized ferroferric oxide for CO2 capture. International Journal of Biological Macromolecules, 79, 719-725. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2015.05.051 Malankowska, M., Popkov, A., DeMartini, M., Jørgensen, G., Su, Z., & Pinelo, M. (2024). Integrating metal organic frameworks (MOFs) and polyelectrolytes (PEs) in membrane reactors for boosting the activity of immobilized carbonic anhydrase. Chemical Engineering Journal, 498, 155563. https://doi.org/https://doi.org/10.1016/j.cej.2024.155563 Maureira, D., Rodriguez, S. R., Romero, O., Guillén, M., Álvaro, G., Wilson, L., & Ottone, C. (2025). Immobilization of FDH on carbon felt by affinity binding strategy for CO2 conversion. Results in Engineering, 25, 104442. https://doi.org/https://doi.org/10.1016/j.rineng.2025.104442 Mezieobi, K. C., Alum, E. U., Egwu, C. K., Uti, D. E., Alum, B. N., Ainebyoona, C., & Omuna, D. (2025). Strategies for resilience: Mitigating the effects of climate change on hunger and mental health. Journal of Agriculture and Food Research, 22, 102023. https://doi.org/https://doi.org/10.1016/j.jafr.2025.102023 Miao, H., Li, M., Sun, X., Xia, J., Li, Y., Li, J., Wang, F., & Xu, J. (2022). Effects of Pore Size and Crosslinking Methods on the Immobilization of Myoglobin in SBA-15 [Original Research]. Frontiers in Bioengineering and Biotechnology, Volume 9 - 2021. https://doi.org/10.3389/fbioe.2021.827552 Michaud, M., Bornette, F., Rautu, E., More, S. H., Leonardo Martinez Mendez, M., Jierry, L., & Edouard, D. (2023). Unprecedented continuous elastic foam-bed reactor for CO2 capture. Chemical Engineering Journal, 452, 138604. https://doi.org/https://doi.org/10.1016/j.cej.2022.138604 Molina-Fernández, Cristhian Luis, & Patricia. (2021). Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: A review. Journal of CO2 Utilization, 47, 101475. https://doi.org/https://doi.org/10.1016/j.jcou.2021.101475 Moriyama, J., & Yoshimoto, M. (2021). Efficient Entrapment of Carbonic Anhydrase in Alginate Hydrogels Using Liposomes for Continuous-Flow Catalytic Reactions. ACS Omega, 6(9), 6368-6378. https://doi.org/10.1021/acsomega.0c06299 Mourad, A. A. H., Mohammad, A. F., & Al-Marzouqi, A. H. (2024). Evaluation of bovine carbonic anhydrase for promoting CO2 capture via reaction with KOH and high-salinity reject brine. Journal of CO2 Utilization, 81, 102714. https://doi.org/https://doi.org/10.1016/j.jcou.2024.102714 Mukherjee, S., Sen, R., Ralph, P. J., & Poddar, N. (2025). The catalytic role of carbonic anhydrase in optimizing carbon fixation in microalgal cultures. Journal of Cleaner Production, 505, 145461. https://doi.org/https://doi.org/10.1016/j.jclepro.2025.145461 Mukherjee, T. (2021). Special Issue: The Science and Technology of 3D Printing. Materials, 14(21), 6261. https://www.mdpi.com/1996-1944/14/21/6261 Myat, Y. Y., Ngawhirunpat, T., Rojanarata, T., Opanasopit, P., Bradley, M., Patrojanasophon, P., & Pornpitchanarong, C. (2022). Synthesis of Polyethylene Glycol Diacrylate/Acrylic Acid Nanoparticles as Nanocarriers for the Controlled Delivery of Doxorubicin to Colorectal Cancer Cells. Pharmaceutics, 14(3), 479. https://www.mdpi.com/1999-4923/14/3/479 Nema, A., Kumar, A., & Warudkar, V. (2025). An in-depth critical review of different carbon capture techniques: Assessing their effectiveness and role in reducing climate change emissions. Energy Conversion and Management, 323, 119244. https://doi.org/https://doi.org/10.1016/j.enconman.2024.119244 Oh, W. T., Ham, J., Kim, S., & Koh, W.-G. (2025). Enzymatic conversion of glycerol to dihydroxyacetone using a hydrogel bioreactor entrapping glycerol dehydrogenase immobilized on silica nanoparticles. Chemical Engineering Journal, 505, 159250. https://doi.org/https://doi.org/10.1016/j.cej.2025.159250 Ozbolat, I. T., & Yu, Y. (2013). Bioprinting Toward Organ Fabrication: Challenges and Future Trends. IEEE Transactions on Biomedical Engineering, 60(3), 691-699. https://doi.org/10.1109/TBME.2013.2243912 Paul, S., Bera, S., Dasgupta, R., Mondal, S., & Roy, S. (2021). Review on the recent structural advances in open and closed systems for carbon capture through algae. Energy Nexus, 4, 100032. https://doi.org/https://doi.org/10.1016/j.nexus.2021.100032 Peirce, S., Russo, M. E., Isticato, R., Lafuente, R. F., Salatino, P., & Marzocchella, A. (2017). Structure and activity of magnetic cross-linked enzyme aggregates of bovine carbonic anhydrase as promoters of enzymatic CO2 capture. Biochemical Engineering Journal, 127, 188-195. https://doi.org/https://doi.org/10.1016/j.bej.2017.08.014 Prabhakar, T., Giaretta, J., Zulli, R., Rath, R. J., Farajikhah, S., Talebian, S., & Dehghani, F. (2025). Covalent immobilization: A review from an enzyme perspective. Chemical Engineering Journal, 503, 158054. https://doi.org/https://doi.org/10.1016/j.cej.2024.158054 Qureshi, M. A., Basree, Aziz, R., Azim, Y., & Ahmad, M. (2025). Polymeric hydrogels for bioprinting: A comprehensive review. Annals of 3D Printed Medicine, 18, 100198. https://doi.org/https://doi.org/10.1016/j.stlm.2025.100198 Raees, S., Ullah, F., Javed, F., Akil, H. M., Jadoon Khan, M., Safdar, M., Din, I. U., Alotaibi, M. A., Alharthi, A. I., Bakht, M. A., Ahmad, A., & Nassar, A. A. (2023). Classification, processing, and applications of bioink and 3D bioprinting: A detailed review. International Journal of Biological Macromolecules, 232, 123476. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2023.123476 Rasouli, Hannaneh Iliuta, Ion Bougie, Francis Garnier, Alain Iliuta, & C., M. (2022). Enhanced CO2 capture in packed-bed column bioreactors with immobilized carbonic anhydrase. Chemical Engineering Journal, 432, 134029. https://doi.org/https://doi.org/10.1016/j.cej.2021.134029 Rasouli, H., Nguyen, K., & Iliuta, M. C. (2022). Recent advancements in carbonic anhydrase immobilization and its implementation in CO2 capture technologies: A review. Separation and Purification Technology, 296, 121299. https://doi.org/https://doi.org/10.1016/j.seppur.2022.121299 Remonatto, D., Izidoro, B. F., Mazziero, V. T., Catarino, B. P., do Nascimento, J. F. C., Cerri, M. O., Andrade, G. S. S., & Paula, A. V. d. (2023). 3D printing and enzyme immobilization: An overview of current trends. Bioprinting, 33, e00289. https://doi.org/https://doi.org/10.1016/j.bprint.2023.e00289 Ren, S., Feng, Y., Wen, H., Li, C., Sun, B., Cui, J., & Jia, S. (2018). Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration. International Journal of Biological Macromolecules, 117, 189-198. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2018.05.173 Rodrigues, S., Dionísio, M., López, C. R., & Grenha, A. (2012). Biocompatibility of Chitosan Carriers with Application in Drug Delivery. Journal of Functional Biomaterials, 3(3), 615-641. https://www.mdpi.com/2079-4983/3/3/615 Salamone, F., Belussi, L., Danza, L., Ghellere, M., & Meroni, I. (2015). Design and Development of nEMoS, an All-in-One, Low-Cost, Web-Connected and 3D-Printed Device for Environmental Analysis. Sensors, 15(6), 13012-13027. https://www.mdpi.com/1424-8220/15/6/13012 Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A., & Jones, C. W. (2016). Direct Capture of CO2 from Ambient Air. Chemical Reviews, 116(19), 11840-11876. https://doi.org/10.1021/acs.chemrev.6b00173 Schmieg, B., Döbber, J., Kirschhöfer, F., Pohl, M., & Franzreb, M. (2019). Advantages of Hydrogel-Based 3D-Printed Enzyme Reactors and Their Limitations for Biocatalysis [Original Research]. Frontiers in Bioengineering and Biotechnology, Volume 6 - 2018. https://doi.org/10.3389/fbioe.2018.00211 Scholes, C. A., Smith, K. H., Kentish, S. E., & Stevens, G. W. (2010). CO2 capture from pre-combustion processes—Strategies for membrane gas separation. International Journal of Greenhouse Gas Control, 4(5), 739-755. https://doi.org/https://doi.org/10.1016/j.ijggc.2010.04.001 Shamna, I., Kwan Jeong, S., & Margandan, B. (2021). Covalent immobilization of carbonic anhydrase on amine functionalized alumino-Siloxane aerogel beads for biomimetic sequestration of CO2. Journal of Industrial and Engineering Chemistry, 100, 288-295. https://doi.org/https://doi.org/10.1016/j.jiec.2021.05.010 Shao, P., Ye, J., Shen, Y., Zhang, S., & Zhao, J. (2024). Recent advancements in carbonic anhydrase for CO2 capture: A mini review. Gas Science and Engineering, 123, 205237. https://doi.org/https://doi.org/10.1016/j.jgsce.2024.205237 Shao, Y., Gan, N., Gao, B., & He, B. (2024). Sustainable 3D-printed β-galactosidase immobilization coupled with continuous-flow reactor for efficient lactose-free milk production. Chemical Engineering Journal, 481, 148557. https://doi.org/https://doi.org/10.1016/j.cej.2024.148557 Sharma, T., Sharma, S., Kamyab, H., & Kumar, A. (2020). Energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases: A review. Journal of Cleaner Production, 247, 119138. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.119138 Shen, J., Yuan, Y., & Salmon, S. (2022). Durable and Versatile Immobilized Carbonic Anhydrase on Textile Structured Packing for CO2 Capture. Catalysts, 12(10), 1108. https://www.mdpi.com/2073-4344/12/10/1108 Shen, X., Yang, M., Cui, C., & Cao, H. (2019). In situ immobilization of glucose oxidase and catalase in a hybrid interpenetrating polymer network by 3D bioprinting and its application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 568, 411-418. https://doi.org/https://doi.org/10.1016/j.colsurfa.2019.02.021 Smith, S., Goodge, K., Delaney, M., Struzyk, A., Tansey, N., & Frey, M. (2020). A Comprehensive Review of the Covalent Immobilization of Biomolecules onto Electrospun Nanofibers. Nanomaterials, 10(11), 2142. https://www.mdpi.com/2079-4991/10/11/2142 Sodiq, A., Abdullatif, Y., Aissa, B., Ostovar, A., Nassar, N., El-Naas, M., & Amhamed, A. (2023). A review on progress made in direct air capture of CO2. Environmental Technology & Innovation, 29, 102991. https://doi.org/https://doi.org/10.1016/j.eti.2022.102991 Song, J., Zhang, Z., Han, B., Hu, S., Li, W., & Xie, Y. (2008). Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of β-cyclodextrin [10.1039/B815105A]. Green Chemistry, 10(12), 1337-1341. https://doi.org/10.1039/B815105A Sun, H., Jia, Y., Dong, H., Dong, D., & Zheng, J. (2020). Combining additive manufacturing with microfluidics: an emerging method for developing novel organs-on-chips. Current Opinion in Chemical Engineering, 28, 1-9. https://doi.org/https://doi.org/10.1016/j.coche.2019.10.006 Supuran, C. T. (2018). Applications of carbonic anhydrases inhibitors in renal and central nervous system diseases. Expert Opinion on Therapeutic Patents, 28(10), 713-721. https://doi.org/10.1080/13543776.2018.1519023 Supuran, C. T., & Capasso, C. (2017). An Overview of the Bacterial Carbonic Anhydrases. Metabolites, 7(4), 56. https://www.mdpi.com/2218-1989/7/4/56 Surampalli, R. Y., Zhang, T. C., Tyagi, R. D., Naidu, R., Gurjar, B. R., Ojha, C. S. P., Yan, S., Brar, S. K., Ramakrishnan, A., & Kao, C. M. (2015). Enzymatic Sequestration of Carbon Dioxide. In Carbon Capture and Storage (pp. 401-419). https://doi.org/doi:10.1061/9780784413678.ch14 Vidakis, N., Kalderis, D., Michailidis, N., Papadakis, V., Mountakis, N., Argyros, A., Spiridaki, M., Moutspoulou, A., & Petousis, M. (2024). Environmentally friendly polylactic acid/ferronickel slag composite filaments for material extrusion 3D printing: A comprehensive optimization of the filler content. Materials Today Sustainability, 27, 100881. https://doi.org/https://doi.org/10.1016/j.mtsust.2024.100881 Vinoba, M., Bhagiyalakshmi, M., Jeong, S. K., Yoon, Y., II, & Nam, S. C. (2012). Immobilization of carbonic anhydrase on spherical SBA-15 for hydration and sequestration of CO2. Colloids and Surfaces B: Biointerfaces, 90, 91-96. https://doi.org/https://doi.org/10.1016/j.colsurfb.2011.10.001 Wang, X., Li, M., Liu, Z., Shi, Z., Yu, D., Ge, B., & Huang, F. (2024). Carbonic anhydrase encapsulation using bamboo cellulose scaffolds for efficient CO2 capture and conversion. International Journal of Biological Macromolecules, 277, 134410. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2024.134410 Wei, X., Manovic, V., & Hanak, D. P. (2020). Techno-economic assessment of coal- or biomass-fired oxy-combustion power plants with supercritical carbon dioxide cycle. Energy Conversion and Management, 221, 113143. https://doi.org/https://doi.org/10.1016/j.enconman.2020.113143 Weng, Y., Yang, G., Li, Y., Xu, L., Chen, X., Song, H., & Zhao, C.-X. (2023). Alginate-based materials for enzyme encapsulation. Advances in Colloid and Interface Science, 318, 102957. https://doi.org/https://doi.org/10.1016/j.cis.2023.102957 Wilbur, K. M., & Anderson, N. G. (1948). Electrometric and Colormetric Determination of Carbonic Anhydrase. Journal of Biological Chemistry, 176(1), 147-154. https://doi.org/https://doi.org/10.1016/S0021-9258(18)51011-5 Wu, F., Argyle, M. D., Dellenback, P. A., & Fan, M. (2018). Progress in O2 separation for oxy-fuel combustion–A promising way for cost-effective CO2 capture: A review. Progress in Energy and Combustion Science, 67, 188-205. https://doi.org/https://doi.org/10.1016/j.pecs.2018.01.004 Wu, Z., Nan, Y., Zhao, Y., Wang, X., Huang, S., & Shi, J. (2020). Immobilization of carbonic anhydrase for facilitated CO2 capture and separation. Chinese Journal of Chemical Engineering, 28(11), 2817-2831. https://doi.org/https://doi.org/10.1016/j.cjche.2020.06.002 Xie, Y., Zhou, H., Wang, J., Meng, H., Wei, S., Sun, J., & Hu, Y. (2025). Enhancing autoclaved aerated concrete performance via replacement of fly ash with granite stone powder and steel slag: Critical role of Ca/Si ratio. Construction and Building Materials, 477, 141360. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2025.141360 Xiong, R., Zhang, Z., Chai, W., Chrisey, D. B., & Huang, Y. (2017). Study of gelatin as an effective energy absorbing layer for laser bioprinting. Biofabrication, 9(2), 024103. https://doi.org/10.1088/1758-5090/aa74f2 Xu, X., Pose-Boirazian, T., Eibes, G., McCoubrey, L. E., Martínez-Costas, J., Gaisford, S., Goyanes, A., & Basit, A. W. (2022). A customizable 3D printed device for enzymatic removal of drugs in water. Water Research, 208, 117861. https://doi.org/https://doi.org/10.1016/j.watres.2021.117861 Yadav, R. R., Mudliar, S. N., Shekh, A. Y., Fulke, A. B., Devi, S. S., Krishnamurthi, K., Juwarkar, A., & Chakrabarti, T. (2012). Immobilization of carbonic anhydrase in alginate and its influence on transformation of CO2 to calcite. Process Biochemistry, 47(4), 585-590. https://doi.org/https://doi.org/10.1016/j.procbio.2011.12.017 Yang, S.-Y., Lin, J.-Y., Li, P.-R., Hanh, N. T. D., Srinophakun, P., Liu, B.-L., Chiu, C.-Y., Ng, I. S., Chen, K.-H., & Chang, Y.-K. (2025). Functionalized polyacrylonitrile nanofiber membranes with carbonic anhydrase for enhanced carbon dioxide capture and conversion: A performance study. Biochemical Engineering Journal, 213, 109570. https://doi.org/https://doi.org/10.1016/j.bej.2024.109570 Yuan, Y., & Qian, C. (2025). Comparison and mechanism of CO2 sequestration by different carbonic anhydrase producing bacteria. Biochemical Engineering Journal, 222, 109812. https://doi.org/https://doi.org/10.1016/j.bej.2025.109812 Züger, F., Berner, N., & Gullo, M. R. (2023). Towards a Novel Cost-Effective and Versatile Bioink for 3D-Bioprinting in Tissue Engineering. Biomimetics (Basel), 8(1). https://doi.org/10.3390/biomimetics8010027 Zexiong, C. (2022, 2022/04/29). A Review of Pre-combustion Carbon Capture Technology. Proceedings of the 2022 7th International Conference on Social Sciences and Economic Development (ICSSED 2022), Zhang, D., Bai, Y., Niu, H., Chen, L., Xiao, J., Guo, Q., & Jia, P. (2024). Enzyme Immobilization by Inkjet Printing on Reagentless Biosensors for Electrochemical Phosphate Detection. Biosensors (Basel), 14(4). https://doi.org/10.3390/bios14040168 Zhang, G., Liu, J., Qian, J., Zhang, X., & Liu, Z. (2024). Review of research progress and stability studies of amine-based biphasic absorbents for CO2 capture. Journal of Industrial and Engineering Chemistry, 134, 28-50. https://doi.org/https://doi.org/10.1016/j.jiec.2024.01.013 Zhang, X., Yan, S., Tyagi, R. D., Surampalli Rao, Y., & Zhang Tian, C. (2015). Enzymatic Sequestration of Carbon Dioxide. Carbon Capture and Storage, 401-419. https://doi.org/doi:10.1061/9780784413678.ch14 Zhang, Y., Gu, J., Fu, Y., Shi, W., Wang, X., Su, Y., Wang, X., & Wang, X. (2025). Immobilization of lipase on mesoporous silica nanocarriers for efficient preparation of phytosterol esters. International Journal of Biological Macromolecules, 286, 138310. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2024.138310 Zhao, T., Liu, Y., Wu, Y., Zhao, M., & Zhao, Y. (2023). Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges. Biotechnology Advances, 69, 108243. https://doi.org/https://doi.org/10.1016/j.biotechadv.2023.108243 Zhigarkov, V., Volchkov, I., Yusupov, V., & Chichkov, B. (2021). Metal Nanoparticles in Laser Bioprinting. Nanomaterials (Basel), 11(10). https://doi.org/10.3390/nano11102584 Zhou, W., Zhang, H., Liu, Y., Zou, X., Shi, J., Zhao, Y., Ye, Y., Yu, Y., & Guo, J. (2019). Preparation of calcium alginate/polyethylene glycol acrylate double network fiber with excellent properties by dynamic molding method. Carbohydrate Polymers, 226, 115277. https://doi.org/https://doi.org/10.1016/j.carbpol.2019.115277 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98626 | - |
| dc.description.abstract | 碳酸酐酶是一種催化CO2水合反應之含鋅金屬酶,透過兩步驟生化反應進行,包含鋅金屬上氫氧根離子對CO2之親核攻擊,產生碳酸氫根基團,以及水分子對鋅位點之再生。此類型酵素常見於生物體內,能調節酸鹼環境,並具有高轉換效率與CO2專一性,在碳捕捉技術上具開發潛力。然而,游離態酵素容易因環境變化而影響催化活性,導致酵素失活,故需透過固定化程序提高實用性。而使用包埋法進行酵素固定化能有效保持酵素活性且具備良好接枝穩定性,且結合3D生物列印技術能進一步打造載體形狀之多樣性,適用於碳捕捉材料之開發。
本研究試著利用3D生物列印技術進行酵素固定化,比較不同負載情形下之活性表現,並將載體置於兩種曝氣類型之反應槽內,試著分析氣、液相中無機碳,以及碳酸鈣沉澱量,綜合評估載體固碳效率。實驗結果顯示,酵素分布於載體之交聯結構孔洞中,顯示此類型三維結構能良好的負載酵素並表現活性。低酵素負載時,載體表現出高催化效率,比活性達最高207.49 WAU/mg CA,在經過14天乾式保存後仍保有71.47%活性,並在6次循環使用後保留84.98%酵素活性,展現良好酵素穩定性。另外,酵素負載增加能有效提升熱穩定性,負載最高之CA-3D-4 (0.171 mg/g)於50℃時表現最佳相對活性。此外,通過比較直接注入式及奈米曝氣式反應槽,可知若引入奈米氣泡能有效增強酵素催化CO2水合反應。藉由碳酸鈣沉澱結果得知進一步驗證低負載酵素之高催化效率,CA-3D-1 (0.028 mg/g)載體在直接注入式反應槽中表現出2724.4 mg CaCO3/mg CA之沉澱量,而在奈米氣泡式反應槽中更達到3016.0 mg CaCO3/mg CA之沉澱量。 | zh_TW |
| dc.description.abstract | Carbonic anhydrase is a zinc-containing metalloenzyme that catalyzes the hydration of CO2 through a two-step biochemical reaction. This process involves a nucleophilic attack of the hydroxide ion coordinated on the zinc metal center, producing bicarbonate ions, followed by the regeneration of the zinc-bound water molecule. This type of enzyme is commonly found in living organisms, where it regulates acid-base balance and exhibits high catalytic efficiency and CO2 specificity. It also holds great potential for development in carbon capture technologies. However, free enzymes are prone to activity loss due to environmental changes, resulting in enzyme deactivation. Therefore, immobilization techniques are necessary to enhance their practical applicability. Among these, enzyme immobilization by entrapment can effectively maintain enzyme activity and provide good grafting stability. When combined with 3D bioprinting technique, it allows for greater diversity in carrier shapes, making it suitable for the development of CO2 capture materials.
This study attempts to immobilize the enzyme using 3D bioprinting technique, comparing the activity performance under different enzyme loading. The carriers were placed in two types of reactors, inorganic carbon analysis was conducted in the gas and liquid phase system, combined with calcium carbonate precipitation test to evaluate the carbon fixation efficiency of the carriers. Experimental results show that the enzyme is distributed within the crosslinked pores of the carrier, indicating that this type of three-dimensional structure can effectively load the enzyme and maintain its activity. At low enzyme loading, the carrier exhibited high catalytic efficiency, with a maximum specific activity of 207.49 WAU/mg CA. After 14 days of dry storage, it retained 71.47% of its activity. In reusability test, after six cycles, it preserved 84.98% of enzyme activity, demonstrating good enzyme stability. Additionally, increasing enzyme loading effectively improved thermal stability, with the highest enzyme loaded CA-3D-4 carrier (0.171 mg/g) showing the best relative activity at 50°C. Furthermore, by comparing direct injection and nano-bubble aeration reactors, it was found that the nano-bubbles can effectively enhance the enzyme-catalyzed CO2 hydration reaction. The calcium carbonate precipitation results further verified the high catalytic efficiency of the low-loaded enzyme. It shows that the CA-3D-1 carrier (0.028 mg/g) produced 2724.4 mg CaCO3/mg CA in the direct injection reactor and reached 3016.0 mg CaCO3/mg CA in the nano-bubble reactor. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:07:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T01:07:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iii Abstract iv 目次 vi 圖次 ix 表次 xi 第一章 前言 1 1.1 研究背景 1 1.2 研究動機及目的 2 1.3 研究架構圖 4 第二章 文獻回顧 5 2.1 固碳技術研究 5 2.1.1 CO2排放趨勢與氣候變遷議題 5 2.1.2 碳捕捉技術現況 6 2.2 碳酸酐酶應用於碳捕捉技術 8 2.2.1 酵素碳捕捉技術 8 2.2.2 碳酸酐酶 9 2.3 酵素固定化方法 11 2.3.1 物理吸附法 11 2.3.2 共價鍵結法 12 2.3.3 交聯型聚合法 14 2.3.4 包埋法 14 2.4 3D生物列印技術 15 2.4.1 3D生物列印技術簡介 15 2.4.2 列印技術種類 16 第三章 材料與方法 19 3.1 實驗藥品及設備 19 3.1.1 實驗藥品 19 3.1.2 實驗設備 21 3.2 3D生物列印 23 3.2.1 3D生物列印機及列印參數設計 23 3.2.2 生物墨水製備 24 3.2.3 生物列印操作步驟 25 3.3 材料特性分析 28 3.3.1 表面型態分析 28 3.3.2 表面官能基分析 29 3.3.3 酵素活性分析 30 3.3.4 固定化酵素之環境條件最佳化試驗 32 3.3.5 保存性測試 33 3.3.6 重複性測試 34 3.4 固碳實驗 35 3.4.1 直接注入式反應槽 35 3.4.2 微奈米氣泡反應槽 35 3.4.3 氣體分析 36 3.4.4 水中總無機碳分析 37 3.4.5 碳酸鈣沉澱分析 38 第四章 結果與討論 41 4.1 固定化酵素表面分析 41 4.1.1 SEM 41 4.1.2 EDS 44 4.1.3 FTIR 45 4.2 固定化酵素活性測試 47 4.3 酵素操作條件最佳化測試結果 49 4.3.1 酸鹼度最佳化測試結果 49 4.3.2 溫度最佳化測試結果 51 4.4 保存性測試結果 52 4.5 重複使用性測試結果 55 4.6 固碳效果評估 57 4.6.1 氣體分析 57 4.6.2 水中總無機碳分析 59 4.6.3 碳酸鈣沉澱試驗 62 第五章 結論與建議 67 5.1 結論 67 5.2 未來建議 69 參考文獻 70 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 3D生物列印 | zh_TW |
| dc.subject | 碳酸酐酶 | zh_TW |
| dc.subject | 碳捕捉 | zh_TW |
| dc.subject | 奈米氣泡 | zh_TW |
| dc.subject | 酵素固定化 | zh_TW |
| dc.subject | enzyme immobilization | en |
| dc.subject | nano bubbles | en |
| dc.subject | carbon capture | en |
| dc.subject | 3D bioprinting | en |
| dc.subject | Carbonic anhydrase | en |
| dc.title | 利用3D生物列印固定化碳酸酐酶以提升固碳效率 | zh_TW |
| dc.title | Immobilized Carbonic Anhydrase by 3D Bioprinting for Enhanced Carbon Fixation Efficiency | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉啓德;陳宜龍 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Te Liu;Yi-Lung Chen | en |
| dc.subject.keyword | 碳酸酐酶,3D生物列印,酵素固定化,奈米氣泡,碳捕捉, | zh_TW |
| dc.subject.keyword | Carbonic anhydrase,3D bioprinting,enzyme immobilization,nano bubbles,carbon capture, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202501799 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 3.98 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
