Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98433
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李培芬zh_TW
dc.contributor.advisorPei-Fen Leeen
dc.contributor.author林立容zh_TW
dc.contributor.authorLi-Jung Linen
dc.date.accessioned2025-08-14T16:05:55Z-
dc.date.available2025-08-15-
dc.date.copyright2025-08-14-
dc.date.issued2025-
dc.date.submitted2025-07-29-
dc.identifier.citation王思懿(2014)。臺灣陸域保育類哺乳動物的空間分布預測、保護區涵蓋及熱點分析。國立臺灣大學碩士論文。
李培芬、廖倩瑜、李玉琪、潘彥宏、傅維馨、陳宣汶(1997)。臺灣地區生態與環境因子地理資訊資料庫。農業委員會。
林良恭、姜博仁、陳美汀、陳家鴻、張燕伶(2009)。保育類哺乳動物生息現況分析與生態資訊建置。林務局。
林良恭、姜博仁、王豫煌(2016)。重要石虎棲地保育評析(2/2)。林務局。
柯伶樺、邱峋文、郭姿蒨、吳俊毅、柯智仁(2021)。哺乳類專家意見海拔縣市分布圖(version 1.0)。特有生物研究保育中心。
翁國精、劉建男(2018)。自動相機動物監測整合計畫(1/4)。林務局。
翁國精、劉建男、端木茂甯(2024)。野生動物長期監測系統之優化與資料整合計畫(4/4)。林業及自然保育署。
翁嘉駿、翁國精、許皓捷(2017)。鼬獾族群變動長期監測及共域食肉目動物調查。動植物防疫檢疫局。
黃美秀、裴家騏(2004)。自動照相機應用於中大型野生動物族群監測之研究。營建署雪霸國家公園管理處。
黃美秀、簡熒芸(2007)。玉山國家公園楠溪林道較大型哺乳動物之監測。台灣林業科學,22,135-47。
裴家騏(1998)。利用自動照相設備記錄野生動物活動模式之評估。台灣林業科學,13,317-324。
裴家騏、姜博仁(2002)。大武山自然保留區和周邊地區雲豹及其他中大型哺乳動物之現況與保育研究(一)。林務局。
裴家騏(2005)。自動照相機在動物監測上之應用與成效分析。台灣國家公園研討會,142-157。
鄭桓安(2022)。人為活動對臺灣中大型哺乳類空間分布影響評估。國立臺灣大學碩士論文。
環保署(2011)。動物生態評估技術規範。環保署。
Ahumada, J. A., Silva, C. E., Gajapersad, K., Hallam, C., Hurtado, J., Martin, E., ... & Andelman, S. J. (2011). Community structure and diversity of tropical forest mammals: data from a global camera trap network. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2703-2711.
Balestrieri, A., A. Ruiz-González, M. Vergara, E. Capelli, P. Tirozzi, S. Alfino, G. Minuti, C. Prigioni, & Saino, N. (2016). Pine marten density in lowland riparian woods: a test of the random encounter model based on genetic data. Mammalian Biology, 81, 439–446.
Beier, P., & Noss, R. F. (1998). Do habitat corridors provide connectivity?. Conservation Biology, 12, 1241-1252.
Bischof, R., Hameed, S., Ali, H., Kabir, M., Younas, M., Shah, K. A., ... & Nawaz, M. A. (2014). Using time‐to‐event analysis to complement hierarchical methods when assessing determinants of photographic detectability during camera trapping. Methods in Ecology and Evolution, 5, 44-53.
Burton, A.C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J.T., Bayne, E. and Boutin, S. (2015). Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology, 52, 675-685.
Chang, A. Y., Chen, W. J., He, R. Y., Lin, D. L., Lin, Y. L., Lin, T. E., ... & Lee, P. F. (2022). Range map datasets for terrestrial vertebrates across Taiwan. Data in Brief, 42, 108060. https://doi.org/10.1016/j.dib.2022.108060
Cox, D.R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological), 34, 187-202.
Cox, D. R. (2018). Analysis of Survival Data. Chapman and Hall/CRC.
Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., & Collen, B. (2014). Defaunation in the Anthropocene. Science, 345, 401–406.
Furnas, B. J., & Callas, R. L. (2015). Using automated recorders and occupancy models to monitor common forest birds across a large geographic region. Journal of Wildlife Management, 79, 325-337.
Garrard, G. E., S. A. Bekessy, M. A. McCarthy, and B. A. Wintle. (2008). When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral Ecology, 33, 986–998.
Gu, W., & Swihart, R. K. (2004). Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. Biological Conservation, 116, 195-203.
Haugaasen, T., & Peres, C. A. (2005). Mammal assemblage structure in Amazonian flooded and unflooded forests. Journal of Tropical Ecology, 21, 133–145.
Jones, J. P., Collen, B. E. N., Atkinson, G., Baxter, P. W., Bubb, P., Illian, J. B., ... & Milner‐Gulland, E. J. (2011). The why, what, and how of global biodiversity indicators beyond the 2010 target. Conservation Biology, 25, 450-457.
Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457–481.
Kays, R., Arbogast, B. S., Baker‐Whatton, M., Beirne, C., Boone, H. M., Bowler, M., ... & Spironello, W. R. (2020). An empirical evaluation of camera trap study design: How many, how long and when? Methods in Ecology and Evolution, 11, 700-713.
Lim, P. X., Lin, S. M., Lin, W. L., & Tseng, H. Y. (2023). Breeding records, urban habitat, and threats to the masked palm civet in Taiwan. Journal of Wildlife Management, 87, e22467. https://doi.org/10.1002/jwmg.22467
Lüdecke, D. (2018). ggeffects: Tidy data frames of marginal effects from regression models. Journal of Open Source Software, 3, 772. https://doi.org/10.21105/joss.00772
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Andrew Royle, J., & Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
Margules, C., Pressey, R. (2000). Systematic conservation planning. Nature 405, 243–253.
Meek, P. D., Ballard, G., Claridge, A., Kays, R., Moseby, K., O’brien, T., ... & Townsend, S. (2014). Recommended guiding principles for reporting on camera trapping research. Biodiversity and Conservation, 23, 2321-2343.
Muenchow, G. (1986). Ecological use of failure time analysis. Ecology, 67, 246–250.
O'Connell, A. F., Nichols, J. D., & Karanth, K. U. (2011). Camera Traps in Animal Ecology: Methods and Analyses (Vol. 271). Springer.
O’Brien, T. G., Kinnaird, M. F., & Wibisono, H. T. (2003). Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation, 6, 131–139.
Peral, C., Landman, M., & Kerley, G. I. (2022). The inappropriate use of time‐to‐independence biases estimates of activity patterns of free‐ranging mammals derived from camera traps. Ecology and Evolution, 12, e9408. https://doi.org/10.1002/ece3.9408
Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution, 20, 503-510.
Pontes, A. M. (2004). Ecology of a community of mammals in a seasonally dry forest in Roraima, Brazilian Amazon. Mammalian Biology, 69, 319-336.
Rovero, F., Zimmermann, F., Berzi, D., & Meek, P. (2013). Which camera trap type and how many do I need? A review of camera features and study designs for a range of wildlife research applications. Hystrix: The Italian Journal of Mammalogy, 24, 148-156.
Rowcliffe, J. M., & Carbone, C. (2008). Surveys using camera traps: are we looking to a brighter future? Animal Conservation, 11, 185-186.
Strebel, N., Fiss, C. J., Kellner, K. F., Larkin, J. L., Kéry, M., & Cohen, J. (2021). Estimating abundance based on time‐to‐detection data. Methods in Ecology and Evolution, 12, 909-920.
Su, H. J. (1984). Studies on the climate and vegetation types of the natural forests in Taiwan. (II). Altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry, 17, 57-73.
Therneau, T. M. (2024). A package for survival analysis in R (Version 3.8-3) [Computer software]. Retrieved from https://CRAN.R-project.org/package=survival
Tobler, M. W., Carrillo‐Percastegui, S. E., Leite Pitman, R., Mares, R., & Powell, G. (2008). An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Animal Conservation, 11, 169-178.
Trolle, M. (2003). Mammal survey in the Rio Jauaperí region, Rio Negro Basin, the Amazon, Brazil. Mammalia, 67, 75–84.
Voss, R.S. & Emmons, L.H. (1996). Mammalian diversity in Neotropical lowland rainforests: a preliminary assessment. Bulletin of the American Museum of Natural History, 230, 1–115.
Voss, R. S., Lunde, D. P., & Simmons, N. B. (2001). The mammals of Paracou, French Guiana: a Neotropical lowland rainforest fauna part 2. Nonvolant species. Bulletin of the American Museum of Natural History, 2001, 3-236.
Wood, S. N. (2017). Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC.
Whittington, J., Hebblewhite, M., DeCesare, N. J., Neufeld, L., Bradley, M., Wilmshurst, J., & Musiani, M. (2011). Caribou encounters with wolves increase near roads and trails: a time‐to‐event approach. Journal of Applied Ecology, 48, 1535-1542.
Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell Grant, E. H., & Veran, S. (2013). Presence‐only modelling using MAXENT: when can we trust the inferences?. Methods in Ecology and Evolution, 4, 236-243.
Yoccoz, N. G., Nichols, J. D. & Boulinier, T. (2001). Monitoring of biological diversity in space and time. Trends in Ecology and Evolution, 16, 446–453.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98433-
dc.description.abstract隨著生態監測技術的進步,紅外線自動相機已成為全球野生動物長期監測的重要工具,在臺灣也被廣泛應用於哺乳動物的分布、行為與族群動態調查。為了解相機樣點設置的空間代表性、調查時長與環境因子對偵測效率的影響,本研究以農業部林業及自然保育署2017至2021年於臺灣本島所設置之261台紅外線自動相機為資料來源,系統性探討中大型哺乳動物的偵測機率及其影響因子。
研究首先比較物種分布模型 (Species Distribution Model, SDM) 與專家意見海拔區間兩種空間預測資訊對相機偵測結果的解釋力,結果顯示,無論採用SDM或海拔預測分組,多數保育類及一般類物種於預測範圍內的偵測比例均顯著高於範圍外,尤其保育類物種(如山羊、水鹿、石虎等)在預測範圍內外的差異最為明顯,顯示兩類預測工具皆具高度參考價值。然而,極難偵測物種(如黑熊、野兔等)即使長期部署於預測分布範圍內,其偵測機率仍偏低,反映資料稀少、樣點分布、物種習性等多重因素所造成的限制。
進一步以廣義線性模型 (Generalized Linear Model, GLM) 分析15種中大型哺乳動物之環境因子影響,結果發現海拔與距城市距離為影響最多物種偵測機率的關鍵因子。海拔對物種偵測機率的影響呈現明顯分化,分布於中高海拔的物種(如山羊、水鹿、黃鼠狼等)偵測機率隨海拔升高而提升,偏好低海拔的物種(如穿山甲、白鼻心、麝香貓等)則呈現相反趨勢。距城市距離亦顯著影響部分物種之偵測機率,反映不同物種對人為干擾的敏感度不一。
於調查時間分析方面,累積偵測曲線顯示多數常見或族群密度高之物種於調查初期即可快速被偵測到,達到80%累積偵測機率約需485天,90%則需806天。事件發生時間分析 (Time-to-Event Analysis, TTE) 進一步指出,族群密度高且分布廣的物種(如山羌、獼猴等)在多數樣點中,達到首次偵測機率50%的中位數天數(t₀.₅)僅需數天至數十天,而隱密性高或族群密度低之物種(如黑熊、石虎、野兔等)即使延長調查時間,累積偵測機率亦難以突破50%。
本研究建議,未來自動相機樣點規劃應強化對都市邊緣、農地等多元棲地環境的代表性,並針對稀有或保育類物種提高監測樣點密度與設置時間,提升樣點分布的全面性與監測結果的解釋力,作為優化臺灣野生動物長期監測與保育政策之依據。
zh_TW
dc.description.abstractWith advances in ecological monitoring technology, infrared camera traps have become a key tool for long-term wildlife monitoring worldwide, and have been widely applied in Taiwan for investigating mammalian distribution, behavior, and population dynamics. In order to assess how camera trap site selection, survey duration, and environmental factors influence detection probability, detection probabilities and associated factors of medium-to-large mammals were systematically examined based on data from 261 infrared camera traps deployed by the Forestry and Nature Conservation Agency across Taiwan from 2017 to 2021.
Species distribution models (SDMs) and expert-based altitudinal ranges were compared to assess their explanatory power for camera trap detection probability. The findings indicated that, regardless of whether SDMs or expert-defined altitude zones were used, most protected and common species exhibited significantly higher detection probability within predicted ranges than outside, with the differences particularly pronounced among protected species such as Formosan serow, sambar deer, and leopard cat. These results highlight the high reference value of both spatial prediction tools. However, for elusive species with very low detection rates (e.g., Formosan black bear, hare), detection probability remained low even when traps were deployed long-term within predicted ranges, reflecting constraints related to data scarcity, site coverage, and species ecology.
Further analysis using generalized linear models (GLM) indicated that elevation and distance to the nearest city were the most influential environmental factors affecting detection probability for the 15 focal species. The effect of elevation showed strong differentiation among species: detection probability increased with elevation for high-mountain species (e.g., serow, sambar, weasel), but decreased for species preferring lower elevations (e.g., pangolin, masked palm civet, small Indian civet). Distance to city was also significant for some species, reflecting varied sensitivity to human disturbance.
Regarding survey duration, cumulative detection probability curves revealed that most common or high-density species could be rapidly detected early in the survey, with 80% cumulative detection probability reached after approximately 485 days and 90% after 806 days. Time-to-event (TTE) analysis further indicated that high-density, widely distributed species (such as Reeves’s muntjac and Formosan macaque) required only several days to several tens of days for the median time to first detection, while protected or elusive species (e.g., black bear, leopard cat, hare) rarely surpassed a 50% cumulative detection probability even with extended survey periods.
Based on these findings, it is recommended that future camera trap network designs in Taiwan should strengthen the representativeness of urban-edge and agricultural habitats, and moderately increase both the density and duration of monitoring for rare or protected species. Such improvements will enhance the spatial comprehensiveness of sampling and the explanatory power of monitoring results, providing a more robust scientific foundation for optimizing long-term wildlife monitoring and conservation policy in Taiwan.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:05:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-14T16:05:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iv
目次 vi
圖次 viii
表次 x
前言 1
材料與方法 5
一、 資料來源 5
(一) 研究範圍及紅外線自動相機資料 5
(二) 物種潛在分布圖及海拔分布圖 6
(三) 環境因子資料 7
二、 資料分析 8
(一) 預測分布範圍差異 8
(二) 環境特徵與被偵測機率之關係 9
(三) 累積偵測與調查天數之關係 9
(四) 事件發生時間分析 10
結果 13
一、 預測分布範圍差異 13
二、 環境特徵與被偵測機率的關係 14
三、 累積偵測與調查天數 18
(一) 廣義加法模型 (GAM) 18
(二) 事件發生時間分析 (TTE) 18
討論 23
一、 模型預測與實際偵測的一致性與限制 23
二、 環境因子對物種偵測機率的差異 25
三、 調查天數與累積偵測趨勢 26
結論與建議 28
參考文獻 30
圖 36
表 70
附錄、261台紅外線自動相機資訊 75
-
dc.language.isozh_TW-
dc.subject偵測機率zh_TW
dc.subject中大型哺乳動物zh_TW
dc.subject紅外線自動相機zh_TW
dc.subject物種分布預測模型zh_TW
dc.subject時間事件分析zh_TW
dc.subjectmedium to large mammalsen
dc.subjecttime-to-event analysisen
dc.subjectspecies distribution modelen
dc.subjectdetection probabilityen
dc.subjectinfrared camera trapen
dc.title探討紅外線自動相機於臺灣中大型哺乳動物之偵測效率與影響因子zh_TW
dc.titleDetection Efficiency and Its Influencing Factors for Medium-to-Large Mammals in Taiwan Based on Infrared Camera Trap Dataen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee柯智仁;陳宛均zh_TW
dc.contributor.oralexamcommitteeChie-Jen Ko;Wan-Jyun Chenen
dc.subject.keyword紅外線自動相機,偵測機率,物種分布預測模型,時間事件分析,中大型哺乳動物,zh_TW
dc.subject.keywordinfrared camera trap,detection probability,species distribution model,time-to-event analysis,medium to large mammals,en
dc.relation.page81-
dc.identifier.doi10.6342/NTU202502668-
dc.rights.note未授權-
dc.date.accepted2025-07-30-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved