請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98479完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 白奇峰 | zh_TW |
| dc.contributor.advisor | Chi-Feng Pai | en |
| dc.contributor.author | 黎哲睿 | zh_TW |
| dc.contributor.author | Che-Jui Li | en |
| dc.date.accessioned | 2025-08-14T16:16:31Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-31 | - |
| dc.identifier.citation | 1. Hirsch, J.E., Spin Hall Effect. Physical Review Letters, 1999. 83(9): p. 1834-1837.
2. Liu, L., et al., Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. Science, 2012. 336(6081): p. 555-558. 3. Pai, C.-F., The Spin Hall Effect Induced Spin Transfer Torque In Magnetic Heterostructures. 2015. 4. Takeuchi, Y., et al., Spin-orbit torques in high-resistivity-W/CoFeB/MgO. Applied Physics Letters, 2018. 112(19). 5. Kontani, H., et al., Giant Orbital Hall Effect in Transition Metals: Origin of Large Spin and Anomalous Hall Effects. Physical Review Letters, 2009. 102(1): p. 016601. 6. Xing, T., et al., Direct detection of spin-orbit effective fields through magneto-optical Kerr effect. Physical Review B, 2020. 101(22): p. 224407. 7. Nguyen, M.-H. and C.-F. Pai, Spin-orbit torque characterization in a nutshell. APL Materials, 2021. 9(3): p. 030902. 8. Gambardella, P. Introduction to Spin Torques and Spin-Orbit Torques in Metal Layers. in Spinmechanics III. 2015. 9. Liu, L., et al., Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect. Physical Review Letters, 2011. 106(3): p. 036601. 10. Lee, D., et al., Orbital torque in magnetic bilayers. Nature Communications, 2021. 12(1): p. 6710. 11. Tanaka, T., et al., Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals. Physical Review B, 2008. 77(16): p. 165117. 12. Go, D., et al., Orbitronics: Orbital currents in solids. Europhysics Letters, 2021. 135(3): p. 37001. 13. Fukunaga, R., et al., Orbital torque originating from orbital Hall effect in Zr. Physical Review Research, 2023. 5(2): p. 023054. 14. Hayashi, H., et al., Observation of long-range orbital transport and giant orbital torque. Communications Physics, 2023. 6(1): p. 32. 15. Go, D., et al., Orbital Rashba effect in a surface-oxidized Cu film. Physical Review B, 2021. 103(12): p. L121113. 16. Yoda, T., T. Yokoyama, and S. Murakami, Orbital Edelstein Effect as a Condensed-Matter Analog of Solenoids. Nano Letters, 2018. 18(2): p. 916-920. 17. Das, K. and A. Agarwal, Intrinsic Hall conductivities induced by the orbital magnetic moment. Physical Review B, 2021. 103(12): p. 125432. 18. Ghosh, S. and S. Grytsiuk, Chapter One - Orbitronics with uniform and nonuniform magnetic structures, in Solid State Physics, R.L. Stamps, Editor. 2020, Academic Press. p. 1-38. 19. Li, T., et al., Giant Orbital-to-Spin Conversion for Efficient Current-Induced Magnetization Switching of Ferrimagnetic Insulator. Nano Letters, 2023. 23(15): p. 7174-7179. 20. Go, D., et al., Orbital pumping by magnetization dynamics in ferromagnets. Physical Review B, 2025. 111(14): p. L140409. 21. Hayashi, H., et al., Observation of orbital pumping. Nature Electronics, 2024. 7(8): p. 646-652. 22. Lee, S., et al., Efficient conversion of orbital Hall current to spin current for spin-orbit torque switching. Communications Physics, 2021. 4(1): p. 234. 23. Hu, C.-Y., et al., Toward 100% Spin-Orbit Torque Efficiency with High Spin–Orbital Hall Conductivity Pt–Cr Alloys. ACS Applied Electronic Materials, 2022. 4(3): p. 1099-1108. 24. Liu, Q., et al., Strong Spin-Orbit Torque Induced by the Intrinsic Spin Hall Effect in Cr1-xPtx. Physical Review Applied, 2022. 18(5): p. 054079. 25. Chen, T.-Y., et al., Tailoring Neuromorphic Switching by CuNx-Mediated Orbital Currents. Physical Review Applied, 2022. 17(6): p. 064005. 26. An, T., et al., Electrical Manipulation of Orbital Current Via Oxygen Migration in Ni(81) Fe(19) /CuO(x) /TaN Heterostructure. Adv Mater, 2023. 35(25): p. e2300858. 27. An, T., et al., Enhanced Spin Current in Ni(81) Fe(19) /Cu-CuO(x) Bilayer with Top and Sideways Oxidization. Adv Mater, 2023. 35(14): p. e2207988. 28. Ding, S., et al., Mitigation of Gilbert Damping in the CoFe/CuOx Orbital Torque System. Nano Letters, 2024. 24(33): p. 10251-10257. 29. Kim, J., et al., Nontrivial torque generation by orbital angular momentum injection in ferromagnetic-metal/Cu/Al2O3 trilayers. Physical Review B, 2021. 103(2): p. L020407. 30. An, H., et al., Spin–torque generator engineered by natural oxidation of Cu. Nature Communications, 2016. 7(1): p. 13069. 31. Ding, S., et al., Harnessing Orbital-to-Spin Conversion of Interfacial Orbital Currents for Efficient Spin-Orbit Torques. Physical Review Letters, 2020. 125(17): p. 177201. 32. Krishnia, S., et al., Quantifying the large contribution from orbital Rashba–Edelstein effect to the effective damping-like torque on magnetization. APL Materials, 2024. 12(5). 33. Zheng, K., et al., Enhanced torque efficiency in ferromagnetic multilayers by introducing naturally oxidized Cu. Applied Physics Letters, 2024. 124(19). 34. Avci, C.O., et al., Interplay of spin-orbit torque and thermoelectric effects in ferromagnet/normal-metal bilayers. Physical Review B, 2014. 90(22): p. 224427. 35. Wen, Y., et al., Temperature dependence of spin-orbit torques in Cu-Au alloys. Physical Review B, 2017. 95(10): p. 104403. 36. Yun, S.J., et al., Accurate analysis of harmonic Hall voltage measurement for spin-orbit torques. NPG Asia Materials, 2017. 9(11): p. e449-e449. 37. Kawaguchi, M., et al., Current-Induced Effective Fields Detected by Magnetotransport Measurements. Applied Physics Express, 2013. 6(11): p. 113002. 38. Tang, D.D. and C.-F. Pai, MAGNETIC MEMORY TECHNOLOGY: Spin-transfer-torque Mram and Beyond. 2020: John Wiley & Sons. 39. Musil, J., et al., Reactive magnetron sputtering of thin films: Present status and trends. Thin Solid Films, 2005. 475: p. 208-218. 40. Lawson, R.A. and A.P.G. Robinson, Chapter 1 - Overview of materials and processes for lithography, in Frontiers of Nanoscience, A. Robinson and R. Lawson, Editors. 2016, Elsevier. p. 1-90. 41. Ito, H. and Y. Inagi, Hitachi's state-of-the-art ion milling system. The Hitachi Scientific Instrument News, 2018. 10: p. 22-29. 42. Jia, F., X. Zhao, and Y. Zhao, Advancements in ToF-SIMS imaging for life sciences. Frontiers in Chemistry, 2023. 11. 43. Gamou, H., et al., Enhancement of spin current generation in epitaxial α-Ta/CoFeB bilayer. Physical Review B, 2019. 99(18): p. 184408. 44. Wang, Y., R. Ramaswamy, and H. Yang, FMR-related phenomena in spintronic devices. Journal of Physics D: Applied Physics, 2018. 51(27): p. 273002. 45. Tulapurkar, A.A., et al., Spin-torque diode effect in magnetic tunnel junctions. Nature, 2005. 438(7066): p. 339-342. 46. Kubota, H., et al., Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions. Nature Physics, 2008. 4(1): p. 37-41. 47. Sankey, J.C., et al., Measurement of the spin-transfer-torque vector in magnetic tunnel junctions. Nature Physics, 2008. 4(1): p. 67-71. 48. Petit, S., et al., Influence of spin-transfer torque on thermally activated ferromagnetic resonance excitations in magnetic tunnel junctions. Physical Review B, 2008. 78(18): p. 184420. 49. Tiwari, D., Improving signal-to-noise ratio of magnetic tunnel junction based radio frequency detector via spin-torque ferromagnetic resonance. Review of Scientific Instruments, 2022. 93(5). 50. Conventional Coplanar Waveguide, in Coplanar Waveguide Circuits, Components, and Systems. 2001. p. 11-86. 51. Liu, Y.-T., et al., Determination of Spin-Orbit-Torque Efficiencies in Heterostructures with In-Plane Magnetic Anisotropy. Physical Review Applied, 2020. 13(4): p. 044032. 52. Santos, E., et al., Inverse Orbital Torque via Spin-Orbital Intertwined States. Physical Review Applied, 2023. 19(1): p. 014069. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98479 | - |
| dc.description.abstract | 本論文研究透過在鈷鐵硼/鉑的異質結構中加入氧化銅層作為軌道流來源,以提升其自旋軌道矩的效率。研究動機源自近年來對於利用軌道霍爾效應以產生高效率阻尼型(damping-like)轉矩之自旋電子元件的興趣。在本論文中探討了兩種形成氧化銅層的方式:一是具可控氧氣流量的反應性濺鍍,另一是在空氣中自然氧化。透過二次諧波霍爾電壓量測,我們系統性地研究了氧化程度(藉由調整 Q 值與氧化時間)、氧化銅厚度以及鉑厚度對自旋軌道矩效率的影響。
實驗結果顯示使用反應性濺鍍製備的氧化銅可顯著提升阻尼型自旋軌道矩的效率,其最高增幅相較於鈷鐵硼/鉑控制樣品達到 79%。此增強效果對於濺鍍過程中的 Q 值高度敏感,顯示精準控制氧化程度的重要性。自旋軌道矩效率對氧化銅 厚度的相關性進一步指出此增強效應主要源於體相(bulk)的效應,而非源自於界面效應。此外,藉由改變鉑厚度也證實,當鉑厚度約為 4 奈米時,其軌道轉自旋(orbital-to-spin conversion)的效率最佳。相比之下,雖然自然氧化產生的氧化銅同樣能產生約為36%的可觀自旋軌道矩增強,但由於其對氧化厚度、氧化程度與界面品質的控制較弱,因此在可調性與重現性方面可能會有較多的限制。 結論而言,本論文的實驗結果證實由氧化銅所產生的軌道霍爾電流能有效提升重金屬/鐵磁材料系統中的自旋軌道矩。實驗結果同時也顯示反應性濺鍍是一種較為可靠且可調的軌道矩工程方法,有機會為未來新一代自旋電子裝置導入軌道矩機制提供了可能的實驗框架。 | zh_TW |
| dc.description.abstract | This thesis investigates the enhancement of spin-orbit torque in CoFeB/Pt heterostructures by adding a CuOx layer as an orbital current source. The motivation stems from recent studies of utilizing orbital Hall effects to generate efficient damping-like torques in spintronic devices. Two oxidation methods were explored to form the CuOx layer: reactive sputtering with controlled oxygen flow, and natural oxidation of Cu through ambient air exposure. Using second harmonic Hall voltage measurements, we systematically examined the influence of oxidation level (via Q-factor and oxidation time), CuOx thickness, and Pt thickness on the resulting SOT efficiency.
The experimental results show that reactively sputtered CuOx significantly enhances the damping-like SOT efficiency, with the strongest enhancement reaching 79% compared to the CoFeB/Pt control sample. This enhancement is highly sensitive to the Q-factor during sputtering, demonstrating the importance of precisely tuning the oxidation level. The dependence of SOT efficiency on CuOx thickness further reveals that the enhancement originates from a bulk orbital current effect instead of an interfacial effect. Moreover, varying the Pt thickness confirms that orbital-to-spin conversion is most efficient when the Pt layer is approximately 4 nm thick. In contrast, naturally oxidized Cu also leads to observable torque enhancement, with a maximum increase of about 36%. However, this method offers limited tunability and potentially less consistent performance due to the lack of ability to control oxide thickness, oxidation level, and interface quality. Overall, these findings confirm that orbital Hall currents generated from CuOx can effectively enhance SOT in heavy metal/ferromagnet systems. The study demonstrates that reactive sputtering is a reliable and tunable approach to orbital torque engineering and provides a potential experimental framework for integrating orbital torque mechanisms into next-generation spintronic devices. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:16:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:16:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v ABSTRACT vii CONTENTS ix LIST OF FIGURES xi LIST OF TABLES xvii Chapter 1 Introduction 1 1.1 From Spin to Torque: The Evolution of Spintronics 1 1.1.1 Spin Hall Effect 1 1.1.2 Spin-Orbit Torque 3 1.1.3 Challenges and Limitations 4 1.2 Toward Orbitronics: Orbital Angular Momentum in Spin Transport 5 1.2.1 Orbital Hall Effect and Orbital Rashba–Edelstein Effect 5 1.2.2 Orbitally Induced Torque via Orbital-to-Spin Conversion 9 1.2.3 CuOx as an Orbital Current Source 10 1.3 Harmonic Hall Voltage Measurement 12 1.4 Research Motivation 13 Chapter 2 Experiments 15 2.1 Deposition 15 2.1.1 Magnetron Sputtering 15 2.1.2 Reactive Sputtering 17 2.2 Hall bar Fabrication 18 2.2.1 Photolithography 18 2.2.2 Ion Beam Etching 21 2.2.3 Preparation Flow 22 2.3 Measurement 24 2.3.1 Harmonic Hall Voltage Measurement Setup 24 2.3.2 Spin-Torque Ferromagnetic Measurement Setup 28 Chapter 3 Results 31 3.1 Analysis Protocols 31 3.2 Current Dependence 34 3.3 CoFeB/Pt Control Samples 37 3.4 CoFeB/Pt/CuOx/Ta 40 3.4.1 CuOx Q Dependence 41 3.4.2 CuOx Thickness Dependence 44 3.4.3 Pt Thickness Dependence 46 3.5 CoFeB/Pt/Cu with Natural Oxidation 49 3.5.1 Oxidation time 50 3.5.2 Pt Thickness Dependence 51 3.6 Discussion 54 Chapter 4 Conclusion 56 REFERENCE 58 | - |
| dc.language.iso | en | - |
| dc.subject | 自旋電子學 | zh_TW |
| dc.subject | 自旋霍爾效應 | zh_TW |
| dc.subject | 軌道霍爾效應 | zh_TW |
| dc.subject | 自旋軌道矩 | zh_TW |
| dc.subject | 二次諧波霍爾電壓量測 | zh_TW |
| dc.subject | Spin-Orbit Torque | en |
| dc.subject | Spin Hall Effect | en |
| dc.subject | Orbital Hall Effect | en |
| dc.subject | Second Harmonic Hall Voltage Measurement | en |
| dc.subject | Spintronics | en |
| dc.title | 氧化銅驅動軌道流對自旋軌道矩之增強效應 | zh_TW |
| dc.title | Enhancement of Spin-Orbit Torque Efficiency via CuOx-Driven Orbital Currents | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃斯衍;胡宸瑜 | zh_TW |
| dc.contributor.oralexamcommittee | Ssu-Yen Huang;Chen-Yu Hu | en |
| dc.subject.keyword | 自旋電子學,自旋霍爾效應,軌道霍爾效應,自旋軌道矩,二次諧波霍爾電壓量測, | zh_TW |
| dc.subject.keyword | Spintronics,Spin Hall Effect,Orbital Hall Effect,Spin-Orbit Torque,Second Harmonic Hall Voltage Measurement, | en |
| dc.relation.page | 63 | - |
| dc.identifier.doi | 10.6342/NTU202502803 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-04 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2025-08-15 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 3.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
