請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98451完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊瑋誠 | zh_TW |
| dc.contributor.advisor | Wei-Cheng Yang | en |
| dc.contributor.author | 張合羽 | zh_TW |
| dc.contributor.author | Ho-Yu Chang | en |
| dc.date.accessioned | 2025-08-14T16:10:10Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | laluf, S., Atkins, D., Barrett, K., Blount, M., Carter, N., & Heath, A. (2002). The impact of epidermal melanin on objective measurements of human skin colour. Pigment Cell Research, 15(2), 119-126. https://doi.org/10.1034/j.1600-0749.2002.1o072.x
Alaluf, S., Barrett, K., Blount, M., & Carter, N. (2003). Ethnic variation in tyrosinase and TYRP1 expression in photoexposed and photoprotected human skin. Pigment Cell Research, 16(1), 35-42. https://doi.org/10.1034/j.1600-0749.2003.00005.x Albrecht, E., Komolka, K., Kuzinski, J., & Maak, S. (2012). Agouti Revisited: Transcript Quantification of the ASIP Gene in Bovine Tissues Related to Protein Expression and Localization. Plos One, 7(4). https://doi.org/10.1371/journal.pone.0035282 Azevedo, A. F., Lailson-Brito Jr, J., eacute, Siciliano, S., Cunha, H., eacute, e, A., & Fragoso, A. B. L. (2003). Colour pattern and external morphology of the Fraser's dolphin (Lagenodelphis hosei) in the Southwestern Atlantic. Aquatic Mammals, 29(3), 411-416. Bento-Lopes, L., Cabaco, L. C., Charneca, J., Neto, M. V., Seabra, M. C., & Barral, D. C. (2023). Melanin's Journey from Melanocytes to Keratinocytes: Uncovering the Molecular Mechanisms of Melanin Transfer and Processing. International Journal of Molecular Sciences, 24(14). https://doi.org/10.3390/ijms241411289 Breuer, T., Robbins, M. M., & Boesch, C. (2007). Using photogrammetry and color scoring to assess sexual dimorphism in wild Western Gorillas American Journal of Physical Anthropology, 134(3), 369-382. https://doi.org/10.1002/ajpa.20678 Cook, A. L., Donatien, P. D., Smith, A. G., Murphy, M., Jones, M. K., Herlyn, M., Bennett, D. C., Leonard, J. H., & Sturm, R. A. (2003). Human melanoblasts in culture: Expression of BRN2 and synergistic regulation by fibroblast growth factor-2, stem cell factor, and endothelin-3. Journal of Investigative Dermatology, 121(5), 1150-1159. https://doi.org/10.1046/j.1523-1747.2003.12562.x Costin, G. E., & Hearing, V. J. (2007). Human skin pigmentation: melanocytes modulate skin color in response to stress. Faseb Journal, 21(4), 976-994. https://doi.org/10.1096/fj.06-6649rev Cui, Y. Z., & Man, X. Y. (2023). Biology of melanocytes in mammals. Frontiers in Cell and Developmental Biology, 11. https://doi.org/10.3389/fcell.2023.1309557 Demars, J., Labrune, Y., Iannuccelli, N., Deshayes, A., Leroux, S., Gilbert, H., Aymard, P., Benitez, F., & Riquet, J. (2022). A genome-wide epistatic network underlies the molecular architecture of continuous color variation of body extremities. Genomics, 114(3). https://doi.org/10.1016/j.ygeno.2022.110361 Dolar, M. L. L. (2018). Fraser's Dolphin. Encyclopedia of Marine Mammals, 3rd Edition, 392-395. https://doi.org/Book_Doi 10.1016/C2015-0-00820-6 Donny, Y., Zainal, Z., Jeffrine Japning, R.-R., Che Ku, M. Z., Cwar Mohd, Z. Z., Enos, J., Rahmat, T., & Kadir, A. (2019). Growth rate and pelage colour changes of a captive bred Malayan tapir (Tapirus indicus). Duarte, R. C., Flores, A. A. V., & Stevens, M. (2017). Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philosophical Transactions of the Royal Society B-Biological Sciences, 372(1724). https://doi.org/10.1098/rstb.2016.0342 Fasick, J. I., & Robinson, P. R. (2016). Adaptations of Cetacean Retinal Pigments to Aquatic Environments. Frontiers in Ecology and Evolution, 4. https://doi.org/10.3389/fevo.2016.00070 Ferreira, M. S., Alves, P. C., Callahan, C. M., Marques, J. P., Mills, L. S., Good, J. M., & Melo-Ferreira, J. (2017). The transcriptional landscape of seasonal coat colour moult in the snowshoe hare. Molecular Ecology, 26(16), 4173-4185. https://doi.org/10.1111/mec.14177 Garten, J. L., & Fish, F. E. (2020). Comparative Histological Examination of the Integument of Odontocete Flukes. Aquatic Mammals, 46(4), 367-381. https://doi.org/10.1578/Am.46.4.2020.367 Giacometti, L. (1967). The skin of the whale (Balaenoptera physalus). The Anatomical Record, 159(1), 69-75. https://doi.org/https://doi.org/10.1002/ar.1091590110 Guo, L., Lin, W. Z., Zeng, C., Luo, D. Y., & Wu, Y. P. (2020). Investigating the age composition of Indo-Pacific humpback dolphins in the Pearl River Estuary based on their pigmentation pattern (vol 167, 50, 2020). Marine Biology, 167(9). https://doi.org/10.1007/s00227-020-03709-7 Hammill, M. O., & Stenson, G. B. (2022). The Harp Seal: Adapting Behavioral Ecology to a Pack-Ice Environment. In D. P. Costa & E. A. McHuron (Eds.), Ethology and Behavioral Ecology of Phocids (pp. 517-552). Springer International Publishing. https://doi.org/10.1007/978-3-030-88923-4_14 Herzing, D. L., & Perrin, W. F. (2018). Atlantic Spotted Dolphin. Encyclopedia of Marine Mammals, 3rd Edition, 40-42. https://doi.org/10.1016/C2015-0-00820-6 Inaba, M., Jiang, T. X., Liang, Y. C., Tsai, S., Lai, Y. C., Widelitz, R. B., & Chuong, C. M. (2019). Instructive role of melanocytes during pigment pattern formation of the avian skin. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6884-6890. https://doi.org/10.1073/pnas.1816107116 Kang, W. H., Yoon, K. H., Lee, E. S., Kim, J., Lee, K. B., Yim, H., Sohn, S., & Im, S. (2002). Melasma: histopathological characteristics in 56 Korean patients. British Journal of Dermatology, 146(2), 228-237. https://doi.org/10.1046/j.0007-0963.2001.04556.x Kim, J. C., Park, T. J., & Kang, H. Y. (2022). Skin-Aging Pigmentation: Who Is the Real Enemy? Cells, 11(16). https://doi.org/10.3390/cells11162541 Kim, J. Y., Kim, J., Ahn, Y., Lee, E. J., Hwang, S., Almurayshid, A., Park, K., Chung, H. J., Kim, H. J., Lee, S. H., Lee, M. S., & Oh, S. H. (2020). Autophagy induction can regulate skin pigmentation by causing melanosome degradation in keratinocytes and melanocytes. Pigment Cell & Melanoma Research, 33(3), 403-415. https://doi.org/10.1111/pcmr.12838 Klapan, K., Simon, D., Karaulov, A., Gomzikova, M., Rizvanov, A., Yousefi, S., & Simon, H. U. (2022). Autophagy and Skin Diseases. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.844756 Lavker, R. M. (1979). Structural Alterations in Exposed and Unexposed Aged Skin. Journal of Investigative Dermatology, 73(1), 59-66. https://doi.org/10.1111/1523-1747.ep12532763 Liu, D. N., Tong, Y. W., Dong, R., Ye, X. P., & Yu, X. P. (2023). A Breeding Plumage in the Making: The Unique Process of Plumage Coloration in the Crested Ibis in Terms of Chemical Composition and Sex Hormones. Animals, 13(24). https://doi.org/10.3390/ani13243820 Liu, H., He, Z. Y., von Rütte, T., Yousefi, S., Hunger, R. E., & Simon, H. U. (2013). Down-Regulation of Autophagy-Related Protein 5 (ATG5) Contributes to the Pathogenesis of Early-Stage Cutaneous Melanoma. Science Translational Medicine, 5(202). https://doi.org/10.1126/scitranslmed.3005864 Liu, Y. N., Albrecht, E., Schering, L., Kuehn, C., Yang, R. J., Zhao, Z. H., & Maak, S. (2018). Agouti Signaling Protein and Its Receptors as Potential Molecular Markers for Intramuscular and Body Fat Deposition in Cattle. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.00172 Makova, K., & Norton, H. (2005). Worldwide polymorphism at the locus and normal pigmentation variation in humans. Peptides, 26(10), 1901-1908. https://doi.org/10.1016/j.peptides.2004.12.032 Manceau, M., Domingues, V. S., Mallarino, R., & Hoekstra, H. E. (2011). The Developmental Role of Agouti in Color Pattern Evolution. Science, 331(6020), 1062-1065. https://doi.org/10.1126/science.1200684 Mannocci, L., Dabin, W., Augeraud-Véron, E., Dupuy, J. F., Barbraud, C., & Ridoux, V. (2012). Assessing the Impact of Bycatch on Dolphin Populations: The Case of the Common Dolphin in the Eastern North Atlantic. Plos One, 7(2). https://doi.org/10.1371/journal.pone.0032615 Martinez-Levasseur, L. M., Gendron, D., Knell, R. J., O'Toole, E. A., Singh, M., & Acevedo-Whitehouse, K. (2011). Acute sun damage and photoprotective responses in whales. Proceedings of the Royal Society B-Biological Sciences, 278(1711), 1581-1586. https://doi.org/10.1098/rspb.2010.1903 Mass, A. M., & Supin, A. Y. (2008). Ganglion Cell Topography of the Retina in the Bottlenosed Dolphin, Tursiops truncatus. Brain Behavior and Evolution, 45(5), 257-265. https://doi.org/10.1159/000113554 McFee, W. E., Adams, J. D., Fair, P. A., & Bossart, G. D. (2012). Age Distribution and Growth of Two Bottlenose Dolphin Populations from Capture-Release Studies in the Southeastern United States. Aquatic Mammals, 38(1), 17-30. https://doi.org/10.1578/Am.38.1.2012.17 Morales-Guerrero, B., Barragán-Vargas, C., Silva-Rosales, G. R., Ortega-Ortiz, C. D., Gendron, D., Martinez-Levasseur, L. M., & Acevedo-Whitehouse, K. (2017). Melanin granules melanophages and a fully-melanized epidermis are common traits of odontocete and mysticete cetaceans. Veterinary Dermatology, 28(2), 213-E250. https://doi.org/10.1111/vde.12392 Murase, D., Hachiya, A., Takano, K., Hicks, R., Visscher, M. O., Kitahara, T., Hase, T., Takema, Y., & Yoshimori, T. (2013). Autophagy Has a Significant Role in Determining Skin Color by Regulating Melanosome Degradation in Keratinocytes. Journal of Investigative Dermatology, 133(10), 2416-2424. https://doi.org/10.1038/jid.2013.165 Murase, D., Kusaka-Kikushima, A., Hachiya, A., Fullenkamp, R., Stepp, A., Imai, A., Ueno, M., Kawabata, K., Takahashi, Y., Hase, T., Ohuchi, A., Nakamura, S., & Yoshimori, T. (2020). Autophagy Declines with Premature Skin Aging resulting in Dynamic Alterations in Skin Pigmentation and Epidermal Differentiation. International Journal of Molecular Sciences, 21(16). https://doi.org/10.3390/ijms21165708 O'Corry-Crowe, G. M. (2009). Beluga whale: Delphinapterus leucas. In Encyclopedia of marine mammals (pp. 108-112). Elsevier. Paus, R. (2013). Migrating melanocyte stem cells: masters of disaster? Nature Medicine, 19(7), 818-819. https://doi.org/10.1038/nm.3264 Pavan, W. J., & Sturm, R. A. (2019). The Genetics of Human Skin and Hair Pigmentation. Annual Review of Genomics and Human Genetics, Vol 20, 2019, 20, 41-72. https://doi.org/10.1146/annurevgenom-083118-015230 Perrin, W. F. (2009). Atlantic Spotted Dolphin. Encyclopedia of Marine Mammals, 2nd Edition, 54-56. <Go to ISI>://WOS:000337029200014 Shimmura, T., Nakayama, T., Shinomiya, A., Fukamachi, S., Yasugi, M., Watanabe, E., Shimo, T., Senga, T., Nishimura, T., Tanaka, M., Kamei, Y., Naruse, K., & Yoshimura, T. (2017). Dynamic plasticity in phototransduction regulates seasonal changes in color perception. Nature Communications, 8. https://doi.org/10.1038/s41467-017-00432-8 Stolen, M. K., & Barlow, J. (2003). A model life table for bottlenose dolphins from the Indian River Lagoon System, Florida, USA. Marine Mammal Science, 19(4), 630-649. https://doi.org/10.1111/j.1748-7692.2003.tb01121.x Su, C. Y., Hughes, M. W., Liu, T. Y., Chuong, C. M., Wang, H. V., & Yang, W. C. (2022a). Defining Wound Healing Progression in Cetacean Skin: Characteristics of Full-Thickness Wound Healing in Fraser's Dolphins Animals, 12(5). https://doi.org/10.3390/ani12050537 Su, C. Y., Wang, H. V., Hughes, M. W., Liu, T. Y., Chuong, C. M., & Yang, W. C. (2022b). Successful Repigmentation of Full-Thickness Wound Healing in Fraser's Dolphins. Animals, 12(12). https://doi.org/10.3390/ani12121482 Sun, K.-L., Liu, W., Gao, X.-M., Yang, M., & Chang, J.-M. (2021). A Study of Normal Epidermal Melanocyte Distribution. International Journal of Dermatology and Venereology, 04(01), 32-35. https://doi.org/10.1097/JD9.0000000000000125 Swope, V. B., Supp, A. P., & Boyce, S. T. (2002). Regulation of cutaneous pigmentation by titration of human melanocytes in cultured skin substitutes grafted to athymic mice. Wound Repair and Regeneration, 10(6), 378-386. https://doi.org/10.1046/j.1524-475X.2002.10607.x Thingnes, J., Lavelle, T. J., Hovig, E., & Omholt, S. W. (2012). Understanding the Melanocyte Distribution in Human Epidermis: An Agent-Based Computational Model Approach. Plos One, 7(7). https://doi.org/10.1371/journal.pone.0040377 Tobiishi, M., Haratake, A., Kaminaga, H., Nakahara, M., Komiya, A., Koishikawa, H., Uchiwa, H., Kawa, Y., & Mizoguchi, M. (2004). Pigmentation in intrinsically aged skin of A1 guinea pigs. Pigment Cell Research, 17(6), 651-658. https://doi.org/10.1111/j.1600-0749.2004.00183.x Vandamme, N., & Berx, G. (2019). From neural crest cells to melanocytes: cellular plasticity during development and beyond. Cellular and Molecular Life Sciences, 76(10), 1919-1934. https://doi.org/10.1007/s00018-019-03049-w Wang, J. Y. (2018). Bottlenose Dolphin, Indo-Pacific Bottlenose Dolphin. Encyclopedia of Marine Mammals, 3rd Edition, 125-130. https://doi.org/10.1016/C2015-0-00820-6 Whiteman, D. C., Parsons, P. G., & Green, A. C. (1999). Determinants of melanocyte density in adult human skin. Archives of Dermatological Research, 291(9), 511-516. https://doi.org/10.1007/s004030050446 Zimova, M., Hackländer, K., Good, J. M., Melo-Ferreira, J., Alves, P. C., & Mills, L. S. (2018). Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world? Biological Reviews, 93(3), 1478-1498. https://doi.org/10.1111/brv.12405 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98451 | - |
| dc.description.abstract | 弗氏海豚(Lagenodelphis hosei)是一種台灣常見擱淺的鯨豚,同時也是一種體側膚色會隨著年齡變化的鯨豚類,然而鮮少對此有相關報導。過去對弗氏海豚傷口癒合機制的研究揭示了不同部位表皮黑色素細胞數量以及色素沉澱的不均勻分布,但似乎在特定區域採集的樣本中黑色素細胞數量異常增加,並且這些樣本都分布於體側黑帶的範圍,這可能代表黑帶區域有著獨特的色素沉澱機制。
為了調查黑帶獨特的色素沉澱機制,本研究採集來自台灣周遭擱淺的弗氏海豚全身性不同膚色的皮膚組織,利用免疫組織化學染色計算基底層黑色素細胞的數量從,以及黑色素染色法量化色素沉澱從而得到膚色與皮下黑色素細胞數量的關係。結果表明,黑帶區域與背側和腹側的皮膚相比有多的色素細胞,但表皮色素沉澱卻比正常皮膚更少,這可能暗示黑帶區域在未來有著更高的色素沉澱潛力。此外,參與陸生動物體色分布的基因ASIP似乎也在黑帶區域的色素沉澱機制中扮演了關鍵的角色,不僅在黑帶與正常皮膚的交界區表現,同時與黑帶區域內的膚色深淺變化呈現負相關。本研究描述了弗氏海豚全身性的色素沉澱以及黑色素細胞分布,證實黑帶區域的獨特性,並首次發現ASIP參與在體色會伴隨年齡改變的物種中可能影響色素沉澱的分佈,為哺乳動物變色機制提供了新的方向。進一步研究可能對生物變色背後的生態策略有更深的了解。 | zh_TW |
| dc.description.abstract | Fraser’s dolphin (Lagenodelphis hosei) is one of the commonly stranded cetacean species in Taiwan and is also known for exhibiting age-related changes in lateral skin pigmentation. However, there are few studies documenting this phenomenon. Previous research on wound healing mechanisms in Fraser’s dolphins has revealed regional variation in both the number of epidermal melanocytes and the distribution of pigmentation. Notably, certain samples collected from specific body regions demonstrated an abnormally high number of melanocytes. These samples were consistently located within the lateral black stripe area, suggesting the presence of a unique pigmentation mechanism in this region.
To investigate the distinctive pigmentation process in the black stripe area, this study collected skin samples with varying coloration from Fraser’s dolphins stranded along the coast of Taiwan. The number of basal melanocytes was quantified using immunohistochemistry staining, and pigment deposition was assessed through Fontana-Masson staining. These methods enabled the analysis of the relationship between skin color and subepidermal melanocyte density. Results demonstrated that the black stripe region harbors a significantly higher number of melanocytes compared to the dorsal and ventral skin, yet paradoxically exhibits less epidermal pigment deposition than areas of normal skin. This may indicate a latent potential for increased pigmentation in the black stripe region. Furthermore, the agouti signaling protein (ASIP) gene—known to regulate pigmentation patterns in terrestrial animals—appears to play a critical role in the pigmentation mechanism of the black stripe. ASIP expression was detected at the boundary between the black stripe and adjacent normal skin and was also correlated with intraregional variation in pigmentation intensity within the stripe. This study provides the first comprehensive characterization of melanocyte distribution and pigment deposition across the body of L. hosei, confirms the unique nature of the black stripe region, and, for the first time, implicates ASIP in the regulation of pigmentation in a cetacean species with age-dependent color change. These findings offer new insights into the mechanisms of mammalian color variation and suggest future research directions for understanding the ecological strategies underlying pigmentation dynamics. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:10:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:10:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii 英文摘要Abstract iv Contents vi List of Figures viii List of Tables x Chapter 1 Introduction 1 1.1 Coloration changes in vertebrate 1 1.1.1 Seasonal coat color (SCC) changes regulated by photoperiod 1 1.1.2 Breeding plumage coloration mediated by sex hormones 1 1.1.3 Coloration regulated by both photoperiod and temperature, with reproductive significance 2 1.1.4 Ontogenetic color changes associated with age 2 1.2 The color change patterns of cetaceans. 2 1.3 Investigations into the biological mechanisms of human skin pigmentation 4 1.4 Aims of this research 5 Chapter 2 Materials and Methods 8 2.1 Tissue sample collection and preparation 8 2.2 Chemical staining method 8 2.3 Immunohistochemistry staining (IHC) 9 Chapter 3 Results 12 3.1 Gross external morphology of Fraser’s dolphin 12 3.2 The relationship among skin coloration, melanin granules, and melanocytes in normal skin samples of Fraser’s dolphin 12 3.3 Relationship between skin color and melanocytes revealed by Fontana-Masson staining 14 3.4 Agouti signaling protein (ASIP) 15 3.4.1 Expression of ASIP in Fraser’s dolphin 15 3.4.2 ASIP expression in black stripe pigmentation patterns 15 Chapter 4 Discussion 17 Table 1 25 Figures 26 References 51 | - |
| dc.language.iso | en | - |
| dc.subject | 色素沉澱 | zh_TW |
| dc.subject | 弗氏海豚 | zh_TW |
| dc.subject | 鯨豚 | zh_TW |
| dc.subject | 黑色素細胞 | zh_TW |
| dc.subject | ASIP | zh_TW |
| dc.subject | Melanocyte | en |
| dc.subject | Pigmentation | en |
| dc.subject | ASIP | en |
| dc.subject | Cetaceans | en |
| dc.subject | Fraser’s dolphin | en |
| dc.title | 弗氏海豚體側條紋色素沉澱的組織學研究 | zh_TW |
| dc.title | Histological Investigation of Lateral Stripe Pigmentation in Fraser's Dolphins (Lagenodelphis hosei) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林頌然;王浩文 | zh_TW |
| dc.contributor.oralexamcommittee | Sung-Jan Lin;Hao-Ven Wang | en |
| dc.subject.keyword | 弗氏海豚,黑色素細胞,鯨豚,色素沉澱,ASIP, | zh_TW |
| dc.subject.keyword | Fraser’s dolphin,Melanocyte,Cetaceans,Pigmentation,ASIP, | en |
| dc.relation.page | 56 | - |
| dc.identifier.doi | 10.6342/NTU202502352 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
