請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98456完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡璧合 | zh_TW |
| dc.contributor.advisor | Pi-Ho Hu | en |
| dc.contributor.author | 蕭容 | zh_TW |
| dc.contributor.author | Jung Hsiao | en |
| dc.date.accessioned | 2025-08-14T16:11:23Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | [1] B. J. Baliga, Fundamentals of power semiconductor devices. Springer, 2018.
[2] A. Jain, Power electronics and its applications. Penram International Publishing (India) Pvt. Ltd., 2004. [3] A. Yoo, "Design, Implementation, Modeling, and Optimization of Next Generation Low-Voltage Power MOSFETs," 2011. [4] P. Luo, "Next generation silicon MOS-gated bipolar power devices," University of Sheffield, 2020. [5] P. L. Hower, S. Pendharkar, and T. Efland, "Current status and future trends in silicon power devices," in 2010 International Electron Devices Meeting, 2010: IEEE, pp. 13.1. 1–13.1. 4. [6] J. Green. "Detailed Introduction to Three Generations of Semiconductor Materials." Global Supplier of Sputtering Targets and Evaporation Materials | Stanford Advanced Materials. https://www.sputtertargets.net/blog/introduction-to-the-generations-of-semiconductors.html (accessed. [7] D. Ueda, "Properties and advantages of gallium nitride," Power GaN Devices: Materials, Applications and Reliability, pp. 1–26, 2017. [8] 簡鳳佐. (2014) 功率金氧半電晶體 (Power MOSFET) 之簡介. 功率電子專刊 I 第二十卷第一期. Available: http://www.edma.net.tw/doc/Magazine_20-1-1.pdf [9] 吳長鑫, "浮接場板結構橫向雙擴散金氧半場效電晶體之最佳化設計," 碩士, 電子工程研究所, 國立清華大學, 新竹市, 2008. [Online]. Available: https://hdl.handle.net/11296/9436sy [10] J. Chen, "HV EDMOS Design with Expansion Regime Suppression," 2013. [11] G. Croce, A. Andreini, P. Galbiati, and C. Diazzi, "BCD Process Technologies," in Springer Handbook of Semiconductor Devices, M. Rudan, R. Brunetti, and S. Reggiani Eds. Cham: Springer International Publishing, 2023, pp. 67–116. [12] I. Y. Park, Y. K. Choi, K. Y. Ko, S. C. Shim, B. K. Jun, N. C. Moon, N. J. Kim, and K. D. Yoo, "BCD (Bipolar-CMOS-DMOS) technology trends for power management IC," in 8th International Conference on Power Electronics - ECCE Asia, 30 May–3 June 2011 2011, pp. 318–325, doi: 10.1109/ICPE.2011.5944616. [13] J. Sahoo and R. Mahapatra, "The effect of dual dummy gate in the drift region on the on-state performance of SOI-LDMOS transistor for power amplifier application," Silicon, vol. 14, no. 5, pp. 2039–2050, 2022. [14] M. Qiao, Y. Li, Z. a. Yuan, L. Liang, Z. Li, and B. Zhang, "A Novel Ultralow R ON, sp Triple RESURF LDMOS With Sandwich npn Layer," IEEE Transactions on Electron Devices, vol. 67, no. 12, pp. 5605–5612, 2020. [15] D. A. Neamen and D. Biswas, Semiconductor physics and devices. McGraw-Hill higher education New York, 2011. [16] H. Wang, "Power MOSFETs with enhanced electrical characteristics," 2010. [17] A. Chynoweth, "Uniform silicon p‐n junctions. II. Ionization rates for electrons," Journal of Applied Physics, vol. 31, no. 7, pp. 1161–1165, 1960. [18] A. Chynoweth, "Ionization rates for electrons and holes in silicon," physical review, vol. 109, no. 5, pp. 1537–1545, 1958. [19] R. Van Overstraeten and H. De Man, "Measurement of the ionization rates in diffused silicon pn junctions," Solid-State Electronics, vol. 13, no. 5, pp. 583–590, 1970. [20] R. Raghunathan and B. Baliga, "Temperature dependence of hole impact ionization coefficients in 4H and 6H-SiC," Solid-State Electronics, vol. 43, no. 2, pp. 199–211, 1999. [21] W. Fulop, "Calculation of avalanche breakdown voltages of silicon pn junctions," Solid-State Electronics, vol. 10, no. 1, pp. 39–43, 1967. [22] B. J. Baliga, Advanced power MOSFET concepts. Springer Science & Business Media, 2010. [23] T. Erlbacher, Lateral power transistors in integrated circuits. Springer, 2014. [24] Y. Fu, Z. Li, W. T. Ng, and J. K. Sin, Integrated power devices and TCAD simulation. Crc Press, 2014, p. 225. [25] Y. Wei, X. R. Luo, W. Ge, Z. Zhao, Z. Ma, and J. Wei, "A split triple-gate power LDMOS with improved static-state and switching performance," IEEE Transactions on Electron Devices, vol. 66, no. 6, pp. 2669–2674, 2019. [26] A. Q. Huang, "New unipolar switching power device figures of merit," IEEE Electron Device Letters, vol. 25, no. 5, pp. 298–301, 2004. [27] B. J. Baliga, "Power semiconductor device figure of merit for high-frequency applications," IEEE Electron Device Letters, vol. 10, no. 10, pp. 455–457, 2002. [28] S. Yu, W. Shao, R. Chen, R. Zhang, X. Liu, Y. Wu, and B. Zhao, "Design and simulation optimization of an ultra-low specific on-resistance LDMOS device," IEEE Journal of the Electron Devices Society, vol. 12, pp. 14–22, 2023. [29] Y.-T. Wu, F. Ding, D. Connelly, P. Zheng, M.-H. Chiang, J. F. Chen, and T.-J. K. Liu, "Simulation-based study of hybrid fin/planar LDMOS design for FinFET-based system-on-chip technology," IEEE Transactions on Electron Devices, vol. 64, no. 10, pp. 4193–4199, 2017. [30] S. Zhang, L. Song, T. Liu, H. Jin, Y. Li, N. He, and W. Sun, "Experiments of a novel low-voltage LDMOS with ultrashallow low-resistance path modulated by bulk superjunction," IEEE Transactions on Electron Devices, vol. 71, no. 1, pp. 448–452, 2023. [31] Z. Shi, X. Li, Y. Sun, B. Zhang, and Y. Shi, "Co-optimization between static and switching characteristics of LDMOS with p-type trapezoidal gate embedded in drift region," IEEE Transactions on Electron Devices, vol. 69, no. 8, pp. 4102–4108, 2022. [32] Z. Cao and L. Jiao, "Superjunction LDMOS with dual gate for low on-resistance and high transconductance," IEEE Journal of the Electron Devices Society, vol. 8, pp. 890–896, 2020. [33] A. Parpia and C. A. T. Salama, "Optimization of RESURF LDMOS transistors: An analytical approach," IEEE transactions on electron devices, vol. 37, no. 3, pp. 789–796, 1990. [34] J. Appels and H. Vaes, "High voltage thin layer devices (RESURF devices)," in 1979 international electron devices meeting, 1979: IEEE, pp. 238–241. [35] J. M. Park, "Novel power devices for smart power applications," Technische Universität Wien, 2004. [36] Z. Hossain, M. Imam, J. Fulton, and M. Tanaka, "Double-RESURF 700 V n-channel LDMOS with best-in-class on-resistance," in Proceedings of the 14th International Symposium on Power Semiconductor Devices and Ics, 2002: IEEE, pp. 137–140. [37] M. Qiao, Y. Li, X. Zhou, Z. Li, and B. Zhang, "A 700-V junction-isolated triple RESURF LDMOS with N-type top layer," IEEE Electron Device Letters, vol. 35, no. 7, pp. 774–776, 2014. [38] Z. Xu, T. Tian, M. Fang, W. Song, Y. Zhang, Z. Fang, D. Liu, H. Chen, and W. Qian, "Substrate Current Improvement and Investigation in Low Voltage Power Ldmos with A Novel Design," in 2024 Conference of Science and Technology for Integrated Circuits (CSTIC), 2024: IEEE, pp. 1–4. [39] I. Cortés, J. Roig, D. Flores, J. Urresti, S. Hidalgo, and J. Rebollo, "A numerical study of field plate configurations in RF SOI LDMOS transistors," Solid-State Electronics, vol. 50, no. 2, pp. 155–163, 2006. [40] H. Chen, Z. Xu, Y. Chen, M. Fang, L. Wang, L. Xiao, Y. Qian, W. Song, T. Tian, and Z. Fang, "Low On-Resistance LDMOS with Stepped Field Plates from 12V to 40V in 300-MM 90-NM BCD Technology," in 2022 China Semiconductor Technology International Conference (CSTIC), 2022: IEEE, pp. 1–4. [41] R. O. Sihombing, G. Sheu, S.-M. Yang, H. S. Wasisto, Y.-F. Guo, S.-H. Tu, Y.-L. Chin, J.-S. Jan, and C.-H. Lee, "An 800 volts high voltage interconnection level shifter using floating poly field plate (FPFP) method," in TENCON 2010-2010 IEEE Region 10 Conference, 2010: IEEE, pp. 71–74. [42] L. Wei, C. Chao, U. Singh, R. Jain, L. L. Goh, and P. R. Verma, "A novel contact field plate application in drain-extended-MOSFET transistors," in 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD), 2017: IEEE, pp. 335–337. [43] L. Wei, U. Singh, C. Chao, R. Jain, and P. R. Verma, "Effect of contact field plate on hot-carrier-induced on-resistance degradation in n-Drain extended MOS transistors," in 2017 IEEE International Reliability Physics Symposium (IRPS), 2017: IEEE, pp. FA–3.1–FA–3.4. [44] W.-C. Hung, Y.-F. Tu, T.-C. Chang, M.-C. Tai, Y.-F. Tan, K.-H. Chen, C.-H. Yeh, H.-Y. Tu, and H.-M. Kuo, "Abnormal on-current degradation under non-conductive stress in contact field plate lateral double-diffused metal-oxide-semiconductor transistor with 0.13-μm bipolar-CMOS-DMOS technology," IEEE Electron Device Letters, vol. 43, no. 5, pp. 769–772, 2022. [45] W.-C. Hung, Y.-F. Tu, T.-C. Chang, M.-C. Tai, K.-H. Chen, F.-Y. Jin, C.-H. Yeh, W.-C. Hung, C.-H. Chang, and H.-M. Kuo, "Abnormal Two-Stage Degradation Under Hot Carrier Injection With Lateral Double-Diffused MOS With 0.13-μm Bipolar-CMOS-DMOS Technology," IEEE Transactions on Electron Devices, vol. 70, no. 7, pp. 3419–3423, 2023. [46] X. Chen, "Lateral high-voltage semiconductor devices with surface covered by thin film of dielectric material with high permittivity," ed: Google Patents, 2005. [47] S. Pali and A. Gupta, "High-k field plate DeNMOS design for enhanced performance and electrothermal SOA in switching applications," Microelectronics Journal, vol. 130, p. 105615, 2022. [48] J. Lin, J. Cheng, P. Li, W. Chen, and H. Huang, "Study on SrTiO3 film for the application of power devices," Superlattices and Microstructures, vol. 130, pp. 168–174, 2019. [49] J. Li, P. Li, W. Huo, G. Zhang, Y. Zhai, and X. Chen, "Analysis and fabrication of an LDMOS with high-permittivity dielectric," IEEE Electron Device Letters, vol. 32, no. 9, pp. 1266–1268, 2011. [50] Y. Guo, Z. Zhang, J. Yao, L. Du, M. Li, J. Zhang, K. Yang, and M. Zhang, "The Application of the High-k Dielectrics in Lateral Double-Diffused Metal Oxide Semiconductor," in 2021 9th International Symposium on Next Generation Electronics (ISNE), 2021: IEEE, pp. 1–4. [51] J. Cheng, C. Wei, B. Yuan, B. Yi, H. Huang, H. Yang, Z. Wang, and G. Zhang, "A High-k LDMOS improved by floating field plates for enhanced cost performance and robustness," IEEE Transactions on Electron Devices, vol. 69, no. 12, pp. 7199–7202, 2022. [52] X. Hu, B. Zhang, X. Luo, Y. Jiang, K. Zhou, and Z. Li, "Analytical model for an extended field plate effect on trench LDMOS with high-k permittivity," in 2013 IEEE International Conference of Electron Devices and Solid-state Circuits, 2013: IEEE, pp. 1–2. [53] S. Pali, P. K. Kaushik, and A. Gupta, "Drain-extended MOS design using High-k dielectric to control off-state BTBT with enhanced switching performance," Engineering Research Express, vol. 4, no. 3, p. 035011, 2022. [54] J. Yao, M. Sun, T. Xu, X. Liu, M. Li, J. Chen, M. Zhang, J. Zhang, and Y. Guo, "SOI LDMOS with high-k multi-fingers to modulate the electric field distributions," IEEE Transactions on Electron Devices, vol. 70, no. 5, pp. 2204–2209, 2023. [55] D. J. Roulston, N. D. Arora, and S. G. Chamberlain, "Modeling and measurement of minority-carrier lifetime versus doping in diffused layers of n+-p silicon diodes," IEEE Transactions on Electron Devices, vol. 29, no. 2, pp. 284–291, 1982. [56] H. Goebel and K. Hoffmann, "Full dynamic power diode model including temperature behavior for use in circuit simulators," in Proceedings of the 4th International Symposium on Power Semiconductor Devices and Ics, 1992: IEEE, pp. 130–135. [57] M. Tyagi and R. Van Overstraeten, "Minority carrier recombination in heavily-doped silicon," Solid-State Electronics, vol. 26, no. 6, pp. 577–597, 1983. [58] A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, "Improved quantitative description of Auger recombination in crystalline silicon," Physical Review B—Condensed Matter and Materials Physics, vol. 86, no. 16, p. 165202, 2012. [59] H. B. Callen, "Thermodynamics and an Introduction to Thermostatistics," John Wiley& Sons, vol. 2, 1980. [60] C. Canali, G. Majni, R. Minder, and G. Ottaviani, "Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature," IEEE Transactions on electron devices, vol. 22, no. 11, pp. 1045–1047, 2005. [61] S. A. Mujtaba, Advanced mobility models for design and simulation of deep submicrometer MOSFETs. Stanford University, 1996. [62] D. Klaassen, J. Slotboom, and H. De Graaff, "Unified apparent bandgap narrowing in n-and p-type silicon," Solid-State Electronics, vol. 35, no. 2, pp. 125–129, 1992. [63] J. Slotboom, "The pn-product in silicon," Solid-State Electronics, vol. 20, no. 4, pp. 279–283, 1977. [64] J. Slotboom and H. De Graaff, "Measurements of bandgap narrowing in Si bipolar transistors," Solid-State Electronics, vol. 19, no. 10, pp. 857–862, 1976. [65] J. Slotboom and H. De Graaff, "Bandgap narrowing in silicon bipolar transistors," IEEE Transactions on Electron Devices, vol. 24, no. 8, pp. 1123–1125, 2005. [66] P.-J. Chuang, A. Saadat, S. Ghazvini, H. Edwards, and W. G. Vandenberghe, "Determining the performance limits of LDMOS with three common types of field oxides," IEEE Transactions on Electron Devices, 2024. [67] L. Wu, H. Wu, J. Zeng, X. Chen, and S. Su, "A Novel LDMOS with Ultralow Specific on-Resistance and Improved Switching Performance," Silicon, pp. 1–9, 2021. [68] J.-i. Matsuda, J.-y. Kojima, N. Tsukiji, M. Kamiyama, and H. Kobayashi, "Low Switching Loss and Scalable 20-40 V LDMOS Transistors with Low Specific On-Resistance," in Proc. ICTSS, 2018, pp. I03–02. [69] S.-Y. Chen, B. Liao, J.-C. Dong, T. Wang, S.-L. Wang, H.-Y. Yang, Y.-W. Peng, S.-C. Huang, and J.-Y. Gan, "Study on 20 V LDMOS with stepped-gate-oxide structure for PMIC applications: Design, fabrication, and characterization," IEEE Transactions on Electron Devices, vol. 69, no. 2, pp. 878–881, 2021. [70] B. Duan, Z. Zhou, Y. Wang, and Y. Yang, "Accumulation-mode device: Experimental of LDMOS with folded drift region achieving ultralow specific ON resistance," IEEE Transactions on Electron Devices, vol. 69, no. 10, pp. 5728–5732, 2022. [71] D. Kim, K. Lee, J. Kim, J. Choi, J. Lee, and I. Cho, "The Lowest On-Resistance and Robust 130nm BCDMOS Technology implementation utilizing HFP and DPN for mobile PMIC applications," in 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2019: IEEE, pp. 391–394. [72] Y. Yao, L. Hu, G. Wang, S. Pu, M.-Z. Lin, Z. Ye, and P.-F. Wang, "Advanced n-channel LDMOS with ultralow specific on-resistance by 0.18 μm epitaxial BCD technology," in 2018 China Semiconductor Technology International Conference (CSTIC), 2018: IEEE, pp. 1–3. [73] M. M.-H. Iqbal, F. Udrea, and E. Napoli, "On the static performance of the RESURF LDMOSFETS for power ICs," in 2009 21st International Symposium on Power Semiconductor Devices & IC's, 2009: IEEE, pp. 247–250. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98456 | - |
| dc.description.abstract | 隨著電源管理及高速介面電路對於高效率、高可靠度的要求日益嚴苛,橫向雙擴散金氧半場效電晶體 (Lateral Double-Diffused MOSFET, LDMOS) 已成為現代雙極性接面電晶體-互補式金屬氧化物半導體-雙擴散金屬氧化物半導體 (Bipolar-CMOS-DMOS, BCD) 製程中不可或缺的關鍵元件。傳統 LDMOS 場板結構多以二氧化矽 (SiO2) 作為場板氧化層,其介電常數約為3.9,因此對漂移區的電場分佈調控能力有限,難以達到更佳的元件性能。過去文獻提出將高介電常數 (High-k, HK) 材料用於場板氧化層,藉由改善電場分佈來提升崩潰電壓 (Breakdown Voltage, BV) 並降低特徵導通電阻 (Specific On-State Resistance, Ron,sp)。然而,HK 材料之應用大多聚焦於高壓 (BV > 100 V) 應用,且多以鈣鈦礦材料為主,存在晶格不匹配與界面電荷等問題,限制其與 CMOS 製程的相容性及可靠度。並且,過往文獻中缺乏對於場板連接方式進行系統性的探討。因此,本研究將著重於低壓 (BV ≈ 40 V) 應用,採用與CMOS製程相容性高之二氧化鉿 (HfO2, k ≈ 22) 作為場板氧化層,並系統性分析不同場板連接策略,包含閘極連接、浮接與源極連接,對元件靜態及動態性能之影響,以提出具體化的優化設計準則,滿足未來低壓高效率功率元件發展需求。
首先,本研究針對傳統接觸式場板 LDMOS (Conventional Contact Field Plate LDMOS, Conv. CFP LDMOS) 與高介電常數場板 LDMOS (High-k Field Plate LDMOS, HK FP LDMOS) 進行場板設計之最佳化並探討靜態優值 (Static Figure-of-Merit, FOMS = BV2/Ron,sp) 的表現。調整參數包含場板至汲極端之距離、場板氧化層厚度,以及針對 HK FP LDMOS 的緩衝層厚度、 HK 層厚度,與不同場板連接策略:閘極連接 (HK Gate-Connected FP LDMOS, HK GFP LDMOS)、浮接 (HK Floating FP LDMOS, HK FFP LDMOS),與源極連接 (HK Source-Connected FP LDMOS, HK SFP LDMOS)。結果顯示,使用 HK 材料能使橫向電場分布更加均勻,相較 Conv. CFP LDMOS 由兩電場主峰主導, HK FP LDMOS 能有接近三峰值的表現,使其有更佳 FOMS 的表現。相較於 Conv. CFP LDMOS,HK GFP LDMOS 其崩潰電壓提升約16%、特徵導通電阻降低約11%,使 FOMS 提升約52%。而 HK FFP 與 SFP LDMOS 崩潰電壓亦提升約16%、特徵導通電阻降低約 2%, FOMS 則提升約38%。 本研究接著分析動態性能。HK GFP LDMOS因額外並聯的場板與汲極電容,導致閘極對汲極電荷 (Gate-to-Drain Charge, QGD) 增加約3.87倍,並使動態優值 (Dynamic Figure-of-Merit, FOMD = QGD,spRon,sp) 較Conv. CFP LDMOS劣化3.38 倍,對高速應用造成限制。相較之下,源極連接之 HK SFP LDMOS 則在FOMS及FOMD之間達到較為折衷之設計。在 BV = 32 V 與 37 V 限制條件下,HK GFP LDMOS 之 FOMD 分別為 Conv. CFP LDMOS 的 3.04 倍與 2.91 倍;HK FFP LDMOS 則為 2.40 倍與 2.32 倍;HK SFP LDMOS 僅小幅增加約 10% 與 6%,顯示 HK SFP LDMOS 能在兼顧優異 FOMS 的同時,仍有效控制切換損耗,展現出靜態與動態性能較平衡的特性。 研究成果不僅證實高介電常數場板氧化層對於橫向電場分布均勻性及漂移區空乏能力的顯著貢獻,亦提供不同場板連接策略下LDMOS靜態與動態性能的設計參考,為未來低壓高效能功率晶片提供重要的理論基礎與實務應用價值。 | zh_TW |
| dc.description.abstract | With the increasing demands for high efficiency and high reliability in power management and high-speed interface circuits, the Lateral Double-diffused MOSFET (LDMOS) has become an indispensable key device in modern Bipolar-CMOS-DMOS (BCD) processes. The field plate structures in conventional LDMOS mostly use silicon dioxide (SiO2) as the field plate oxide layer. Due to its relatively low dielectric constant of approximately 3.9, its ability to modulate the electric field distribution in the drift region is limited, making it difficult to achieve further performance improvements. Previous studies have proposed introducing high-k (HK) dielectric materials into the field plate oxide layer to improve the electric field distribution, thereby enhancing the breakdown voltage (BV) and reducing the specific on-state resistance (Ron,sp). However, the application of HK materials has mostly focused on high-voltage (BV > 100 V) devices and commonly uses perovskite materials, which face issues such as lattice mismatch and interface charges, limiting their compatibility and reliability with CMOS processes. Moreover, there is a lack of systematic investigation on field plate connection strategies in the literature.
Therefore, this study focuses on low-voltage (BV ≈ 40 V) applications, adopting hafnium dioxide (HfO₂, k ≈ 22), which has high compatibility with CMOS processes, as the field plate oxide layer. A systematic analysis of different field plate connection strategies, including gate-connected, floating, and source-connected configurations, is conducted to evaluate their impact on both static and dynamic device performance, aiming to establish concrete optimization design guidelines to meet the demands of future low-voltage, high-efficiency power devices. First, this study performs design optimization of the field plate for both conventional contact field plate LDMOS (Conv. CFP LDMOS) and high-k field plate LDMOS (HK FP LDMOS), and evaluates their static figure of merit (FOMS = BV²/Ron,sp). The adjusted parameters include the distance from the field plate to the drain edge, field plate oxide thickness, and, for HK FP LDMOS, the buffer layer thickness, HK layer thickness, and different connection strategies: gate-connected (HK GFP LDMOS), floating (HK FFP LDMOS), and source-connected (HK SFP LDMOS). The results show that using HK materials enables a more uniform lateral electric field distribution; compared to Conv. CFP LDMOS, which exhibits two dominant field peaks, HK FP LDMOS achieves an approximately three-peak distribution, thus enhancing its FOMS performance. Compared to Conv. CFP LDMOS, HK GFP LDMOS exhibits an approximately 16% increase in BV, an approximately 11% reduction in Ron,sp, and about a 52% improvement in FOMS. HK FFP and SFP LDMOS also show an approximate 16% increase in BV, a roughly 2% reduction in Ron,sp, and a 38% improvement in FOMS. This study further analyzes the dynamic performance. Due to the additional parallel capacitance between the field plate and drain, HK GFP LDMOS exhibits an increase in gate-to-drain charge (QGD) by approximately 3.87 times, resulting in a dynamic figure of merit (FOMD = QGD,sp × Ron,sp) degradation by about 3.38 times compared to Conv. CFP LDMOS, limiting its suitability for high-speed applications. In contrast, the HK SFP LDMOS achieves a more balanced trade-off between FOMS and FOMD. Under BV constraint conditions of 32 V and 37 V, the FOMD of HK GFP LDMOS is 3.04 times and 2.91 times that of Conv. CFP LDMOS, respectively; HK FFP LDMOS is 2.40 times and 2.32 times, respectively; while HK SFP LDMOS increases only by about 10% and 6%, respectively, indicating that HK SFP LDMOS can maintain excellent FOMS while effectively controlling switching losses, thus exhibiting a more balanced static and dynamic performance. The results not only confirm the significant contribution of high-k field plate oxide layers in improving the lateral electric field uniformity and drift region depletion capability but also provide valuable design references for LDMOS static and dynamic performance under different field plate connection strategies. This study offers an important theoretical foundation and practical value for the development of future low-voltage, high-performance power chips. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:11:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:11:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT III 目次 VI 圖次 VIII 表次 XIV 第一章 導論 1 1.1 高功率半導體元件之發展 1 1.2 功率金氧半電晶體技術 4 1.3 LDMOS元件與BCD 技術平台 5 1.4 LDMOS之特性與效能 7 1.4.1 崩潰電壓 (BV) 與崩潰機制 7 1.4.2 導通電阻 (Ron) 13 1.4.3 閘極對汲極電荷 (QGD) 16 1.4.4 效能評估 19 1.5 LDMOS效能優化方法 21 1.5.1 RESURF (Reduce Surface Field) 21 1.5.2 場板技術 23 1.5.3 高介電常數材料 25 1.6 研究動機 27 1.7 論文架構 28 第二章 電性分析與模擬方法 29 2.1 前言 29 2.2 模擬之物理模型 30 2.3 電性參數之萃取 33 2.4 元件結構與模擬參數 36 2.5 模擬流程 39 第三章 高介電常數材料場板LDMOS之電性分析與靜態效能優化 40 3.1 前言 40 3.2 傳統接觸場板LDMOS之靜態效能優化 41 3.3 高介電常數材料場板LDMOS之靜態效能優化 48 3.4 傳統接觸場板與高介電常數材料場板LDMOS之比較 58 3.5 LDMOS 動態效能之分析 64 3.6 結論 73 第四章 總結 74 參考文獻 76 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 高介電常數材料 | zh_TW |
| dc.subject | 橫向雙擴散金氧半場效電晶體 | zh_TW |
| dc.subject | BCD 技術平台 | zh_TW |
| dc.subject | 優值 | zh_TW |
| dc.subject | 場板 | zh_TW |
| dc.subject | Field Plate | en |
| dc.subject | Figure of Merits | en |
| dc.subject | BCD Technology Platform | en |
| dc.subject | High-k Material | en |
| dc.subject | LDMOS | en |
| dc.title | 應用高介電常數場板氧化層之橫向雙擴散金氧半場效電晶體最佳化 | zh_TW |
| dc.title | Optimization of LDMOS Using High-k Field Plate Oxide | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡振國;褚立新 | zh_TW |
| dc.contributor.oralexamcommittee | Jenn-Gwo Hwu;Li-Hsin Chu | en |
| dc.subject.keyword | 橫向雙擴散金氧半場效電晶體,高介電常數材料,場板,優值,BCD 技術平台, | zh_TW |
| dc.subject.keyword | LDMOS,High-k Material,Field Plate,Figure of Merits,BCD Technology Platform, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202502936 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-04 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | 2030-07-30 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-30 | 7.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
