Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98524
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor卿建業zh_TW
dc.contributor.advisorJianye Chingen
dc.contributor.author林昕儀zh_TW
dc.contributor.authorSin-Yi Linen
dc.date.accessioned2025-08-14T16:27:01Z-
dc.date.available2025-08-15-
dc.date.copyright2025-08-14-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citation1. Andrus, R. D., Hayati, H., and Mohanan, N. P. (2009). Correcting liquefaction resistance for aged sands using measured to estimated velocity ratio. Journal of Geotechnical and Geoenvironmental Engineering, 135 (6), 735-744.
2. Andrus, R. D., Piratheepan, P., Ellis, B. S., Zhang, J. F., and Juang, C. H. (2004). Comparing liquefaction evaluation methods using penetration-V relationships. Soil Dynamics and Earthquake Engineering, 24 (9-10), 713-721.
3. Biryaltseva, T., Lunne, T., Kreiter, S., and Mörz, T. (2016). Relative density prediction based on in-situ and laboratory measurements of shear wave velocity. Proceedings of 5th International Conference on Geotechnical and Geophysical Site Characterisation (ISC’5), Gold Coast, Australia, 389-394.
4. Ching, J. and Phoon, K. K. (2015). Constructing multivariate distributions for soil parameters. Risk and Reliability in Geotechnical Engineering, 3, 3-76.
5. Ching, J., Wu, S., and Phoon, K. K. (2021). Constructing quasi-site-specific multivariate probability distribution using hierarchical Bayesian model. Journal of Engineering Mechanics, 147 (10), 04021069.
6. Huang, A. and Wand, M. P. (2013). Simple marginally noninformative prior distributions for covariance matrices. Bayesian Anal, 8 (2), 439 - 452.
7. Idriss, I. M. and Boulanger, R. W. (2008). Soil liquefaction during earthquakes. Earthquake Engineering Research Institute.
8. Ishihara, K. (1985). Stability of natural deposits during earthquakes. Proceedings of Proceedings of the 11th international conference on soil mechanics and foundation engineering, AA Balkema Publishers.
9. Ishihara, K., Araki, K., & Toshiyuki, K. (2013). Liquefaction in Tokyo bay and Kanto regions in the 2011 great east japan earthquake. Earthquake Geotechnical Engineering Design, Springer, Cham, 93–140.
10. Ishihara, K., Harada, K., Lee, W. F., Chan, C. C., and Safiullah, A. M. M. (2016). Post-liquefaction settlement analyses based on the volume change characteristics of undisturbed and reconstituted samples. Soils and Foundations, 56 (3), 533-546.
11. Ishihara, K. and Yoshimine, M. (1992). Evaluation of settlements in sand deposits following liquefaction during earthquakes. Soils and Foundations, 32 (1), 173-188.
12. Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36 (1/2), 149-176.
13. Lee, W. F., Ishihara, K., and Chen, C. C. (2011). Liquefaction of silty sand—preliminary studies from recent Taiwan, New Zealand and Japan earthquakes. Proceedings of Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan.
14. Meyerhof, G. G. (1957). Discussion for Session I. Proceedings of 4th International Conference on Soil Mechanics and Foundation Engineering, 10.
15. Monfared, S. D. (2014). Miniature Cone Penetration Test on Loose Sand. The University of Western Ontario, Canada.
16. Motahari, M. R., Amini, O., Khoshghalb, A., Etemadifar, M., and Alali, N. (2022). Investigation of the geotechnical properties and estimation of the relative density from the standard penetration test in sandy soils (Case Study: North East of Iran). Geotechnical and Geological Engineering, 40 (5), 2425-2442.
17. Mujtaba, H., Farooq, K., Sivakugan, N., and Das, B. M. (2018). Evaluation of relative density and friction angle based on SPT- values. KSCE Journal of Civil Engineering, 22 (2), 572-581.
18. Obermeier, S. F. (1996). Use of liquefaction-induced features for paleoseismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleoearthquakes. Engineering Geology, 44 (1-4), 1-76.
19. Olaya, F. R. and Bray, J. D. (2022). Strain Potential of Liquefied Soil. Journal of Geotechnical and Geoenvironmental Engineering, 148 (11), 04022099.
20. Pease, J. (2010). Misclassification in CPT liquefaction evaluation. Proceedings of Proc. 2nd International Symposium on Cone Penetration Testing, 9-11.
21. Robertson, P. K. and Wride, C. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35 (3), 442-459.
22. Rollins, K., Amoroso, S., and Hryciw, R. (2015). Comparison of DMT, CPT, SPT, and VS based liquefaction assessment on treasure island during the Loma Prieta earthquake. Proceedings of Proceedings of 3rd international conference on flat dilatometer, Rome, 349-356.
23. Sadrekarimi, A. (2016). Evaluation of CPT-based characterization methods for loose to medium-dense sands. Soils and Foundations, 56 (3), 460-472.
24. Sadrekarimi, A. (2017). Evaluation of stress normalization methods for Cone-Penetration Testing in quartz sands. Journal of Geotechnical and Geoenvironmental Engineering, 143 (6), 06017003.
25. Seed, H. B. and Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, 97 (9), 1249-1273.
26. Shahien, M. and Albatal, A. (2014). SPT-CPT correlations for Nile Delta silty sand deposits in Egypt. Proceedings of 3rd international symposium on cone penetration testing, 699-708.
27. Slifker, J. F. and Shapiro, S. S. (1980). The Johnson system: selection and parameter estimation. Technometrics, 22 (2), 239-246.
28. Tokimatsu, K. and Seed, H. B. (1987). Evaluation of Settlements in Sands Due to Earthquake Shaking. Journal of Geotechnical Engineering, 113 (8), 861-878.
29. Tsukamoto, Y., Ishihara, K., and Sawada, S. (2004). Settlement of silty sand deposits following liquefaction during earthquakes. Soils and Foundations, 44 (5), 135-148.
30. Yi, F. (2014). Estimating soil fines contents from CPT data. Proceedings of Proc. 3rd International Symposium on Cone Penetration Testing, Huntington Beach, Las Vegas, Nevada, USA, 949-955.
31. 王俊翔,黃俊鴻,鄧源昌與盧志杰 (2023)。土壤液化簡易評估法的模式不確定性研究。中國土木水利工程學刊,35 (7),645-654。
32. 倪勝火 (2022)。淺談近年台灣土壤液化及案例。土木水利,49 (5),64-70。
33. 曾豊升 (2002)。現地土壤之液化強度與震陷特性。國立中央大學,桃園。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98524-
dc.description.abstract當地震波傳遞至鬆散且飽和水分的砂質土層時,可能引發土壤液化現象,導致地層表現如液體般流動,進而造成嚴重的地層下陷與結構損壞。台灣於 1999 年九二一集集大地震期間,即曾出現此類災害案例。準確預測液化後地層下陷量,對於災害防減工作而言至關重要。
本研究旨在建立一套針對砂質土壤液化後地層下陷的預測模式,結合階層式貝氏模型(Hierarchical Bayesian Model, HBM)與經驗公式(Ishihara and Yoshimine 1992),以克服場址間差異性與觀測資料不完整所造成的不確定性。研究首先建構一個全球砂質土壤資料庫,涵蓋六組與 r D 具相關性的參數,並以 Johnson 轉換將其轉換至標準常態空間,以符合 HBM 建模需求。
預測流程分為兩條路徑:其一為 HBM 推估 rD ,再利用經驗模型估算體積應變與下陷量;其二則為直接套用經驗公式進行沉陷預測。模型透過 Gibbs 抽樣進行參數推論與模擬,並應用於東日本大地震等五個實地案例,比較其預測結果與實測值的一致性。
研究結果顯示, HBM 具備良好的多場址整合能力與條件推論能力,且可提供信賴區間評估不確定性。在資料有限的情況下, HBM 仍能預測 r D 與沉陷量,並對於液化區與非液化區展現不同預測特性。與 Ishihara 經驗模式相比,雖預測準確度略遜,但 HBM 提供了更強的彈性與不確定性表徵能力,對於地震後快速判讀與資料補值具有潛在應用價值。
zh_TW
dc.description.abstractSoil liquefaction occurs when seismic waves cause loose, water-saturated sandy soils to behave like a liquid, leading to significant ground subsidence and structural damage, as evidenced by the 1999 Chi-Chi Earthquake in Taiwan. Accurate prediction of postliquefaction subsidence is essential for disaster mitigation.
This study develops a predictive framework for ground settlement induced by soil liquefaction in sandy deposits, integrating a Hierarchical Bayesian Model (HBM) with empirical formulations (Ishihara and Yoshimine 1992) to address site variability and incomplete data. A global database was constructed with six influencing parameters, and all inputs were transformed using the Johnson distribution system to fit the HBM's Gaussian assumptions.
The predictive framework includes two steps: one that estimates r D via HBM and computes settlement using empirical models; and another that directly applies empirical formulas. Inference and simulation were performed using Gibbs sampling, and the approach was validated using five real-world sites affected by the 2011 Tohoku earthquake.
Results indicate that the HBM exhibits strong multi-site integration, conditional inference capability, and uncertainty quantification through credible intervals. Even under sparse data conditions, the HBM effectively predicts r D and settlement. While the accuracy may be slightly inferior to Ishihara’s empirical model, the HBM offers greater flexibility and interpretability—making it a valuable tool for post-earthquake assessment and data imputation under uncertainty.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:27:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-14T16:27:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 ................................................................................................................................... i
摘要................................................................................................................................. iii
ABSTRACT .................................................................................................................... iv
目 次.................................................................................................................................v
圖 次............................................................................................................................. viii
表 次............................................................................................................................... xi
第一章 緒論............................................................................................................1
1.1 研究目標........................................................................................................2
1.2 研究流程........................................................................................................3
1.3 本文內容........................................................................................................4
第 二 章 文獻回顧....................................................................................................5
2.1 土壤液化成因與影響....................................................................................7
2.2 液化後下陷之控制參數與影響因子..........................................................11
2.2.1 體積應變(volumetric strain, v  ) ..................................................12
2.2.2 影響體積應變之參數.........................................................................12
2.2.3 v  預測所需參數的實務取得性比較................................................17
2.3 液化後地層下陷預測模型..........................................................................19
2.3.1 Tokimatsu and Seed (1987) ..........................................................20
2.3.2 Ishihara and Yoshimine(1992) .......................................................25
2.3.3 Olaya and Bray(2022)....................................................................30
2.3.4 模型比較與限制討論.........................................................................32
2.4 階層式貝氏模型(HBM)於大地工程應用之潛力.................................34
第 三 章 資料庫與模型建構.................................................................................36
3.1 砂質土壤全球資料庫..................................................................................37
3.1.1 搜集方法與資料來源.........................................................................38
3.1.2 資料分類與基本描述.........................................................................44
3.1.3 資料正確性檢核.................................................................................46
3.2 Johnson 分布系統........................................................................................47
3.3 階層式貝式模型..........................................................................................54
3.3.1 模型架構.............................................................................................54
3.3.2 共軛先驗.............................................................................................56
3.3.3 模型推論流程.....................................................................................61
3.3.3.1 學習階段.............................................................................................61
3.3.3.2 推論階段.............................................................................................66
第 四 章 HBM 分析結果.......................................................................................68
4.1 Johnson 分布轉換結果................................................................................68
4.2 超參數..........................................................................................................71
第 五 章 案例驗證..................................................................................................74
5.1 案例驗證流程..............................................................................................74
5.2 案例驗證結果..............................................................................................75
5.2.1 案例一:Site 243 (場址有5 個參數)..........................................75
5.2.2 案例二:Site 114、Site 154(場址有3 個參數) ..........................77
5.2.3 案例三:Site 51(場址有2 個參數)..............................................81
5.3 結果討論......................................................................................................83
第 六 章 現地沉陷案例驗證.................................................................................84
6.1 背景介紹......................................................................................................85
6.2 驗證方式......................................................................................................86
6.3 液化案例一:浦安市高洲四丁目(Takasu 4-5).....................................89
6.4 液化案例二:千葉市美濱(Mihama).....................................................92
6.5 液化案例三:千葉市美濱區磯部八丁目(Isobe-8) ..............................95
6.6 無液化案例一:浦安市富士見三丁目(Fujimi 3).................................98
6.7 無液化案例二:浦安市海樂二丁目(Kairaku 2) ................................101
6.8 結果討論....................................................................................................104
第 七 章 結論與未來建議...................................................................................106
7.1 結論............................................................................................................106
7.2 未來建議....................................................................................................107
參考文獻.......................................................................................................................108
-
dc.language.isozh_TW-
dc.subject土壤液化zh_TW
dc.subject液化後地層下陷zh_TW
dc.subject階層式貝氏模型(HBM)zh_TW
dc.subject體積應變zh_TW
dc.subject相對密度zh_TW
dc.subjectSoil liquefactionen
dc.subjectHierarchical Bayesian model (HBM)en
dc.subjectvolumetric strainen
dc.subjectgeotechnical engineeringen
dc.subjectpost-liquefaction subsidenceen
dc.title基於全球性資料庫與階層式貝氏模型之液化沉陷預測模式zh_TW
dc.titlePrediction Model for Liquefaction-Induced Settlement Based on Global Database and Hierarchical Bayesian Modelingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王瑞斌;林志平zh_TW
dc.contributor.oralexamcommitteeJui-Pin Wang;Chih-Ping Linen
dc.subject.keyword土壤液化,液化後地層下陷,階層式貝氏模型(HBM),體積應變,相對密度,zh_TW
dc.subject.keywordSoil liquefaction,post-liquefaction subsidence,Hierarchical Bayesian model (HBM),volumetric strain,geotechnical engineering,en
dc.relation.page111-
dc.identifier.doi10.6342/NTU202503467-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-08-15-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf12.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved