請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98481| 標題: | 6T與8T鰭式場效電晶體之低溫靜態隨機存取記憶體最佳化 Optimization of 6T and 8T FinFET Cryogenic SRAM |
| 作者: | 李庚倫 Geng-Lun Li |
| 指導教授: | 胡璧合 Pi-Ho Hu |
| 關鍵字: | 低溫金氧半場效電晶體,靜態隨機存取記憶體,高效能運算,臨界電壓,感測放大器,能量效率, Cryo-CMOS,SRAM,HPC,threshold voltage,sense amplifier,energy efficiency, |
| 出版年 : | 2025 |
| 學位: | 碩士 |
| 摘要: | 將互補式金氧半場效電晶體(Complementary Metal-Oxide Semiconductor, CMOS)操作於低溫環境,有助於實現高效能運算(High-Performance Computing, HPC)。然而,如何在低臨界電壓(Vt)設計下維持靜態隨機存取記憶體(Static Random-Access Memory, SRAM)的穩定性仍是一大挑戰。本研究針對低溫6T與8T-SRAM的特性進行系統性分析,並提出優化設計方案,以同時強化其穩定性與操作效能。
對77 K下6T-SRAM單元,本研究提出兩種優化穩定性Vt設計:(1) 標準供應電壓(0.75 V)下之6T-ES(Enhanced Speed)方案,相較於LVT(|Vt| = 0.15 V)設計,可提升3.4倍的讀取靜態雜訊邊界(Read Static Noise Margin, RSNM);(2) 低電壓(0.4 V)下之6T-LP(Low Power)方案,透過強化上拉電晶體(Pull-Up, PU)設計,可提升讀取穩定性,同時不犧牲讀取速度與寫入能力。於關鍵製程角落(Process Corner)下,6T-LP可將RSNM提升至LVT設計的1.3倍。 本研究亦分析低溫電流閂鎖感測放大器(Current-Latched Sense Amplifier, CLSA)與電壓閂鎖感測放大器(Voltage-Latched Sense Amplifier, VLSA)。考量冷卻能量(Cooling Energy)後,77 K下CLSA與VLSA皆採用較低的VDD(0.4 V)與LVT設計,CLSA可維持與室溫操作相當的能量效率(Energy Delay Product, EDP),而VLSA則因具備顯著的速度提升,可進一步降低約20%的EDP。 8T-SRAM單元由於具備讀寫路徑分離架構,本身具有較佳的讀取穩定性,本研究進一步提出Vt設計策略,優化其在低VDD(0.4 V)下的穩定性與讀取效能。針對77 K下6N2P與4N4P架構,分別提出8T-6N2P-LP與8T-4N4P-LP之Vt設計方案。相較於採用LVT設計之6T-SRAM,8T-6N2P-LP與8T-4N4P-LP在關鍵製程角落下之RSNM可提升6.3倍。此外,將4N4P讀出電路 (Readout Circuit) 之供應電壓(VSEN)由0.4 V降低至0.3 V(LRV-8T-4N4P-LP),可額外縮短8%的讀取時間。綜合上述研究成果,本論文提出之設計策略展現具備提升低溫SRAM應用於HPC系統之潛力,為未來低溫積體電路設計提供重要參考依據與實用方法。 Cryogenic complementary metal-oxide semiconductor (Cryo-CMOS) technology offers promising potential for enabling high-performance computing (HPC). However, maintaining the stability of static random-access memory (SRAM) under low threshold voltage (Vt) design remains a significant challenge. This study systematically analyzes the characteristics of 6T and 8T-SRAM under cryogenic operation and proposes optimized design strategies to simultaneously enhance both stability and performance. For 6T-SRAM at 77 K, two Vt optimization designs are proposed: (1) the 6T-ES (Enhanced Speed) design for nominal VDD = 0.75 V, which improves the read static noise margin (RSNM) by 3.4× compared to the LVT design (|Vt| = 0.15 V). (2) the 6T-LP (Low Power) design for reduced VDD = 0.4 V, which strengthens the pull-up (PU) transistors to enhance read stability without sacrificing read and write capability. Under critical process corners, the 6T-LP achieves up to 1.3× RSNM improvement over the LVT baseline. In addition, this study evaluates the performance of cryogenic current-latched sense amplifier (CLSA) and voltage-latched sense amplifier (VLSA). Considering cooling energy, CLSA and VLSA adopt low VDD (0.4 V) and LVT design at 77 K. The cryogenic CLSA maintains a comparable energy delay product (EDP) to its room-temperature counterpart, while the cryogenic VLSA achieves approximately 20% lower EDP due to significant speed improvement. Owing to the decoupled read/write paths, 8T-SRAM inherently provides better read stability. This work proposes Vt design strategies for 6N2P and 4N4P 8T-SRAM to optimize their stability and read performance under low VDD (0.4 V) conditions. Compared to 6T-SRAM with an LVT design at 77 K, the proposed 8T designs enhance RSNM by up to 6.3× under critical process corners. Furthermore, reducing the supply voltage (VSEN) of 4N4P readout circuit from 0.4 V to 0.3 V (LRV-8T-4N4P-LP) shortens the read time by an additional 8%. In summary, the proposed design strategies significantly enhance the stability and performance of cryogenic SRAM, demonstrating strong potential for HPC applications and providing valuable guidance for future cryogenic IC design. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98481 |
| DOI: | 10.6342/NTU202502990 |
| 全文授權: | 同意授權(限校園內公開) |
| 電子全文公開日期: | 2030-07-30 |
| 顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.63 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
