Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98524
標題: 基於全球性資料庫與階層式貝氏模型之液化沉陷預測模式
Prediction Model for Liquefaction-Induced Settlement Based on Global Database and Hierarchical Bayesian Modeling
作者: 林昕儀
Sin-Yi Lin
指導教授: 卿建業
Jianye Ching
關鍵字: 土壤液化,液化後地層下陷,階層式貝氏模型(HBM),體積應變,相對密度,
Soil liquefaction,post-liquefaction subsidence,Hierarchical Bayesian model (HBM),volumetric strain,geotechnical engineering,
出版年 : 2025
學位: 碩士
摘要: 當地震波傳遞至鬆散且飽和水分的砂質土層時,可能引發土壤液化現象,導致地層表現如液體般流動,進而造成嚴重的地層下陷與結構損壞。台灣於 1999 年九二一集集大地震期間,即曾出現此類災害案例。準確預測液化後地層下陷量,對於災害防減工作而言至關重要。
本研究旨在建立一套針對砂質土壤液化後地層下陷的預測模式,結合階層式貝氏模型(Hierarchical Bayesian Model, HBM)與經驗公式(Ishihara and Yoshimine 1992),以克服場址間差異性與觀測資料不完整所造成的不確定性。研究首先建構一個全球砂質土壤資料庫,涵蓋六組與 r D 具相關性的參數,並以 Johnson 轉換將其轉換至標準常態空間,以符合 HBM 建模需求。
預測流程分為兩條路徑:其一為 HBM 推估 rD ,再利用經驗模型估算體積應變與下陷量;其二則為直接套用經驗公式進行沉陷預測。模型透過 Gibbs 抽樣進行參數推論與模擬,並應用於東日本大地震等五個實地案例,比較其預測結果與實測值的一致性。
研究結果顯示, HBM 具備良好的多場址整合能力與條件推論能力,且可提供信賴區間評估不確定性。在資料有限的情況下, HBM 仍能預測 r D 與沉陷量,並對於液化區與非液化區展現不同預測特性。與 Ishihara 經驗模式相比,雖預測準確度略遜,但 HBM 提供了更強的彈性與不確定性表徵能力,對於地震後快速判讀與資料補值具有潛在應用價值。
Soil liquefaction occurs when seismic waves cause loose, water-saturated sandy soils to behave like a liquid, leading to significant ground subsidence and structural damage, as evidenced by the 1999 Chi-Chi Earthquake in Taiwan. Accurate prediction of postliquefaction subsidence is essential for disaster mitigation.
This study develops a predictive framework for ground settlement induced by soil liquefaction in sandy deposits, integrating a Hierarchical Bayesian Model (HBM) with empirical formulations (Ishihara and Yoshimine 1992) to address site variability and incomplete data. A global database was constructed with six influencing parameters, and all inputs were transformed using the Johnson distribution system to fit the HBM's Gaussian assumptions.
The predictive framework includes two steps: one that estimates r D via HBM and computes settlement using empirical models; and another that directly applies empirical formulas. Inference and simulation were performed using Gibbs sampling, and the approach was validated using five real-world sites affected by the 2011 Tohoku earthquake.
Results indicate that the HBM exhibits strong multi-site integration, conditional inference capability, and uncertainty quantification through credible intervals. Even under sparse data conditions, the HBM effectively predicts r D and settlement. While the accuracy may be slightly inferior to Ishihara’s empirical model, the HBM offers greater flexibility and interpretability—making it a valuable tool for post-earthquake assessment and data imputation under uncertainty.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98524
DOI: 10.6342/NTU202503467
全文授權: 同意授權(全球公開)
電子全文公開日期: 2025-08-15
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf12.41 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved